[PDF] FONCTION LOGARITHME NEPERIEN





Previous PDF Next PDF



LIMITES ET CONTINUITÉ (Partie 1)

- Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales. 3) Limites des fonctions usuelles. Propriétés : - lim.



LIMITES DES FONCTIONS

.maths-et-tiques.fr. 3. Remarques : • Lorsque tend vers +∞ la courbe de la fonction "se rapproche" de son asymptote. • On a une définition analogue en −∞ ...



Terminale générale - Limites de fonctions - Exercices - Devoirs

Dans chacun des cas suivants on donne certaines limites d'une fonction f. Donner une interprétation graphique de chacune de ces limites. Exercice 3 corrigé 



Fiche technique sur les limites

Terminale ES. Page 3. 4.3 A . 4.3 Asymptote oblique. Théorème 3 Dans une fonction rationnelle lorsque le degré du polynôme du numé 



Limites de fonctions - Lycée dAdultes

9 oct. 2014 alors f × g a pour limite ℓ × ℓ′. ∞*. F. ind. ∞*. *Appliquer la règle des signes. PAUL MILAN. 4. TERMINALE S. Page 5. 4. OPÉRATIONS SUR LES ...



Limites – Corrections des Exercices

(limite de quotient de fonctions). — b. g(x)=5x − 1 +. 1 x − 3 en +∞ 



Leçon 1 : Limites et continuité dune fonction

Les élèves de Terminale s'exercent à la photographie au sein du club photo du lycée. On les informe qu'en photographie la profondeur de champ correspond à 



FONCTION EXPONENTIELLE

ne s'annule jamais. Or par définition



Terminale S - Limites de fonctions

Limites de fonctions. I) Limite et opérations. 1) Limite d'une somme. Si a pour Exemple 3 : Déterminer la limite en +∞ de la fonction définie sur ℝ par ...



LIMITES ET CONTINUITÉ (Partie 1)

On dit que la fonction f admet pour limite L en +? si tout intervalle ouvert 1) Il s'agit d'une forme indéterminée du type "?? +(+? )+(?? )".



Limites de fonctions - Lycée dAdultes

9 oct. 2014 3 Limites des fonctions élémentaires ... 5 Limite d'une fonction composée. 6. 6 Théorèmes de comparaison. 8. -. PAUL MILAN. 1. TERMINALE S ...



Fiche technique sur les limites

1 Fonctions élémentaires 3 Opération sur les limites et formes indéterminées. 3.1 Somme de fonctions. Si f a pour limite ... 1 sur 3. Terminale ES ...



Terminale S - Limites de fonctions

Exemple 3 : Déterminer la limite en +? de la fonction définie sur ? par ( ) = ? ? . Comme lim. ? +?. = +? et lim. ? +?.



LIMITES DES FONCTIONS

On en déduit que la droite d'équation =0 est asymptote horizontale à la courbe représentative de en +?. - lim. *?3. 1? =0 donc par limite d'un quotient 



Terminale générale - Limites de fonctions - Exercices

3. Calculer la limite de f en +?. Exercice 8 corrigé disponible. Calculer les limites suivantes : 1.



FONCTION EXPONENTIELLE

ne s'annule jamais. Or par définition



COURS TERMINALE S LES LIMITES A. Limite dune fonction en +

TERMINALE S. LES LIMITES. A. Limite d'une fonction en + ?. On considère une fonction f définie sur un intervalle de la forme [ a ; + ? [ ; plusieurs cas 



FONCTION LOGARITHME NEPERIEN

L'ensemble solution est donc 1;3. ???? . 3) Limites aux bornes. Propriété : lim x?+? lnx = +? 



Terminale générale - Limites de fonctions - Fiche de cours

Limite infinie en l'infini a. Définition. L'infini est un concept qui n'a pas d'équivalent physique ; il s'agit d'une limite. - limite en +? :.

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frFONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un trava il de 20 ans , Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addi tion (paragra phe II). Ceci peut paraît re dérisoire aujourd'hui, ma is il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur ℝ, à valeurs dans

0;+∞

. D'après le théorème des valeurs intermédiaires, pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans ℝ.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDéfinition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ][ ln:0;+∞→ x!lnx

Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre. - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation

y=x

. - Dans le domaine scientifique, on utilise la fonction logarithme décimale, notée log est définie par :

log(x)= lnx ln10

Conséquences : a)

y=lnxavecx>0⇔x=e y b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

II. Propriété de la fonction logarithme népérien 1) Relation fonctionnelle Théorème : Pour tous réels x et y strictement positifs, on a : ()lnlnln xyxy ×=+

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDémonstration :

e ln(x×y) =x×y=e lnx ×e lny =e lnx+lny

Donc ()lnlnln xyxy ×=+

Remarque : Cette formule permet de transformer un produit en somme. Ainsi, celui qui aurait à effectuer 36 x 62, appliquerait cette formule, soit : log(36 x 62) = log(36) + log(62) ≈ 1,5563 + 1,7924 (voir table ci-contre) L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement : log(36 x 62) ≈ 3,3487 En cherchant dans la table, le logarithme égal à 3,3487, on trouve 2232, soit : 36 x 62 = 2232. 2) Conséquences Corollaires : Pour tous réels x et y strictement positifs, on a : a)

ln 1 x =-lnx b) ln x y =lnx-lny c) lnx= 1 2 lnx d) lnx n =nlnx avec n entier relatif Démonstrations : a) 11 lnlnln ln1 0xx xx b) 11 lnlnln lnlnln x xxxy yyy c) ()

2lnlnl nlnlnxxxxxx=+=×=

d) On démontre ce résultat par récurrence. L'initialisation est triviale. La démonstration de l'hérédité passe par la décomposition : ()

1 lnlnln lnln ln(1 )ln nnn xxxxxnxxnx

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Simplifier une expression Vidéo https://youtu.be/HGrK77-SCl4 ()()

ln35 ln3 5A=-++

B=3ln2+ln5-2ln3

C=lne 2 -ln 2 e ln35 ln3 5 ln35 35 ln95 ln4 A=-++

B=3ln2+ln5-2ln3

=ln2 3 +ln5-ln3 2 =ln 2 3 ×5 3 2 =ln 40
9 C=lne 2 -ln 2 e =2lne-ln2+lne =2-ln2+1 =3-ln2

III. Etude de la fonction logarithme népérien 1) Continuité et dérivabilité Propriété : La fonction logarithme népérien est continue sur

0;+∞

. - Admis - Propriété : La fonction logarithme népérien est dérivable sur

0;+∞

et (lnx)'= 1 x . Démonstration : La fonction ln est continue sur

0;+∞

, donc pour tout réel a > 0, on a : lim x→a lnx=lna . Donc par composée de limites, en posant X=lnx lim x→a lnx-lna x-a =lim

X→lna

X-lna e X -e lna =lim

X→lna

1 e X -e lna X-lna Comme la fonction exponentielle est dérivable sur ℝ, on a : lim

X→lna

1 e X -e lna X-lna 1 e lna 1 a et donc lim x→a lnx-lna x-a 1 a

. Exemple : Vidéo https://youtu.be/yiQ4Z5FdFQ8 Dériver la fonction suivante sur l'intervalle

0;+∞

2 ln x fx x 2 2 2 22
1

2lnln1

2lnln 2ln ln xxx x fx x xx x x xx

2) Variations Propriété : La fonction logarithme népérien est strictement croissante sur

0;+∞

. Démonstration : Pour tout réel x > 0, (lnx)'= 1 x >0 . Corollaires : Pour tous réels x et y strictement positifs, on a : a) lnx=lny⇔x=y b) lnxMéthode : Résoudre une équation ou une inéquation Vidéo https://youtu.be/lCT-8ijhZiE Vidéo https://youtu.be/GDt785E8TPE Vidéo https://youtu.be/_fpPphstjYw a) Résoudre dans ℝ l'équation suivante : ()()ln3ln 90 xx-+-=

b) Résoudre dans ℝ l'inéquation suivante : ln3-x -lnx+1 a) Ensemble de définition : x-3>0 x>3 et 9-x>0 x<9

L'équation est définie sur ]3 ; 9[. On restreint donc la recherche des solutions à cet intervalle. ()()ln3ln 90 xx-+-=

2 2 ln39 0 ln39 ln1 391
12271
12280

123212 32

quotesdbs_dbs47.pdfusesText_47
[PDF] limites de fonctions terminale s exercices

[PDF] Limites de l'organisme ? l'effort -VO2max

[PDF] limites de l'étude mémoire

[PDF] limites de l'onu

[PDF] limites de la croissance économique cours

[PDF] Limites de la démocratie

[PDF] limites de la discrimination positive

[PDF] Limites de la puissance francaise

[PDF] Limites de plaques rt localisation des volcans er seismes et conclusion

[PDF] Limites de suite quand n tend vers +oo

[PDF] Limites de suites

[PDF] Limites de suites : Un=2n-3

[PDF] limites de suites tableau

[PDF] limites de suites terminale es

[PDF] limites des fonctions trigonométriques en l'infini