[PDF] Mathématiques MPSI Page 1. Mathématiques MPSI.





Previous PDF Next PDF



MPSI2019.pdf MPSI2019.pdf

20 nov. 2021 Ce document reprend la seconde édition de l'ouvrage Mathématiques MPSI ... Le livre est désormais épuisé et j'ai récupéré mes droits sur cet ...



Mathématiques 1re année MPSI Tout en un Mathématiques 1re année MPSI Tout en un

Ce livre ne se sub- stitue pas au cours oral d'un professeur mais nous espérons qu'il constituera pour l'étudiant un outil de travail et de référence. Quelques 



Mathématiques : du lycée aux CPGE scientifiques

Un livre de 500 pages contient 50 fautes d'impression réparties aléatoirement. MPSI et en MPII. 163. Page 164. Exercice 465 ( 4 ). En utilisant l'exercice 30 ...



Méthodes et Exercices de Mathématiques MPSI Méthodes et Exercices de Mathématiques MPSI

MATHÉMATIQUES. MPSI. Page 3. Page 4. LESMÉTHODES ETEXERCICES DE. MATHÉMATIQUES. MPSI. Jean-Marie Monier. Professeur en classes de Spéciales au lycée La ...



Mathématiques Méthodes et Exercices PC-PSI-PT

MATHÉMATIQUES. PC-PSI-PT. MÉTHODESETEXERCICES. Professeur en classe de Spéciales ... MPSI. • Étudier les variations d'une fonction après avoir éventuellement.



Mathématiques MPSI

Page 1. Mathématiques MPSI. Pierron Théo. ENS Ker Lann. Page 2. 2. Page 3. Table des matières. I Algèbre. 1. 1 Ensembles. 3. 1.1 Vocabulaire général 



Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat

23 mar. 2011 ... livres est une compilation du savoir mathématique de son époque. Il resta une référence pendant près de 2000 ans et contient



Toute la MPSI en fiches. Maths Physique

https://smartmanmaths.files.wordpress.com/2017/11/pdf-toute-la-mpsi-en-fiches-maths-physique-chimie-pdf.pdf



[PDF] livre-algebre-1.pdf - Exo7 - Cours de mathématiques

La première partie débute par la logique et les ensembles qui sont des fondamentaux en mathématiques. Ensuite vous étudierez des ensembles particuliers : les 



[PDF] Mathématiques 1re année MPSI Tout en un

TOUT LE PROGRAMME EN UN SEUL VOLUME ! MATHS MPSI les exercices de chaque chapitre sont accompagnés à la fin du livre d'indications et réponses qui 



[PDF] Mathématiques MPSI

Mathématiques MPSI Pierron Théo ENS Ker Lann Page 2 2 Page 3 Table des matières I Algèbre 1 1 Ensembles 3 1 1 Vocabulaire général



[PDF] Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat

23 mar 2011 · Cours de Mathématiques Sup MPSI PCSI PTSI TSI formé de treize livres est une compilation du savoir mathématique de son époque



[PDF] Precis maths exos maths mpsi ( Pdf )

Thermodynamique MPSI Chimie 1" année Chimie MPSI Exercices 1 année FL ? Mathématiques MPSI ? Physique MPSI Maquette et couverture: Sophie Martinet



[PDF] maths mpsi - Dunod

Le livre débute par un chapitre 0 : « Pour commencer »; il ne s'agit pas d'un cours de logique mais d'une acquisition à minima de notions fon- damentales ( 



[PDF] Réussir son entrée en Prépas scientifiques Maths

MATHS Tle S prépas scientifiques MPSI • PCSI • PTSI • BCPST Paul Milan Après les premiers exercices mettez vos notes et vos livres de côté et 



[PDF] Exercices de mathématiques - MPSI La Martinière Monplaisir

Exercices de mathématiques – MPSI Lycée La Martinière Monplaisir Année 2022/2023 PExercices d'application directe du cours ou calculs directs



[PDF] Cours de Mathématiques - Licence de mathématiques Lyon 1

23 mar 2011 · Cours de Mathématiques Sup MPSI PCSI PTSI TSI formé de treize livres est une compilation du savoir mathématique de son époque



[PDF] Cours de Mathématiques - Alain SOYEUR

MPSI-2 Lycée Fermat En mathématiques on part d'un petit nombre de propositions que l'on A contribué `a plusieurs branches des mathématiques :



[PDF] Mathématiques Méthodes et Exercices MP

primitives volume Exercices MPSI ? Exercices 2 25 2 26 Appliquer les méthodes de calcul d'intégrales et de primitives : • primitives usuelles

Mathématiques MPSI

Mathématiques MPSI

Pierron Théo

ENS Ker Lann

2

Table des matièresI Algèbre1

1 Ensembles3

1.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Opérations sur les parties d"un ensemble . . . . . . . . . . . . 4

1.3 Relations d"ordre . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Applications7

2.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Fonction et application . . . . . . . . . . . . . . . . . . 7

2.1.2 Restriction et prolongement d"applications . . . . . . .8

2.1.3 Composition d"applications . . . . . . . . . . . . . . . 8

2.1.4 Image directe et réciproque de parties par une application 9

2.2 Injections, surjections, bijections . . . . . . . . . . . . . . .. . 10

2.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Étude des bijections . . . . . . . . . . . . . . . . . . . 11

3 Le principe de récurrence13

3.1 Axiomes de Péano . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . 13

4 Ensembles finis17

4.1 Notion d"ensemble fini . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 Résultats essentiels sur les ensembles finis . . . . . . . 18

4.2 Analyse combinatoire . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Résultats généraux . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Combinaisons . . . . . . . . . . . . . . . . . . . . . . . 19

5 Arithmétique dansZ21

5.1 Structure additive deZ. . . . . . . . . . . . . . . . . . . . . . 21

5.2 PGCD et PPCM de deux entiers . . . . . . . . . . . . . . . . 22

i iiTABLE DES MATIÈRES

5.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.2 Entiers premiers entre eux . . . . . . . . . . . . . . . . 23

5.2.3 Algorithme d"Euclide . . . . . . . . . . . . . . . . . . . 25

5.3 Nombres premiers . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Le corps des réels29

6.1 Relation d"ordre surR. . . . . . . . . . . . . . . . . . . . . . 29

6.1.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.2 Bornes supérieure et inférieure d"une partie deR. . . 30

6.2 Théorème de la borne supérieure . . . . . . . . . . . . . . . . 31

6.2.1 Énoncé . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2.2 Partie entière d"un réel . . . . . . . . . . . . . . . . . . 32

6.2.3 Notion d"intervalle . . . . . . . . . . . . . . . . . . . . 33

6.3 Droite numérique achevée . . . . . . . . . . . . . . . . . . . . 34

7 Les complexes35

7.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Rappels sur les complexes . . . . . . . . . . . . . . . . . . . . 36

7.2.1 Opérations dansC. . . . . . . . . . . . . . . . . . . . 36

7.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.3 Module . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Forme trigonométrique d"un complexe . . . . . . . . . . . . . . 37

7.3.1 Écriture trigonométrique . . . . . . . . . . . . . . . . . 37

7.3.2 Calcul numérique d"un argument . . . . . . . . . . . . 38

7.4 Exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . 38

7.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.4.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.4.3 Étude de formes trigonométriques . . . . . . . . . . . . 40

7.5 Racinesn-ièmes d"un complexe . . . . . . . . . . . . . . . . . 41

7.5.1 Définition et expression . . . . . . . . . . . . . . . . . . 41

7.5.2 Extraction des racines carrées d"un complexe sous forme

algébrique . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5.3 Équation du second degré . . . . . . . . . . . . . . . . 43

8 Géométrie plane45

8.1 Repérage d"un point dans le plan . . . . . . . . . . . . . . . . 45

8.1.1 Repère cartésien . . . . . . . . . . . . . . . . . . . . . 45

8.1.2 Orientation du plan . . . . . . . . . . . . . . . . . . . . 47

8.1.3 Repérage polaire du plan . . . . . . . . . . . . . . . . . 47

8.2 Identification dePdansC. . . . . . . . . . . . . . . . . . . . 48

8.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 48

TABLE DES MATIÈRESiii

8.2.2 Représentation analytique complexe d"applicationsde

PdansP. . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3 Outils géométriques . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3.1 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . 50

8.3.2 Produit mixte . . . . . . . . . . . . . . . . . . . . . . . 51

8.3.3 Un exercice corrigé . . . . . . . . . . . . . . . . . . . . 52

8.4 Étude des droites du plan . . . . . . . . . . . . . . . . . . . . 53

8.4.1 Description d"une droite dans un repère quelconque . .53

8.4.2 Étude quand le repère d"étude est orthonormé direct . 55

8.4.3 Distance d"un point à une droite . . . . . . . . . . . . . 57

8.4.4 Angles de droites . . . . . . . . . . . . . . . . . . . . . 58

8.5 Étude des cercles . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.5.1 Repérage cartésien d"un cercle . . . . . . . . . . . . . . 58

8.5.2 Autres paramétrages d"un cercle . . . . . . . . . . . . . 61

8.5.3 Intersection droite-cercle . . . . . . . . . . . . . . . . . 62

9 Coniques65

9.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.2 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.3 Hyperbole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.3.1 Paramétrages . . . . . . . . . . . . . . . . . . . . . . . 69

9.3.2 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . 71

9.4 Parabole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10 Courbes du second degré75

10.1 Changements de repères . . . . . . . . . . . . . . . . . . . . . 75

10.1.1 Effet d"une translation . . . . . . . . . . . . . . . . . . 75

10.1.2 Effet d"une rotation . . . . . . . . . . . . . . . . . . . . 75

10.2 Étude deA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11 Géométrie dans l"espace usuel 79

11.1 Repérage dansE. . . . . . . . . . . . . . . . . . . . . . . . . 79

11.1.1 Repère cartésien . . . . . . . . . . . . . . . . . . . . . 79

11.1.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2 Outils géométriques . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2.1 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . 80

11.2.2 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . 81

11.2.3 Produit mixte . . . . . . . . . . . . . . . . . . . . . . . 82

11.3 Plans de l"espace . . . . . . . . . . . . . . . . . . . . . . . . . 83

11.3.1 Représentation dans un repère quelconque . . . . . . . 83

11.3.2 Dans un repère orthonormé . . . . . . . . . . . . . . . 84

ivTABLE DES MATIÈRES

11.4 Droites de l"espace . . . . . . . . . . . . . . . . . . . . . . . . 85

11.4.1 Dans un repère quelconque . . . . . . . . . . . . . . . . 85

11.4.2 Distance d"un point à une droite . . . . . . . . . . . . . 87

11.4.3 Perpendiculaire commune à deux droites . . . . . . . . 88

11.5 Étude des sphères . . . . . . . . . . . . . . . . . . . . . . . . . 89

12 Groupes, anneaux, corps93

12.1 Lois de composition . . . . . . . . . . . . . . . . . . . . . . . . 93

12.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . 93

12.1.2 Propriétés des lois de composition internes . . . . . . .93

12.1.3 Élements remarquables d"un ensemble . . . . . . . . . 94

12.1.4 Propriétés des lois associatives . . . . . . . . . . . . . . 95

12.1.5 Notations multiplicatives . . . . . . . . . . . . . . . . . 95

12.1.6 Notations additives . . . . . . . . . . . . . . . . . . . . 96

12.2 Groupes et morphismes de groupes . . . . . . . . . . . . . . . 96

12.3 Sous-groupes . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

12.4 Structure d"anneau et de corps . . . . . . . . . . . . . . . . . . 99

12.4.1 Définitions et exemples . . . . . . . . . . . . . . . . . . 99

12.4.2 Règles de calculs dans un anneau . . . . . . . . . . . . 100

13 Résolution de systèmes linéaires 103

13.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13.2 Pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . 104

13.2.1 Opération de Gauss . . . . . . . . . . . . . . . . . . . . 104

13.2.2 Quelques exemples . . . . . . . . . . . . . . . . . . . . 105

13.3 Compléments pour limiter les calculs . . . . . . . . . . . . . . 106

13.4 Compatibilité d"un système linéaire . . . . . . . . . . . . . . .107

14 Structure d"espace vectoriel 109

14.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

14.2 Sous-espaces vectoriels . . . . . . . . . . . . . . . . . . . . . . 111

14.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 111

14.2.2 Stabilité de la notion de sous-espace vectoriel . . . .. 112

14.2.3 Somme de sous-espaces vectoriels . . . . . . . . . . . . 114

14.3 Applications linéaires . . . . . . . . . . . . . . . . . . . . . . . 116

14.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . 116

14.3.2 Image directe et réciproque de sous-espaces vectoriels . 118

14.3.3 Équations linéaires . . . . . . . . . . . . . . . . . . . . 118

14.3.4 Structure deL(E,E?) . . . . . . . . . . . . . . . . . . . 119

14.4 Liens entre applications linéaires et sommes directes. . . . . . 120

14.4.1 Construction d"une application linéaire . . . . . . . . .120

TABLE DES MATIÈRESv

14.4.2 Projecteurs d"un espace vectoriel . . . . . . . . . . . . 121

14.4.3 Symétries d"unK-espace vectoriel . . . . . . . . . . . . 123

15 Familles de vecteurs125

15.1 Décomposition d"un vecteur . . . . . . . . . . . . . . . . . . . 125

15.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . 125

15.1.2 Familles génératrices . . . . . . . . . . . . . . . . . . . 125

15.1.3 Familles libres . . . . . . . . . . . . . . . . . . . . . . . 126

15.2 Bases d"un espace vectoriel . . . . . . . . . . . . . . . . . . . . 128

15.2.1 Définition et exemples . . . . . . . . . . . . . . . . . . 128

15.2.2 Existence de base . . . . . . . . . . . . . . . . . . . . . 128

15.2.3 Notion de dimension . . . . . . . . . . . . . . . . . . . 129

15.2.4 Théorème fondamental . . . . . . . . . . . . . . . . . . 131

15.3 Étude pratique d"une famille de vecteurs . . . . . . . . . . . .132

15.4 Systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . . 134

16 Applications linéaires en dimension finie 137

16.1 Image d"une famille de vecteurs . . . . . . . . . . . . . . . . . 137

16.1.1 Deux propositions . . . . . . . . . . . . . . . . . . . . . 137

16.1.2 Image d"une base . . . . . . . . . . . . . . . . . . . . . 138

16.1.3 Théorème fondamental . . . . . . . . . . . . . . . . . . 139

16.2 Calcul de dimensions . . . . . . . . . . . . . . . . . . . . . . . 140

16.2.1 Résultats généraux et applications directes . . . . . .. 140

16.2.2 Étude des suites récurrentes linéaires . . . . . . . . . . 140

16.3 Rang d"une application linéaire . . . . . . . . . . . . . . . . . 142

16.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 142

16.3.2 Théorème du rang . . . . . . . . . . . . . . . . . . . . 142

16.3.3 Équations d"hyperplans . . . . . . . . . . . . . . . . . . 143

16.4 Description analytique d"une application linéaire . .. . . . . . 144

16.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 144

16.4.2 Usage d"une représentation analytique . . . . . . . . . 145

16.4.3 Opérations sur les applications linéaires . . . . . . . .. 147

17 Sous-espaces vectoriels d"un espace vectoriel de dimension

finie151

17.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

17.1.1 Dimension d"un sous-espace vectoriel . . . . . . . . . . 151

17.1.2 Représentation d"un sous-espace vectoriel . . . . . . .. 152

17.2 Somme de sous-espaces vectoriels . . . . . . . . . . . . . . . . 152

17.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . 152

17.2.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 155

viTABLE DES MATIÈRES

18 Calcul matriciel157

18.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 157

18.2 Opérations sur les matrices . . . . . . . . . . . . . . . . . . . . 158

18.2.1 Addition et produit par un scalaire . . . . . . . . . . . 158

18.2.2 Multiplication de deux matrices . . . . . . . . . . . . . 158

18.2.3 Transposition . . . . . . . . . . . . . . . . . . . . . . . 159

18.3 Le pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . 159

18.3.1 Outils de base . . . . . . . . . . . . . . . . . . . . . . . 159

18.3.2 Pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . 160

18.3.3 Résolution d"un système linéaire . . . . . . . . . . . . . 161

18.3.4 Calcul d"un inverse . . . . . . . . . . . . . . . . . . . . 162

quotesdbs_dbs2.pdfusesText_2
[PDF] livre mathematique 4eme pdf

[PDF] livre mathematique bts industriel

[PDF] livre mathématique terminale s pdf

[PDF] livre mathématiques financières pdf

[PDF] livre maths 1ere s hachette correction

[PDF] livre maths 1ere sti2d hachette pdf

[PDF] livre maths 1ere stmg nathan corrigé

[PDF] livre maths 3eme phare pdf

[PDF] livre maths mpsi

[PDF] livre maths terminale s hachette pdf

[PDF] livre mercatique terminale stmg hachette corrigé

[PDF] livre merise pdf

[PDF] livre momo petit prince des bleuets

[PDF] livre monnaie

[PDF] LIVRE NO PASARAN, LE JEU