[PDF] COURS DE CHIMIE-PCSI/MPSI/TSI- elfilalisaid@yahoo.fr Page -2





Previous PDF Next PDF



Cours de Chimie Structure de la matière

Cet ouvrage de « structure de la matière » s'adresse aux étudiants de licence L1 Génie civil et ainsi aux étudiants de L1 (Génie électrique Physique



Cours de Chimie Structure de la matière

Cet ouvrage de « structure de la matière » s'adresse aux étudiants de licence L1 Génie civil et ainsi aux étudiants de L1 (Génie électrique Physique



Chapitre 3 :Structure électronique des atomes

Chapitre 3 : Structure électronique des atomes. Structure de la matière. Page les électrons en cours de remplissage (ou qui viennent de l'être). Electrons ...



CENTRE DES CLASSES PRÉPARATOIRES COURS DE CHIMIE

1 STRUCTURE DE LA MATIÈRE. 7. 1.1 Rappel COURS DE CHIMIE-PCSI/MPSI/TSI- aux mêmes règles de quantification que −→ σo le moment cinétique orbital.





[ M PSI– C

MPSI – CHIMIE – ERIC DAVID (ERIC.DAVID@M4X.ORG). STRUCTURE DE LA MATIERE. Page 18. 13 – Structure cristalline. L'état solide correspond à un empilement d 



Exercices et problèmes CHIMIE - 1re année MPSI/PTSI

Cet ouvrage constitue un très utile complément à l'ouvrage de cours H Prépa Chimie 1re année



Chapitre4 : La liaison chimique

https://www.immae.eu/cours/. Chapitre4 : La liaison chimique. I La liaison de covalence. A) Définition. Une liaison MPSI Chimie. Structure de la matière. 9.



COURS DE CHIMIE-PCSI/MPSI/TSI- elfilalisaid@yahoo.fr Page -2

STRUCTURE DE LA MATIÈRE. 1.1 Rappel. ? On rappelle que l'atome est constitué d'un noyau et des électrons. ? On appelle élément chimique l'entité qui se 



Cours de Chimie Structure de la matière

Cet ouvrage de « structure de la matière » s'adresse aux étudiants de licence L1 Génie civil et ainsi aux étudiants de L1 (Génie électrique Physique



Chapitre 3 :Structure électronique des atomes

Chapitre 3 : Structure électronique des atomes. Structure de la matière. Page 3 sur 5 celle de l'électron donc électron noyau. E. E. <<. : voir cours de 



Chapitre 5 :Systèmes cristallins

Structure de la matière. Page 1 sur 11. I Vocabulaire de la cristallographie. A) Solide cristallin 4.0 International”. https://www.immae.eu/cours/ ...



Exercices et problèmes CHIMIE - 1re année MPSI/PTSI

mes a été découpé selon le même plan que le livre de cours à l'exception de la Chapitre 7 ? Structure et organisation de la matière condensée.



exercices corriges de structure de la matiere et de liaisons chimiques

Exercice I. 1. Pourquoi a-t-on défini le numéro atomique d'un élément chimique par le nombre de protons et non par le 



Chapitre 1 :Classification périodique des éléments

Dalton : La matière est constituée d'atomes. Les éléments chimiques diffèrent par la structure des atomes associés à ces éléments. (En fait c'est le nombre de 



Chapitre 4 :La liaison chimique

Chapitre 4 : La liaison chimique. Structure de la matière. Page 1 sur 8. I La liaison de covalence 4.0 International”. https://www.immae.eu/cours/ ...



COURS DE CHIMIE Avec EXERCICES

notions élémentaires et lois générales relatives à la structure de la matière et à la réaction chimique. Il regroupe trois grands chapitres :.



[PDF] Cours de Chimie Structure de la matière - univ-ustodz

Ce Manuel « structure de la matière » constituée de six chapitres comprenant 72 pages positionnées entre un ouvrage d'initiation et un ouvrage de recherche 



[PDF] Structure de la matière Chimie 1 –Cours & Exercices - Dspace

Faculté de Génie Mécanique Présenté par : Dr BENDAOUD Nadia LMD 1 Année ST 2015-2016 Structure de la matière Chimie 1 –Cours Exercices 



[PDF] Chapitre 3 :Structure électronique des atomes - Melusine

Chapitre 3 : Structure électronique des atomes Structure de la matière Page 1 sur 5 I Nombres quantiques A) Origine théorique



[PDF] cours de chimie pcsi/mpsi/tsi - KOUTOUBIA Prepas

STRUCTURE DE LA MATIÈRE 1 1 Rappel ? On rappelle que l'atome est constitué d'un noyau et des électrons ? On appelle élément chimique l'entité qui se 



[PDF] Polycopié de Cours -Structure de la matière - - ExoCo-LMD

Ce polycopié de cours s'articule autour de sept chapitres : Le premier chapitre est consacré aux rappels des principaux constituants de la matière Le deuxième 



[PDF] chimie-le-compagnon-mpsi-ptsipdf - WordPresscom

En admettant que l'énergie des électrons des atomes est quantifiée nous appren- drons à établir la structure électronique d'un atome ou d'un ion dans son 



[PDF] Cours et Exercices de Structure de la Matière BEY Said

Ce cours se décline en six chapitres tels que défini par le programme officiel du socle commun pour les étudiants Sciences et Technologie Chapitre I : Notions 



[PDF] CHAPITRE I : STRUCTURE DE LA MATIERE

Structure de l'atome - Le noyau et les électrons - Les atomes sont constitués d'un noyau très dense chargé positivement

:

COURS DE CHIMIE-PCSI/MPSI/TSI-

elfilalisaid@yahoo.fr Page -2- -SAID EL FILAI-

Deuxième partie

STRUCTURE DE LA MATIÈRE

3

TABLE DES MATIÈRES

II STRUCTURE DE LA MATIÈRE3

1 STRUCTURE DE LA MATIÈRE7

1.1 Rappel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

1.2 INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

1.2.1 Données expérimentales : . . . . . . . . . . . . . . . . . . . . . . . .. .9

1.2.2 Interpretation de BOHR . . . . . . . . . . . . . . . . . . . . . . . . . ..10

1.2.2.1 Modèle de BOHR . . . . . . . . . . . . . . . . . . . . . . . . .10

1.2.2.2 Interpretation du spectre atomique d'Hydrogène . .. . . . . . .12

1.2.2.3 Diagramme énergétique de l'hydrogène : . . . . . . . . . .. .12

1.2.2.4 Théorie de BOHR appliquée aux hydrogènoides . . . . . .. . .13

1.3 L'ATOME A UN ÉLECTRON (HYDROGÉNOIDE) . . . . . . . . . . . . . . . .14

1.3.1 Dualité Onde-corpuscule . . . . . . . . . . . . . . . . . . . . . . . .. . .14

1.3.2 Principe d'incertitude de Heisenberg . . . . . . . . . . . . .. . . . . . . .14

1.3.3 Équation de Schrodinger . . . . . . . . . . . . . . . . . . . . . . . . .. .14

1.3.4 La densité de probabilité . . . . . . . . . . . . . . . . . . . . . . . .. . .14

1.3.5 L'électron en mécanique quantique . . . . . . . . . . . . . . . .. . . . .15

1.3.6 Les nombres quantiques . . . . . . . . . . . . . . . . . . . . . . . . . ..15

1.3.6.1 Le nombre quantique principaln. . . . . . . . . . . . . . . . .16

1.3.6.2 Le nombre quantique secondaire ou azimutal?. . . . . . . . .16

1.3.6.3 Le nombre quantique magnétiquem: . . . . . . . . . . . . . .16

1.3.7 Les orbitales atomiques (O.A) . . . . . . . . . . . . . . . . . . . .. . . .17

1.4 ATOMES POLYÉLECTRONIQUES . . . . . . . . . . . . . . . . . . . . . . . . .17

1.4.1 Le spin et la règle d'exclusion de Pauli. . . . . . . . . . . . . . . . . . .17

1.4.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

1.4.1.2 Règle (principe) d'exclusion de PAULI . . . . . . . . . . .. .18

1.4.1.3 Les niveaux d'énergie et la règle de KLECHKOVSKY . . .. .19

1.4.1.4 Règle de HUND . . . . . . . . . . . . . . . . . . . . . . . . .20

1.4.1.5 Structure électronique des atomes . . . . . . . . . . . . . .. .21

1.5 La classification périodique des éléments . . . . . . . . . . . .. . . . . . . . . . .22

1.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

1.5.2 Presentation actuelle du tableau périodique . . . . . . .. . . . . . . . . .22

1.6 Périodicité et propriétés générales des éléments de la classification périodique . . .24

1.6.1 Comportement chimique et position dans la C-P . . . . . . .. . . . . . .24

5 TABLE DES MATIÈRESCOURS DE CHIMIE-PCSI/MPSI/TSI-

1.6.2 Potentiel d'ionisation (énergie d'ionisation) . . . .. . . . . . . . . . . . .25

1.6.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

1.6.2.2 Evolution de l'énergie d'ionisation dans le T.P : . .. . . . . . .25

1.6.2.3 L'affinité électronique . . . . . . . . . . . . . . . . . . . . . . .26

1.6.2.4 L'électronégativité . . . . . . . . . . . . . . . . . . . . . . . . .26

1.6.2.4.1 Mulliken . . . . . . . . . . . . . . . . . . . . . . . . .27

1.6.2.4.2 Pauling . . . . . . . . . . . . . . . . . . . . . . . . .27

1.6.2.5 Les grandeurs géométriques . . . . . . . . . . . . . . . . . . .28

1.6.2.5.1 Rayon covalent . . . . . . . . . . . . . . . . . . . . .28

1.6.2.5.2 Rayon métallique . . . . . . . . . . . . . . . . . . . .28

1.6.2.5.3 Rayon ionique . . . . . . . . . . . . . . . . . . . . .28

1.6.2.5.4 Rayon de Van der Waals . . . . . . . . . . . . . . . .28

1.6.2.5.5 L'évolution dans le T-P . . . . . . . . . . . . . . . . .29

1.6.2.6 Nombre d'oxydation . . . . . . . . . . . . . . . . . . . . . . .29

1.6.2.7 La polarisation . . . . . . . . . . . . . . . . . . . . . . . . . .29

1.7 THÉORIE DE LEWIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

1.7.1 Representation de LEWIS . . . . . . . . . . . . . . . . . . . . . . . . ..30

1.7.2 Liaison covalente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

1.7.3 Règle de l'octet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

1.8 Théorie de Gillespie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .33

1.9 Polarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..36

1.9.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

1.9.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

1.9.3 Forces d'interaction . . . . . . . . . . . . . . . . . . . . . . . . . . .. .37

1.9.3.1 Interactions de Van Dear Waals . . . . . . . . . . . . . . . . . .37

1.9.3.2 Liaison hydrogène . . . . . . . . . . . . . . . . . . . . . . . . .37

1.9.3.3 Conséquences . . . . . . . . . . . . . . . . . . . . . . . . . . .37

1.9.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

elfilalisaid@yahoo.fr Page -6- -SAID EL FILAI-

CHAPITRE1

STRUCTURE DE LA MATIÈRE

1.1 Rappel

?On rappelle que l'atome est constitué d'un noyau et des électrons.

?On appelle élément chimique l'entité qui se conserve lors des réactions chimiques; autrement

dit une entité caractérisée par son numéro atomique notéZ.

Exemple : H

+;H-;1H;2H;3H ?Le numéro atomiqueZreprésente le nombre de protons etNle nombre de neutrons. ?On appelle nombre de masseAla somme des nucleons (A=Z+N).

?On appelle isotopes d'un élément chimique des atomes ayant le mêmeZet différent parN( ou

A). ?Quelques ordre de grandeur : ?La masse d'un électron : me=9,10938356×10-31kg ?Le rayon d'un électron : re=2,8179403227×10-15m ?La masse d'un proton : mp=1,672621898×10-27kg ?Le rayon d'un proton : rp=8,751×10-16m ?Le rayon de Bohr de l'atome d'Hydrogène : ao=0,52917721067×10-12m ?La masse d'un atome est concentrée dans le noyau puisquempme?1836 ( c'est à dire la masse des électrons est très négligeable devant celle des nucleons). 7

1.1. RAPPELCOURS DE CHIMIE-PCSI/MPSI/TSI-

?On appelle mole de particules un en ensemble deNAparticules;NAconstante d'AVOGADRO sa valeur :

NA=6,022140857×1023mol-1

?On appelle masse molaire, la masse d'une mole notéeMexprimée en kgmol-1ou gmol-1.? On appelle abondance isotopique le pourcentage massique d'un isotope.

Application: Autour du carbone

1?Le carbone, à l'état naturel, est constitué principalementpar les isotopes12

6C et13

6C.

1.1?Que signifient l'indice 6 et l'exposant 13 relatifs à l'isotope13

6C?

1.2?Combien de neutrons le noyau de l'isotope13

6C contient-il?

2?En ne considérant que les deux isotopes12

6C et13

6C , déduire de la masse molaire

atomique du carbone à l'état naturel (12,01115 gmol -1) sa fraction molaire en isotope13 6C.

On donne :

?Masse molaire atomique de l'isotope12

6C : 12,000000 gmol-1.

?Masse molaire atomique de l'isotope13

6C : 13,000000 gmol-1.

Correction

M(C)=xM(12C)+yM(13C) ainsix+y=1 (une mole)A.NGGGGGGGGGGA x=0,98 ety=0,02

N.B :x=m(12C)

M(12C)ety=m(13C)M(13C)

Autour du cuivre

Le numéro atomique du cuivre est Z=29.

L'élément cuivre possède deux isotopes naturels :

63Cu et65Cu.

1?Quels sont les nombres de protons et de neutrons dans le noyaude63Cu? Même

question pour 65Cu?

2?On donne les abondances isotopiques naturelles des atomes de63Cu et65Cu :

69,2% pour le

63Cu et 30,8% pour le65Cu.

Calculer la masse molaireMCude l'élément cuivre.

Correction

M(Cu)=63,616 gmol-1

Autour du soufre

Le soufre naturel est constitué de quatre isotopes stables dont deux présents en majorité : x% de l'isotope32Sy% de l'isotope34S. La masse molaire de l'isotope 34 est de 33,968 gmol -1et celle de l'isotope 32 est de 31,972 gmol-1. Calculer les pourcentages isotopiquesxetysachant que la masse molaire atomique du soufre est de 32,066 gmol -1et en supposant que les autres isotopes sont en quantité négli- geable.

Correction

x=0,96;y=0,04 elfilalisaid@yahoo.fr Page -8- -SAID EL FILAI-

1.2. INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

BOHR)

COURS DE CHIMIE-PCSI/MPSI/TSI-

1.2 INTERPRÉTATIONDUSPECTRED'ÉMISSIONDEL'ATOME

D'HYDROGÈNE (MODÈLE DE BOHR)

1.2.1 Données expérimentales :

À l'état normal la matière n'émet aucun rayonnement ,mais lorsque elle est excitée elle émet une

radiation lumineuse qui correspond à un changement d'état de l'électron .

On peut mettre en évidence les caractéristiques de cette lumière émise en la faisant passer à travers

un dispositif dispersif (prisme , réseau ,...). PrismeRouge (656,3 nm)Bleu (486 nm)Indigo (434 nm)Violet (410 nm)

D'où le spectre :

λ(nm)

410 434 486 656.3

C'est un spectre discontinu constitué de quatres raies dansle visible :c'est la série de BALMER

qui a montré expérimentalement en 1885 que

σ=1λ=RH(122-1m2)

avecm?N>2 ?σ:nombre d'onde. ?λ: La longueur d'onde. ?RHla constante de RYDBERG pour l'atome d'hydrogène il a trouvéexpérimentalement que :

RH=109677,5 cm-1

En 1908 RITZ a généralisé la formule de BALMER .

σ=1λ=RH(1n2-1m2)

avecm>n elfilalisaid@yahoo.fr Page -9- -SAID EL FILAI-

1.2. INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

BOHR)

COURS DE CHIMIE-PCSI/MPSI/TSI-

?n=1=?série de LYMAN (UV) ?n=2=?série de BALMER (Visible) ?n=3=?série de PASCHEN (IR) ?n=4=?série de BRACKET (IR)

1.2.2 Interpretation de BOHR

1.2.2.1 Modèle de BOHR

C'est un modèle planétaire où l'électron décrit un mouve- ment circulaire . Dans le repère de FRENET , la relation fondamentale de la dynamique s'écrit :

F=m-→a=?e2

Par conséquent :

?La projection suivant-→Tdonne : dV dt=0=?V=cte OM(e) T N -→Fe

C'est à dire que l'électron décrit un

mouvement circulaire uniforme ?La projection suivant-→Ndonne : mV2=e24πεor ?L'énergie cinétique de l'électron :

Ec=12mV2=?Ec=e28πεor

?L'énergie potentielle de l'électron ( Voir cours de mécanique) :

Ep=-e24πεor

?L'énergie mécanique de l'électron :

Em=Ec+Ep=?Em=-e28πεor

L"énergie mécanique de l"électron est une fonction continue deretrvarie de

façon continue;donc ce résultat ne permet pas d'expliquer le spectre discontinu de l'atome d'hy-

drogène. elfilalisaid@yahoo.fr Page -10- -SAID EL FILAI-

1.2. INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

BOHR)

COURS DE CHIMIE-PCSI/MPSI/TSI-

BOHR a formulé certaines hypothèses :

•L'électron sur la même trajectoire : état stationnaire .

•En→Em>En: absorption d'énergie

•En→Ep

D'après la théorie des quanta de PLANCK :

Em-En=hν=hcλ

Et commeν(λ) ne peut prendre que certaines valeurs discrètes; alorsL'énergie est quantifiée

BOHR a quantifié la norme du moment cinétique :

σ=mrV=n?=nh2π

Ce qui donne :

V=nh2πrm=nh2πrμ

Avecμ=masse réduite en tenant compte du mouvement de l'électron autour du proton supposé l'atome isolé dans le référentiel barycentrique ( Voir cours de mécanique).

μV2=nh

rn=εoh2πμe2n2=?rn=aon2

Quantification du rayonrde la trajectoire

Remarque

ao=rn(n=1) est appelé le rayon de BOHR sa valeur vautao=0,529 Å

Ainsi :

En=-μe48ε2oh21n2=?En=-Eon2

Quantification de l'énergie totaleE

Eo=E(n=1)=μe48ε2oh2?13,6 eV

On retient donc :

rn=an2?En=-Eon2 elfilalisaid@yahoo.fr Page -11- -SAID EL FILAI-

1.2. INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

BOHR)

COURS DE CHIMIE-PCSI/MPSI/TSI-

De même on trouve la quantification de la vitesse :

Vn=e22εoh1n=?Vn=Von

Avec Vo=Vn(n=1)=e22εohA.NGGGGGGGGGGA Vo=2,18×106ms-1

1.2.2.2 Interpretation du spectre atomique d'Hydrogène

On a :Em-En=hν=?ν=cλ=μe48ε2oh2(1n2-1m2) C'est à dire :

σ=1λ=μe48ε2oh2(1n2-1m2)

On retrouve la formule de RITZ avec :

RH=μe48ε2oh2=109737,2 cm-1

Valeur très proche de la valeur expérimentale obtenue à partir du spectre de l'atome d'hydrogène;

d'où le grand succès du module de BOHR

1.2.2.3 Diagramme énergétique de l'hydrogène :

On a :En=-13,6n2:•n=1 : c'est l'état fondamental .

•n→ ∞=?E(∞)=0

•Pour ioniser l'électron dans l'atome d'hydrogène il faut communiquer une énergie telle que :

EI=E(∞)-E(1)=?E.I=13,6eV

Pour :

Pour les états excités :

rn=0,53n2(Å) elfilalisaid@yahoo.fr Page -12- -SAID EL FILAI-

1.2. INTERPRÉTATION DU SPECTRE D'ÉMISSION DE L'ATOME D'HYDROGÈNE (MODÈLE DE

BOHR)

COURS DE CHIMIE-PCSI/MPSI/TSI-

Diagramme des états de l'atome d'Hydrogène :λ(nm) 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -13,6-3,4 -1,51 -0,86 -0,544-0,378E

121,57102,5897,2594,98

LYMAN

BALMER

PASCHEN

BRACKET

656,2486,1434410,1

1005

1093,8

1281,8

1875,1

2630
4050

1.2.2.4 Théorie de BOHR appliquée aux hydrogènoides

On appelle hydrogénoide un atome qui possède un seul électron.

D´efinition

Exemple

H , He+,Li2+,Be3+,...

elfilalisaid@yahoo.fr Page -13- -SAID EL FILAI-

1.3. L'ATOME A UN ÉLECTRON (HYDROGÉNOIDE)COURS DE CHIMIE-PCSI/MPSI/TSI-

Dans le calcul on remplaceeparZeon trouve :

En=-EoZ2n2?rn=aon2Z

1.3 L'ATOME A UN ÉLECTRON (HYDROGÉNOIDE)

1.3.1 Dualité Onde-corpuscule

Relation deLouis de Broglie( 1924) :

À toute particule matérielle de massemet de vitessevest associée une onde de longueur d'onde

λ=h

P

Avec :

?hla constante de Planck. ?p=mvLa quantité du mouvement

1.3.2 Principe d'incertitude de Heisenberg

Il est impossible de connaître simultanément et avec précision la position et la quantité de

mouvement d'une particule (relation d'indétermination d'Heisenberg) :

Δp×Δx??

2 ?=h

2π: La constante de planck réduite.

1.3.3 Équation de Schrodinger

L'onde associée à une particule vérifie l'équation de Schrodinger (1926).

L'équation de Schrodinger indépendante du temps est une équation aux dérivées partielles

qui relie la fonction d'ondeΨà l'énergie totaleEet à l'énergie potentielleVde la particule

quotesdbs_dbs22.pdfusesText_28

[PDF] tableau périodique électronégativité pdf

[PDF] cours atomistique fac

[PDF] atomistique exercice corrigé

[PDF] travaux dirigés sur les liaisons chimiques pdf

[PDF] cours datomistique et liaison chimique pdf

[PDF] exercice atomistique corrigé pdf s1

[PDF] examen d'atomistique s1 corrigé pdf

[PDF] atomistique mpsi exercices corrigés

[PDF] cours atomistique mpsi

[PDF] cours atomistique l1 pdf

[PDF] palais 2 heysel

[PDF] bruxelles expo palais 12

[PDF] palais 2 bruxelles expo adresse

[PDF] palais 10 heysel

[PDF] palais 2 bruxelles adresse