[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



S Amérique du Nord mai 2013

On considère la suite ( un ) définie par u0=1 et pour tout entier naturel n un+1=√2un . 1. On considère l'algorithme suivant : Variables : n est un entier 



Corrigé du baccalauréat S Pondichéry du 26 avril 2017 EXERCICE

26 avr. 2017 On considère deux suites (un) et (vn) : • la suite (un) définie par u0 = 1 et pour tout entier naturel n : un+1 = 2un −n +3;. • la suite (vn) ...



Suites 1 Convergence

Calculer la limite de la suite définie par : u0 = 4 et pour tout n ∈ N un+1 = 4un +5 un +3 .



Etudier les suites u v et w puis déterminer u n

http://exo7.emath.fr/ficpdf/fic00092.pdf



Le Caousou

Exercice 1. La suite ( ) est définie pour tout entier naturel par = √ + 5. La suite ( ) est définie par 0 = 16 et pour tout entier 



Sans titre

2) On considère la suite (un) définie par u0 = 0 et pour tout n : un+1 = f (un). a) Démontrer par récurrence



Correction du devoir commun TS 15 décembre 2012

15 déc. 2012 On considère la suite (un) définie par u0 = 0 et pour tout entier ... Déduisons–en que



Antilles-Guyane septembre 2019

On considère les suites (un) et (vn) définies par : . u0=a et pour tout entier naturel n



Corrigé du baccalauréat Centres étrangers 9 juin 2021 Candidats

9 juin 2021 ... de collaborateurs satisfaits par ce dispositif à l'aide de la suite (un) définie par u0 = 1 et pour tout entier naturel n



S Amérique du Nord mai 2013

On considère la suite ( un ) définie par u0=1 et pour tout entier naturel n racine carrée est strictement croissante sur [0;+?[ donc ?0 < ?2un ? ...



Sans titre

Démontrer par récurrence pour tout entier naturel n ? 1. 2. 2 1 n n. + ? . Exercice 5. On considère la suite (un) d'entiers naturels définie par: u0 = 1 





S Antilles – Guyane septembre 2018

On considère la suite (un) définie par u0=1 et pour tout entier naturel n un+1=e×?un. 1. La fonction racine carrée est croissante sur [0;+?[ . Si 1 ...



Antilles-Guyane septembre 2019

Affirmation 3 : La suite (wn) converge. Partie B. On considère la suite (Un) définie par U0= 1. 2 et pour tout entier naturel n



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

1) La suite (un) définie par : 7 9 n u n. = ? est-elle arithmétique ? 2) La suite (vn) définie de premier terme u0. Pour tout entier naturel n on a :.



Exercice 1 : (4 points) Etudier la monotonie de la suite u. 1) un = n

2) un = 1 n + 1. -. 1 n. 3) un+1 = un. 1 + un² et u0 = 4. 4) u est la suite On considère la suite (vn) définie pour tout entier naturel n par vn = 1.



Suites

Montrer que pour tout entier naturel n on a ?n k=0. 1 ukuk+1. = n+1 Soient (un) et (vn) les suites définies par la donnée de u0 et v0 et les relations ...



Corrigé du baccalauréat Centres étrangers 9 juin 2021 Candidats

Jun 9 2021 Commun à tous les candidats. 1. On considère la fonction définie sur R ... On considère la suite (vn) définie pour tout entier naturel n par ...



Raisonnement par récurrence. Limite dune suite

Jul 11 2021 Soit la suite (un) définie pour n ? 1 par : un ... 2) Démontrer par récurrence que



[PDF] S Amérique du Nord mai 2013 - Meilleur En Maths

On considère la suite ( un ) définie par u0=1 et pour tout entier naturel n un+1=?2un 1 On considère l'algorithme suivant : Variables : n est un entier 



[PDF] S Antilles – Guyane septembre 2018 - Meilleur En Maths

Exercice 4 Candidats n'ayant pas suivi l'enseignement de spécialité 5 points On considère la suite (un) définie par u0=1 et pour tout entier naturel n 



[PDF] Suites - Exo7 - Exercices de mathématiques

vn+1 +un+1 = vn +un La suite v+u est constante et donc pour tout entier naturel n on a vn +un = v0 +u0 En additionnant 



[PDF] Exercice 1 On définit la suite (un) par u0 = 2 et un+1 = u2

4 Montrer que pour tout entier naturel n on a un+1 ? 1 ? 2 3 un ? 1 



[PDF] 1 On considère la suite (un) définie par u0 = 1 2 et telle que pour

On considère la suite (un) définie par u0 = 1 2 et telle que pour tout entier naturel n un + 1 = 3un 1 + 2un 1-a) Calculer u1 et u2 u1 = 3u0 1 + 



[PDF] TS : feuille dexercices no 1 (récurrence)

D'après l'axiome de récurrence la propriété est vraie pour tout n ? N II On considère la suite (un) définie par : u0 = 0 et un+1 = ?2un + 



[PDF] Suites - Licence de mathématiques Lyon 1

Montrer que la suite ( ) ?? est bien définie convergente et déterminer sa limite Allez à : Correction exercice 16 : Exercice 17 : 1 Calculer si cette 



[PDF] Chapitre 1- Les suites numériques

Démontrer par récurrence pour tout entier naturel n ? 1 2 2 1 n n + ? Exercice 5 On considère la suite (un) d'entiers naturels définie par: u0 = 1 



[PDF] Corrigé du baccalauréat S Pondichéry du 26 avril 2017 5 points

26 avr 2017 · On considère deux suites (un) et (vn) : • la suite (un) définie par u0 = 1 et pour tout entier naturel n : un+1 = 2un ?n +3;



Raisonnement par récurrence - Démonstration - Jaicompris

On considère la suite (un) définie par u0=10 et pour tout entier naturel n un+1=12un+1 Calculer les 4 premiers termes de la suite Quelle conjecture peut-on 

:

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSUITES ARITHMETIQUES ET SUITES GEOMETRIQUES Vidéo https://youtu.be/pHq6oClOylU I. Suites arithmétiques 1) Définition Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0

1 3 5 nn u uu

. Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 1nn

uur

. Le nombre r est appelé raison de la suite. Méthode : Démontrer si une suite est arithmétique Vidéo https://youtu.be/YCokWYcBBOk 1) La suite (un) définie par : 79

n un=- est-elle arithmétique ? 2) La suite (vn) définie par : 2 3 n vn=+ est-elle arithmétique ? 1) () 1

7917 979 9799

nn uunn nn

. La différence entre un terme et son précédent reste constante et égale à -9. (un) est une suite arithmétique de raison -9. 2) ()

2 222
1

1332 133 21

nn vvnnnnn n

. La différence entre un terme et son précédent ne reste pas constante. (vn) n'est pas une suite arithmétique. Vidéo https://youtu.be/6O0KhPMHvBA

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : (un) est une suite arithmétique de raison r et de premier terme u0. Pour tout entier naturel n, on a : 0n

uunr=+

. Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation 1nn

uur . En calculant les premiers termes : 10 uur=+ 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uuru nrrunr

. Méthode : Déterminer la raison et le premier terme d'une suite arithmétique Vidéo https://youtu.be/iEuoMgBblz4 Considérons la suite arithmétique (un) tel que

u 5 =7 et u 9 =19

. 1) Déterminer la raison et le premier terme de la suite (un). 2) Exprimer un en fonction de n. 1) Les termes de la suite sont de la forme

u n =u 0 +nr

Ainsi 50

57uur=+=

et 90

919uur=+=

. On soustrayant membre à membre, on obtient :

5r-9r=7-19

donc r=3 . Comme u 0 +5r=7 , on a : u 0 +5×3=7 et donc : u 0 =-8 . 2) 0n uunr=+ soit 83 n un=-+× ou encore 38 n un=-

2) Variations Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r < 0 alors la suite (un) est décroissante. Démonstration :

u n+1 -u n =u n +r-u n =r . - Si r > 0 alors u n+1 -u n >0 et la suite (un) est croissante. - Si r < 0 alors u n+1 -u n <0 et la suite (un) est décroissante. Exemple : Vidéo https://youtu.be/R3sHNwOb02M

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLa suite arithmétique (un) définie par

u n =5-4n

est décroissante car de raison négative et égale à -4. 3) Représentation graphique Les points de la représentation graphique d'une suite arithmétique sont alignés. Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. II. Suites géométriques 1) Définition Exemple : Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par :

u 0 =5 u n+1 =2u n

Vidéo https://youtu.be/WTmdtbQpa0c Définition : Une suite (un) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a :

u n+1 =q×u n . Le nombre q est appelé raison de la suite.

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Démontrer si une suite est géométrique Vidéo https://youtu.be/YPbEHxuMaeQ La suite (un) définie par :

u n =3×5 n est-elle géométrique ? u n+1 u n

3×5

n+1

3×5

n 5 n+1 5 n =5 n+1-n =5

. Le rapport entre un terme et son précédent reste constant et égale à 5. (un) est une suite géométrique de raison 5 et de premier terme

u 0 =3×5 0 =3

. Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%. Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04. On a ainsi : u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

De manière générale : u

n+1 =1,04×u n avec u 0 =500 On peut également exprimer un en fonction de n : u n =500×1,04 n

Propriété : (un) est une suite géométrique de raison q et de premier terme u0. Pour tout entier naturel n, on a : 0

n n uuq=×

. Démonstration : La suite géométrique (un) de raison q et de premier terme u0 vérifie la relation

u n+1 =q×u n . En calculant les premiers termes : u 1 =q×u 0 u 2 =q×u 1 =q×q×u 0 =q 2 ×u 0 u 3 =q×u 2 =q×q 2 ×u 0 =q 3 ×u 0 u n =q×u n-1 =q×q n-1 u 0 =q n ×u 0

. Méthode : Déterminer la raison et le premier terme d'une suite géométrique Vidéo https://youtu.be/wUfleWpRr10 Considérons la suite géométrique (un) tel que

u 4 =8 et u 7 =512

. Déterminer la raison et le premier terme de la suite (un). Les termes de la suite sont de la forme

u n =q n ×u 0 Ainsi u 4 =q 4 ×u 0 =8 et u 7 =q 7 ×u 0 =512

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frAinsi :

u 7 u 4 q 7 ×u 0 q 4 ×u 0 =q 3 et u 7 u 4 512
8 =64 donc q 3 =64

. On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui élevé au cube donne 64. Ainsi

q=64 3 =4 Comme q 4 ×u 0 =8 , on a : 4 4 ×u 0 =8 et donc : u 0 1 32

. 2) Variations Propriété : (un) est une suite géométrique de raison q et de premier terme non nul u0. Pour

u 0 >0

: - Si q > 1 alors la suite (un) est croissante. - Si 0 < q < 1 alors la suite (un) est décroissante. Pour

u 0 <0

: - Si q > 1 alors la suite (un) est décroissante. - Si 0 < q < 1 alors la suite (un) est croissante. Démonstration dans le cas où u0 > 0 : 1

1000
(1) nnn nn uuququuqq . - Si q > 1 alors u n+1 -u n >0 et la suite (un) est croissante. - Si 0 < q < 1 alors u n+1 -u n <0

et la suite (un) est décroissante. Exemple : Vidéo https://youtu.be/vLshnJqW-64 La suite géométrique (un) définie par

u n =-4×2 n

est décroissante car le premier terme est négatif et la raison est supérieure à 1. Remarque : Si la raison q est négative alors la suite géométrique n'est pas monotone. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

6YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frRÉSUMÉS (un) une suite arithmétique - de raison r - de premier terme u0. Exemple : r=-0,5

et u 0 =4

Définition

u n+1 =u n +r u n+1 =u n -0,5 La différence entre un terme et son précédent est égale à -0,5. Propriété u n =u 0 +nr u n =4-0,5n Variations Si r > 0 : (un) est croissante. Si r < 0 : (un) est décroissante. r=-0,5<0

La suite (un) est décroissante. Représentation graphique Remarque : Les points de la représentation graphique sont alignés. (un) une suite géométrique - de raison q - de premier terme u0. Exemple : q=2

et u 0 =-4

Définition

u n+1 =q×u n u n+1 =2×u n Le rapport entre un terme et son précédent est égal à 2. Propriété u n =u 0 ×q n u n =-4×2 n

Variations Pour

u 0 >0 : Si q > 1 : (un) est croissante. Si 0 < q < 1 : (un) est décroissante. Pour u 0 <0 : Si q > 1 : (un) est décroissante. Si 0 < q < 1 : (un) est croissante. u 0 =-4<0 q=2>1

La suite (un) est décroissante. Représentation graphique Remarque : Si q < 0 : la suite géométrique n'est ni croissante ni décroissante.

quotesdbs_dbs42.pdfusesText_42
[PDF] but d une critique de film

[PDF] écrire une critique de livre

[PDF] joachim doit traverser une riviere

[PDF] julie a fait fonctionner ce programme en choisissant le nombre 5

[PDF] on considère les fonctions f et g définies sur l'intervalle 0 16

[PDF] on considère la fonction g définie sur l intervalle 0

[PDF] soit f la fonction définie par sa courbe représentative c

[PDF] on considère les nombres complexes zn définis pour tout entier naturel n par z0=1

[PDF] dans cette question on suppose que z0=2

[PDF] sujet bac de français 2011

[PDF] zn+1=1-1/zn

[PDF] determiner z2016 dans le cas ou z0= 1+i

[PDF] on considère les nombres complexes zn définis pour tout entier n

[PDF] suite et nombre complexe

[PDF] on considère la suite (zn) de nombres complexes définie pour tout entier naturel n par