[PDF] BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2022





Previous PDF Next PDF



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Exercice 24.— Soient A et B deux matrices compatibles. Montrer que Ker (B) g) les matrices qui commutent avec une matrice donnée A h) les matrices A ...



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Corrigé des exercices de familiarisation avec Matlab

Corrigé des exercices de familiarisation avec Matlab. Exercice 1 : Soit la Calculer la trace de cette matrice de sa transposée et de son inverse. t0 ...





LES DÉTERMINANTS DE MATRICES

Une matrice est dite carrée lorsqu'elle a le même nombre de rangées et de colonnes. On appelle éléments les entrées de la matrice



Feuille dexercices no 6 - Matrices

Les matrices A et B sont celles de l'exercice 1. Résoudre les équations Vous devez trouver que A est une matrice triangulaire supérieure avec des 1 sur la ...



Applications linéaires matrices

https://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



MATRICES EXERCICES CORRIGES MATRICES EXERCICES CORRIGES

Exercice n°3. 1) Donner une matrice dont la transposée est égale à son opposée. 2) Donnez la matrice A telle que pour tout indice i et j avec 1. 3 i≤ ≤ et 1.



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



MATRICES EXERCICES CORRIGES

MATRICES. EXERCICES CORRIGES. Exercice n°1. On considère la matrice 2) Donnez la matrice A telle que pour tout indice i et j avec 1. 3 i? ? et 1.



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Notion de Matrice Associée à une Application Linéaire et Calcul. Algébrique sur les Matrices avec Exercices Corrigés. 57. 1. Espace vectoriel des matrices.



LES DÉTERMINANTS DE MATRICES

1- Rappel - Définition et composantes d'une matrice . 4- Exercice . ... Déterminants de matrices carrées de dimensions 4x4 et plus .



BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2022

Dans l'optique d'aider les futurs candidats à se préparer au mieux aux oraux du CCINP chaque exercice de la banque est proposé



Exercices de mathématiques - Exo7

Exercice 1. 1. Résoudre de quatre manières différentes le système suivant (par substitution par la méthode du pivot de Gauss



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



Feuille dexercices no 6 - Matrices

(retour à l'exercice 1). Il suffit de véfifier avec Scilab ! Exercice 6 - Correction. (retour à l'exercice 6). 1. M =.



Matrices - Spé Maths Exercices Corrigés en vidéo avec le cours sur

Exercices. Corrigés en vidéo avec le cours sur jaicompris.com. Matrices : addition et multiplication par un réel. On consid`ere les matrices A =.

CONCOURS COMMUN INP

FILIÈRE MP

BANQUE

ÉPREUVE ORALE

DE MATHÉMATIQUES

SESSION 2022

avec corrigés

V. Bellecave, J.-L. Artigue, A. Begyn, P. Berger, M. Boukhobza, F. Bernard, J.-P. Bourgade, J.Y. Boyer,

S. Busson, S. Calmet, A. Calvez, D. Clenet, J. Esteban, M. Fructus, R. Gabay, B. Harington, J.-P. Keller,

M.-F. Lallemand, A. Leprince, A. Lluel, O. Lopez, J.-P. Logé, Emmanuel Magnin, S. Moinier,

P.-L. Morien, S.Mouez, S. Pellerin, V. Rayssiguier, S. Rigal, A. Rigny, K. Tari, A. Walbron, A. Warin

2014, CC BY-NC-SA 3.0 FR

Dernière mise à jour : le 19/09/21

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

Introduction

L"épreuve orale de mathématiques du CCINP, filière MP, se déroule de la manière suivante :

25mn de préparatio nsur table.

25mn de passage à l"oral.

Chaque sujet proposé est constitué de deux exercices :

un exercice sur 8 p ointsis sude la banque publique accessible sur le site http://ccp.scei-concours.fr

un exercice sur 12 p oints. Les deux exercices proposés portent sur des domaines différents. Ce document contient les112 exercices de la banque pour la session 2022:

58 exercices d"analyse ( exercice 1 à exercice 58).

36 exercices d"algèbre (exercice 59 à exercice 94).

18 exercices de probabilités (exercice 95 à exercice 112).

Dans l"optique d"aider les futurs candidats à se préparer au mieux aux oraux du CCINP, chaque exercice de la

banque est proposé, dans ce document, avec un corrigé. Il se peut que des mises à jour aient lieu en cours d"année scolaire.

Cela dit, il ne s"agira, si tel est le cas, que de mises à jour mineures : reformulation de certaines questions pour

plus de clarté, relevé d"éventuelles erreurs, suppression éventuelle de questions ou d"exercices.

Nous vous conseillons donc de vérifier, en cours d"année, en vous connectant sur le site : http://ccp.scei-concours.fr

si une nouvelle version a été mise en ligne, la date de la dernière mise à jour se trouvera en haut de chaque page.

Si tel est le cas, les exercices concernés seront signalés dans le présent document, page 3.

Remerciements à David DELAUNAY pour l"autorisation de libre utilisation du fichier source de ses corrigés des

exercices de l"ancienne banque, diffusés sur son sitehttp://mp.cpgedupuydelome.fr NB : la présente banque intègre des éléments issus des publications suivantes : A. Antibi, L. d"Estampes et interrogateurs, Banque d"exercices de mathématiques pour le programme

2003-2014 des oraux CCP-MP,Éd. Ress. Pédag. Ouv. INPT,0701(2013) 120 exercices.

http://pedagotech.inp-toulouse.fr/130701 D. Delaunay, Prépas Dupuy de Lôme, cours et exercices corrigés MPSI - MP, 2014. http://mp.cpgedupuydelome.fr L"équipe des examinateurs de l"oral de mathématiques du CCINP, filière MP.

Contact: Valérie BELLECAVE, coordonnatrice

des oraux de mathématiques du CCINP, filière MP. vbellecave@gmail.com

CC BY-NC-SA 3.0 FR Page 2

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

MISES À JOUR :

Les mises à jour signalées sont des mises à jour par rapport à la dernière version publiée sur le site du concours

commun INP, en date du 22/05/21.

Exercice 36

barème modifié pour les examinateurs.

Exercice 39 corrigé 3.

rajout de la ligne : On remarque déjà queFl2.

Exercice 49 corrigé 1.a

Panconverge absolument, donc converge simplement remplacé par :Panconverge absolument, donc converge.

Exercice 81 énoncé question 3.

Déterminer la projection orthogonale remplacé par : Déterminer le projeté orthogonal.

Exercice 86 corrigé 2.a

p^k= 1(carpest premier) donc, d"après 1.,p^k! = 1remplacé par :8i2J1;kK,p^i= 1(carpest premier)

donc, d"après 1.,p^k! = 1.

Exercice 96

SUPPRIMÉ et REMPLACÉpar :

SoitXune variable aléatoire à valeurs dansN, de loi de probabilité donnée par :8n2N,P(X=n) =pn.

La fonction génératrice deXest notéeGXet elle est définie parGX(t) =E[tX] =+1X n=0p ntn. 1. Prouv erque l"in tervalle]1;1[est inclus dans l"ensemble de définition deGX. 2. Soit X1etX2deux variables aléatoires indépendantes à valeurs dansN.

On poseS=X1+X2.

Démontrer que8t2]1;1[,GS(t) =GX1(t)GX2(t):

(a) en utilisan tle pro duitde C auchyde deux séries en tières. (b) en utilisan tuniquemen tla définition de l afonction génératrice par GX(t) =E[tX].

Remarque: on admetra, pour la question suivante, que ce résultat est généralisable ànvariables

aléatoires indépendantes à valeurs dansN. 3.

Un sac con tientquatr eb oules: une b oulen umérotée0, deux b oulesn umérotées1 et une b oulen umérotée2.

Soitn2N. On effectuentirages successifs, avec remise, d"une boule dans ce sac.

On noteSnla somme des numéros tirés.

Soitt2]1;1[.

DéterminerGSn(t)puis en déduire la loi deSn.

Exercice 13

SUPPRIMÉ et REMPLACÉpar :

1.

Rapp eler,oralemen t,la définition, par les suites de v ecteurs,d"une partie compacte d"un espace v ectoriel

normé. 2.

Démon trerq u"unepartie compacte d"un espace v ectorielnormé est une partie fermée de cet espace.

3.

Démon trerq u"unepartie compacte d"un espace v ectorielnormé est une partie b ornéede cet espace.

Indication: On pourra raisonner par l"absurde.

4. On se place su E=R[X]muni de la normejj jj1définie pour tout polynômeP=a0+a1X+::::+anXnde

Epar :jjPjj1=nX

i=0jaij. (a) Justifier que S(0;1) =fP2R[X]=jjPjj1= 1gest une partie fermée et bornée deE. (b) Calculer jjXnXmjj1pourmetnentiers naturels distincts. S(0;1)est-elle une partie compacte deE? Justifier.

CC BY-NC-SA 3.0 FR Page 3

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

BANQUE ANALYSE

EXERCICE 1 analyse

Énoncé exercice 1

1.

On considère deux suites n umériques(un)n2Net(vn)n2Ntelles que(vn)n2Nest non nulle à partir d"un

certain rang etuns+1vn. Démontrer queunetvnsont de même signe à partir d"un certain rang. 2. Déterminer le signe, au v oisinagede l"infini, de : un=sh1n tan1n

Corrigé exercice 1

1.

P arh ypothèse,9N02N=8n2N;n>N0=)vn6= 0.

Ainsi la suiteunv

n est définie à partir du rangN0.

De plus, commeuns+1vn, on alimn!+1u

nv n= 1.

Alors,8" >0,9N2N=N>N0et8n2N;n>N=)u

nv n16". (1)

Prenons"=12

. Fixons un entierNvérifiant(1).

Ainsi,8n2N;n>N=)u

nv n1612

C"est-à-dire,8n2N;n>N=) 12

6unv n1612

On en déduit que8n2N;n>N=)unv

n>12

Et donc,8n2N;n>N=)unv

n>0. Ce qui implique queunetvnsont de même signe à partir du rangN. 2.

Au v oisinagede +1, sh(1n

) =1n +16n3+o1n 3 ettan1n =1n +13n3+o1n 3 . Doncuns+116n3. On en déduit, d"après 1., qu"à partir d"un certain rang,unest négatif.

CC BY-NC-SA 3.0 FR Page 4

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

EXERCICE 2 analyse

Énoncé exercice 2

On posef(x) =3x+ 7(x+ 1)2.

1.

Décomp oserf(x)en éléments simples.

2.

En déduire que fest développable en série entière sur un intervalle du type]r;r[(oùr >0).

Préciser ce développement en série entière et déterminer, en le justifiant, le domaine de validitéDde ce

développement en série entière. 3. (a)

Soit Panxnune série entière de rayonR >0.

On pose, pour toutx2]R;R[,g(x) =+1X

n=0a nxn. Exprimer, pour tout entierp, en le prouvant,apen fonction deg(p)(0). (b) En déduire le dév eloppementlimité de fà l"ordre 3 au voisinage de 0.

Corrigé exercice 2

1. En utilisan tles métho deshabituel lesde décomp ositionen élémen tssimple s,on trouv e: f(x) =3x+ 1+4(x+ 1)2. 2.

D"après le cours, x7!1x+ 1etx7!1(x+ 1)2sont développables en série entière à l"origine.

De plus, on a8x2]1;1[,11 +x=+1P

n=0(1)nxn.

Et,8x2]1;1[,1(1 +x)2=+1P

n=1(1)n+1nxn1( obtenu par dérivation du développement précédent).

On en déduit quefest développable en série entière en tant que somme de deux fonctions développables en

série entière.

Et8x2]1;1[,f(x) = 3+1P

n=0(1)nxn+ 4+1P n=0(1)n(n+ 1)xn.

C"est-à-dire :8x2]1;1[,f(x) =+1X

n=0(4n+ 7)(1)nxn. NotonsDle domaine de validité du développement en série entière def.

D"après ce qui précéde,]1;1[D.

NotonsRle rayon de convergence de la série entièreX(4n+ 7)(1)nxn.

D"après ce qui précédeR>1.

Posons, pour tout entier natureln,an= (4n+ 7)(1)n. Pourx= 1etx=1,limn!+1janxnj= +1doncX(4n+ 7)(1)nxndiverge grossièrement.

DoncR61,162Det162D.

On en déduit queD= ]1;1[.

3. (a)

Soit Panxnune série entière de rayonR >0.

On pose, pour toutx2]R;R[,g(x) =+1X

n=0a nxn.

D"après le cours,gest de classeC1sur]R;R[.

De plus,8x2]R;R[,

g

0(x) =+1X

n=1na nxn1=+1X n=0(n+ 1)an+1xn g

00(x) =+1X

n=1n(n+ 1)an+1xn1=+1X n=0(n+ 1)(n+ 2)an+2xn.

CC BY-NC-SA 3.0 FR Page 5

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

et, par récurrence, on a :

8p2N,8x2]R;R[,g(p)(x) =+1X

n=0(n+ 1)(n+ 2):::(n+p)an+pxn=+1X n=0(n+p)!n!an+pxn.

Ainsi, pour toutp2N,g(p)(0) =p!ap.

C"est-à-dire, pour toutp2N,ap=g(p)(0)p!.

(b)fest de classeC1sur]1;1[. Donc d"après la formule de Taylor-Young, au voisinage de0,f(x) =3X p=0f (p)(0)p!xp+o(x3). (*)

Or, d"après 3.(a), pour tout entierp,f(p)(0)p!est aussi la valeur dupièmecoefficient du développement en

série entière def. Donc, d"après 2., pour tout entierp,f(p)(0)p!= (4p+ 7)(1)p. (**) Ainsi, d"après (*) et (**), au voisinage de0,f(x) =3X p=0(4p+ 7)(1)pxp+o(x3). C"est-à-dire, au voisinage de0,f(x) = 711x+ 15x219x3+o(x3).

CC BY-NC-SA 3.0 FR Page 6

Banque épreuve orale de mathématiques session 2022, CCINP, filière MP Mise à jour : 19/09/21

EXERCICE 3 analyse

Énoncé exercice 3

1.

On p oseg(x) = e2xeth(x) =11 +x.

Calculer, pour tout entier naturelk, la dérivée d"ordrekdes fonctionsgethsur leurs ensembles de

définitions respectifs. 2.

On p osef(x) =e2x1 +x.

En utilisant la formule de Leibniz concernant la dérivéenièmed"un produit de fonctions, déterminer, pour

tout entier naturelnet pour toutx2Rnf1g, la valeur def(n)(x). 3.

Démon trer,dans le cas g énéral,la form ulede Leibniz, utilisée dans la question précéden te.

Corrigé exercice 3

1.gest de classeC1surRethest de classeC1surRnf1g.

On prouve, par récurrence, que :

8x2R,g(k)(x) = 2ke2xet8x2Rnf1g,h(k)(x) =(1)kk!(1 +x)k+1.

2.gethsont de classeC1surRnf1gdonc, d"après la formule de Leibniz,fest de classeC1surRnf1g

et8x2Rnf1g: f (n)(x) =nX k=0 n k g (nk)(x)h(k)(x) =nX k=0 n k 2 nke2x(1)kk!(1 +x)k+1=n!e2xnX k=0(1)k2nk(nk)!(1 +x)k+1. 3.

Notons (Pn)la propriété :

Sif:I!Retg:I!Rsontnfois dérivables surIalors,fgestnfois dérivable surIet :

8x2I,(fg)(n)(x) =nX

k=0 n k f (nk)(x)g(k)(x).

Prouvons que(Pn)est vraie par récurrence surn.

La propriété est vraie pourn= 0et pourn= 1(dérivée d"un produit).

Supposons la propriété vraie au rangn>0.

Soitf:I!Retg:I!Rdeux fonctionsn+ 1fois dérivables surI.

Les fonctionsfetgsont, en particulier,nfois dérivables surIet donc par hypothèse de récurrence la

fonctionfgl"est aussi avec8x2I,(fg)(n)(x) =nX k=0 n k f (nk)(x)g(k)(x). Pour toutk2 f0;:::;ng, les fonctionsf(nk)etg(k)sont dérivables surIdonc par opération sur les fonctions dérivables, la fonction(fg)(n)est encore dérivable surI. Ainsi la fonctionfgest(n+ 1)fois dérivable et :

8x2I,(fg)(n+1)(x) =nX

k=0 nquotesdbs_dbs1.pdfusesText_1
[PDF] exercices de matrice avec solution

[PDF] exercices de mécanique des fluides avec solutions

[PDF] exercices de mecanique du point materiel prepa

[PDF] exercices de pharmacologie

[PDF] exercices de phénomènes de transfert de chaleur

[PDF] exercices de physique sur les forces

[PDF] exercices de prise de notes écrites

[PDF] exercices de prononciation et darticulation

[PDF] exercices de raisonnement logique mathématiques

[PDF] exercices de relaxation ? l'école

[PDF] exercices de relaxation en classe maternelle

[PDF] exercices de relaxation pdf

[PDF] exercices de rotation geometrie

[PDF] exercices de saut en longueur

[PDF] exercices de théâtre pour débutants