[PDF]

Le principe de la méthode du simplexe est d'éviter de calculer tous les sommets A partir d'un sommet donné, la méthode calculera une suite de sommets adjacents l'un par rapport au précédent et qui améliore la fonction objective Le sommet x = (4,5,2,0,0) correspond aux variables de base {x1,x2,x3}



Previous PDF Next PDF





[PDF] LES ÉTAPES DE LALGORITHME DU SIMPLEXE

Contraintes de type () : Pour chaque contrainte de ce type, on retranche une variable d'excédent , tel que est une variable positive ou nulle Exemple : 3 2 2 se 



[PDF] Méthode du simplexe

implantation de l'algorithme du simplexe, méthode révisée du simplexe (relation simplexe, variante du simplexe pour problème avec variables bornées Dans le nouveau tableau, des coûts relatifs peuvent devenir nuls Lorsqu'il n'est plus 



[PDF] Simplexe - Méthodes, Techniques et Outils pour le Raisonnement

On applique l'algorithme du simplexe pour maximiser z en utilisant comme solution initiale la solution obtenue `a la fin de la phase 1 Dans le cas général, on ne 



[PDF] Chapitre 3 Méthode du simplexe : un aperçu par lexemple

tous négatifs ou nuls, on déduit que la solution réalisable x1 voyons une deuxi` eme méthode pour l'aborder et qui consiste `a placer les calculs en tableau



[PDF] Leçon 0603C La programmation linéaire 2 le simplexe

Module 06 - Leçon 03 : La méthode du simplexe 1 - Principe Lorsque nous standard (système d'équation avec variable d'écarts) ils tous nuls ou négatifs ?



[PDF] Le simplexe pour les nuls - Pierre Fritsch Blog

12 déc 2005 · suppose m ≤ n et rang (A) = m 2 Algorithme du simplexe Soit I un sous- ensemble de n éléments de {1,2,



[PDF] 1 Méthode du simplexe et son analyse

Cette solution est la seule pour le système précédent lorsque y = u = 0 puisque la matrice des coefficients des variables x, p et h est non singulière • Par 



[PDF] Introduction au Compressed sensing Méthode du simplexe

l'algorithme du simplexe qui est un algorithme itératif de marche sur les sommets du tableau n'ayant que des coefficients négatifs ou nuls (sauf pour b0)



[PDF] Optimisation linéaire Algorithme du simplexe

Algorithme du simplexe Michel Bierlaire 3 Problème • avec – A matrice m lignes n colonnes – lignes de A Le coût réduit des variables de base est nul

[PDF] methode simplexe exemple

[PDF] exercices corrigés de recherche opérationnelle méthode du simplexe

[PDF] minimiser simplexe exemple

[PDF] commencer la numérotation ? la page 3 word

[PDF] supprimer numéro de page word

[PDF] word commencer pagination page 3

[PDF] méthode singapour ce1 pdf

[PDF] commencer la numérotation des pages plus loin dans votre document

[PDF] comment numéroter les pages sur word 2007 ? partir d'une page

[PDF] commencer numérotation page 3 word 2007

[PDF] numérotation pages mac

[PDF] equation 2 inconnues exercices substitution

[PDF] résolution numérique équation différentielle second ordre

[PDF] résolution numérique équation différentielle non linéaire

[PDF] test de psychologie pdf

Chapitre 3

Méthode du simplexe

Comme toujours, on suppose queAune matrice de formatmnetb2Rm. On notera les colonnes deApar[a1;a2;:::;an]. Aussi, on fera l"hypothèse que le rang de la matriceAest

égal à m.

Selon le chapitre précédent, nous savons que la solution optimale du problème d"optimisation

linéairemaxz=ctx; Ax=b; x0:(3.1) se trouve en un sommet de l"ensemble convexe des solutions admissiblesK=fx0jAx= bg. De plus, nous savons que les sommets sont étroitement reliés aux solutions de base admis- sibles. Concrètement, cela signifie que si on choisit une liste de m variables dites de base B=fxj1;xj2;:::;xjmgassociées à des colonnesfaj1;aj2;:::;ajmgqui forment une base de l"espace-colonne, on peut calculer l"unique solution de bases du système Ax B=b en imposant que les variables hors-basexi= 0pour tous lesi6=j1;j2;:::;jm. SixB0, la

solution est admissible et sera appellée solution de base admissible ou réalisable. D"après le

chapitre précédent, la solution de basexBcorrespond à un sommet deK. Par conséquent, il suffit de calculer tous les sommets deKpour trouver la solution optimale.

Mais le nombre de sommets est de l"ordre

n!m!(nm)!ce qui est beaucoup trop pour desnetm relativement grands. Le principe de la méthode du simplexe est d"éviter de calculer tous les sommets. A partir d"un sommet donné, la méthode calculera une suite de sommets adjacents l"un par rapport au précédent et qui améliore la fonction objective.

3.1 Solutions de base adjacentes

Définition

3.1.1 Deux sommetsxetysont dits adjacents si les variables de base ne

diffèrent que d"un seul élément. 1

2CHAPITRE 3. MÉTHODE DU SIMPLEXE

Reprenons le problème modèle du premier chapitre écrit sous la forme canonique maxz= 5x1+ 4x2 x

1+x3= 6

x

1=4 +x2+x4= 6

3x1+ 2x2+x5= 22

x

1;x2;x3;x4;x50

Le sommetx= (4;5;2;0;0)correspond aux variables de basefx1;x2;x3g. De même, le sommety= (6;2;0;2:5;0)est associé aux variables de basefx1;x2;x4g. Les deux sommets sont adjacents ce qui est conforme au graphique de l"ensembleKprojeté dansR2.

Le système s"écrit

2 6

641 0 1 0 0

1=4 1 0 1 0

3 2 0 0 13

7 752
6 6664x
1 x 2 x 3 x 4 x 53
7

7775=2

6 646
6 223
7 75
Pour calculer la solution de base(4;5;2;0;0), il suffit d"extraire les 3 colonnes de la matriceA

et de résoudre le système carré par la méthode d"élimination de Gauss. Toutefois, lorsque que

l"on voudra calculer la nouvelle solution de base(6;2;0;2:5;0), il faudra recommencer l"éli- mination de Gauss avec les nouvelles colonnes de base. Il est plus avantageux de poursuivre élimination de Gauss à partir du premier calcul.

Voici un exemple de calcul.

a)

En premier, on forme la matrice augmen tée

2 6

641 0 1 0 0 6

1=4 1 0 1 0 6

3 2 0 0 1 223

7 75
b) On applique l"élimination de Gauss-Jordan p ourles v ariablesde base fx1;x2;x3g. 2 6

641 0 04=5 2=5 4

0 1 0 6=51=10 5

0 0 1 4=52=5 23

7 75
Donc x

1= 4 + 4=5x42=5x5

x

2= 56=5x4+ 1=10x5

x

3= 24=5x4+ 2=5x5

En posant les variables hors-basesx4=x5= 0, on obtient bien la solution de base x= (4;5;2;0;0).

3.2. MÉTHODE DU SIMPLEXE : PHASE II3

c) Main tenant,on désire calculer la solution de base adjacen tel iéesaux v ariablesd ebase fx1;x2;x4g. Pour cela, on poursuit l"élimination de Gauss-Jordan à partir du pivot a 3;42 6

641 0 1 0 0 6

0 13=2 0 1=2 2

0 0 5=4 11=2 5=23

7 75:
Donc x

1= 6x3

x

2= 2 + 3=2x31=2x5

x

4= 5=25=4x3+ 1=2x5

En posant les variables hors-basesx3=x5= 0, on obtient bien la solution de base y= (6;2;0;2:5;0). d) P oursuivonsà u nautre sommet adjacen tz= (6;0;0;4:5;4)dont les variables de base sontfx1;x4;x5g. Ce sommet est adjacent àymais pas àx. Poursuivons l"élimination de Gauss-Jordan à partir du pivota2;5 2 6

641 0 1 0 0 6

0 23 0 1 4

0 11=4 1 0 9=23

7 75:

On obtient les relations

x

1= 6x3

x

5= 42x2+ 3x3

x

4= 9=2x2+ 1=4x3

En posant les variables hors-basesx2=x3= 0, on obtient bien la solution de base z= (6;0;0;4:5;4). L"opération décrite ci-dessus est aussi connue sous le nom de pivotement. Cette stratégie sera à la base de la méthode du simplexe.

3.2 Méthode du simplexe : Phase II

Dans cette section, nous allons présenter la Phase II de la méthode du simplexe. La Phase

I qui sert plus à initialiser la Phase II, sera aborder plus tard. Cette phase s"applique à des

problèmes du type maxz=ptx; Cxb; x0:ouminz=ptx; Cxb; x0:(3.2)

4CHAPITRE 3. MÉTHODE DU SIMPLEXE

oùCest une matrice de formatmn. On fera l"hypothèse queb0. Cette supposition est cruciale pour la Phase II. Ceci garantie que02K=fx0jCxbg. De plus, nous savons que le point0est un sommet. Ce point servira de point de départ de l"algorithme du simplexe. En gros, l"algorithme va pivoter autour de ce point pour trouver un meilleur sommet. On poursuit l"algorithme jusqu"à l"obtention de la solution optimale.

La méthode débute avec la forme canonique du problème (3.2) que l"on écrira sous la forme

maxz=ctx; Ax=b; x0:(3.3) Attention, nous avons inclus les variables d"écart dans la liste des variables, i.e.x2Rm+n.

La matriceAetcsont données par

A= [C I]c=p

0

L"idée de base de la méthode du simplexe consiste à appliquer l"élimination de Gauss-Jordan

à partir du système augmenté obtenu en ajoutant au systèmeAx=bla relation linéaire z=ctxAx=b; c txz= 0 Ce système peut s"écrire sous la forme matricielle A0 c t1 x z =b 0

Nous allons illustrer la méthode sur l"exemple

maxz=x1+ 2x2 sous les contraintes 8< :2x1+x22; x

1+ 3x23;

x

1;x20:

Au préalable, on écrit le problème sous la forme canonique maxz=x1+ 2x2 sous les contraintes 8< :2x1+x2+x3= 2; x

1+ 3x2+x4= 3;

quotesdbs_dbs27.pdfusesText_33