[PDF] Géométrie dans lespace



Previous PDF Next PDF







La géométrie dans (presque) tous ses états

A résoudre dans quelle géométrie ? – G1 – Problème posé en G1, à résoudre dans G1 – Raisonnement dans G1 avec appui instrumental sur le dessin 2ème exercice A E B 4 cm 4cm D 7cm C Sur ce dessin à main levée (les vraies grandeurs sont écrites en cm), on a représenté un rectangle



Rappels Géométrie dans le plan Seconde

Rappels Géométrie dans le plan Seconde 1) Droites et centres remarquables d'un triangle Les médianes d'un triangle sont concourantes en un point G appelé centre de gravité du triangle Ce point est situé au deux tiers de la médiane à partir du sommet On a alors l'égalité : GA = 2 GA' ; GB = 2GB' ; GC = 2GC'



Unité 5 : la géométrie de quelques molécules simples

géométrie de la molécule correspond à la disposition spatiale qui éloigne au maximum les doublets deux à deux Dans le cas où l’atome est entouré de 4 doublets, il se trouve au centre d’un tétraèdre et les doublets suivant les 4 directions joignant le centre du tétraèdre a ses sommets 2 Application à quelques molécules



Géométrie dans lespace

4 Dans cette partie, il s'agit, d'une part de renforcer la vision dans l'espace entretenue en classe de première, d'autre part de faire percevoir toute l'importance de la notion de direction de droite ou de plan



Art et géométrie

La géométrie et les artistes Un petit historique : On peut dire que la géométrie est apparue dans les œuvres d’arts avec la naissance de la perspective mais c’est surtout au début de l’art moderne, vers 1910 que de plusieurs mouvements artistiques, notamment le



Géométrie analytique de lespace

dans la base ???? Le réel s’appelle la troisième composante du vecteur dans la base ???? Remarque :Pour définir une base de l’espace vectoriel , il suffit de trois vecteurs non coplanaires 3) Les opérations dans V 3 et v x y z ;; deux vecteurs dans l’espace vectoriel muni de la base on a donc : et



Géométrie vectorielle dans le plan et dans l’espace

Géométrie vectorielle dans le plan et dans l’espace Clément BOULONNE Session 2020 Préambule Niveau de la leçon Lycée Prérequis Éléments de base de la géométrie plane et de la géométrie dans l’espace Références —P TAQUET & al , Mathématiques BTS Groupement A Hachette Technique 2010 —Collectif de professeurs SESAMATHS



Géométrie dans l’espace - Plus De Bonnes Notes

Exercices 29 mai 2016 Géométrie dans l’espace Droites et plans Exercice1 Soit un cube ABCDEFGH et un plan (IJK) tel que : −−→ EI = 2 3 −−−→ EH ,



TP sur geogebra : géométrie dans l’espace

dans le menu « affichage » puis coche la case « Graphique 3D » et décoche la case « graphique » afin de n’avoir à l’écran que la fenêtre du graphique 3D comme ci-dessous : - Dans la barre d’outils du dessus, cherche la fonction « Extrusion prisme »



Géométrie dans lespace

Géométrie dans l'espace I) La perspective cavalière : a) notion de perspective : La perspective est une technique de représentation des solides sur une surface plane Ex: b) perspective cavalière : règles de construction d'un solide en perspective cavalière :

[PDF] relation intergénérationnelle définition

[PDF] organisation de la protection sociale en france

[PDF] retrosocialisation definition

[PDF] direction de la sécurité sociale organigramme

[PDF] relation interspécifique entre les animaux

[PDF] protection sociale en france schéma

[PDF] directeur de la sécurité sociale

[PDF] relation trophique def

[PDF] organisation lvmh

[PDF] relations intraspécifiques facteur biotique

[PDF] organigramme maison dior

[PDF] organigramme lvmh 2017

[PDF] math tronc commun option francais

[PDF] logique et raisonnement

[PDF] organigramme de programmation logiciel

Terminale S

4 5

1.1. Plan de l'espace ...................................................................................................................................... 51.2. Position relative de deux droites ............................................................................................................... 6

1.3. Exercice ................................................................................................................................................. 61.4. Position relative de deux plans ................................................................................................................. 71.5. Exercice ................................................................................................................................................. 7

2.1. Droites parallèles à un plan ..................................................................................................................... 72.2. Exercice : Montrer qu'une droite est parallèle à un plan .............................................................................. 82.3. Exercice : Utiliser le théorème du toit dans un tétraèdre .............................................................................. 9

2.4. Plans parallèles ..................................................................................................................................... 102.5. Exercice : Demontrer que deux plans sont paralleles ............................................................................. 10

2.6. Exercice : Construire la section d'un solide par un plan ............................................................................. 10

3.1. Droites orthogonales .............................................................................................................................. 113.2. Orthogonalité Droite-Plan ...................................................................................................................... 11

3.3. Plan médiateur ..................................................................................................................................... 123.4. Exercice : Démontrer une orthogonalité .................................................................................................... 12

13 19 23
27
30

Rappel

Fondamental

Définition

coplanaires coplanaires On considère le parallélépipède suivant : Fondamental : Dans l'espace, deux plans peuvent être ... On considère le parallélépipède suivant :

Fondamental

Fondamental : Théorème du toit

Attention

d d' d//d' [Solution n°1 p 30] (IK)(ABC)

Indice :

On pourra montrer que est parallèle à une droite du plan (IK)(ABC) [Solution n°2 p 30] [Solution n°3 p 30]

Indice :

On pourra utiliser le théorème du toit

Fondamental : Premier théorème

Fondamental : Second théorème

[Solution n°4 p 30]

Indice :

Pour prouver que deux plans sont paralleles, il suffit de trouver deux droites secantes d'un plan qui

sont paralleles a l'autre plan. [Solution n°5 p 31]

Définition

orthogonales

Remarque

perpendiculaire

Exemple

ABCDEFGH(AE)(GH)

(AE)(GH)

Fondamental

Définition

orthogonale à un plan

Complément

Exemple

(d)BCGF(BM)(CM)

Fondamental : Propriétés

Définition

[AB]AB

Fondamental

[AB](AB) [AB] [Solution n°6 p 32] ABCD (CD)(AB)

Indices :

Dans un tétraèdre régulier, toutes les arrêtes sont de la même longueur.

On pourra construire le point milieu de I[CD]

Définition

colinéairest

Remarque

Complément

dépendants indépendantslibres [Solution n°7 p 32] [Solution n°8 p 33]

Indice :

On pourra remarquer que

[Solution n°9 p 33]

IJKL(AC)(IJKL)

Indice :

On pourra exprimer en fonction de

[Solution n°10 p 33] (BD)(IJKL)

Fondamental : Caractérisation d'une droite

M vecteur directeur

Fondamental : Caractérisation d'un plan

M xyA

Fondamental : Conséquences

[Solution n°11 p 34]

Indice :

On pourra utiliser de manière astucieuse la relation de Chalses [Solution n°12 p 34] [Solution n°13 p 34]

Indice :

Si une droite est incluse dans un plan , tout vecteur directeur de la droite est un vecteur du plan Cela est une conséquence directe de la . dernière propriété vue sur cette page* - p.27 [Solution n°14 p 34] [Solution n°15 p 35]

Indice :

On pourra utiliser un raisonnement par l'absurde.

Définition

coplanaires ABCD

Exemple

coplanaires

Fondamental

coplanaires

Complément : Démonstration

ABCD ABC ABCD D

Attention

Définition

indépendantslibres Dans le cube ci-contre, cochez les triplets de 3 vecteurs

Fondamental

coordonnéesMA

Complément : Démonstration

ABCDM ABC A M (ABC)H xyz AB

Fondamental : Coordonnées d'un vecteur

Fondamental : Coordonnées du milieu d'un segment [AB]

Fondamental : Norme d'un vecteur

Complément : Avec les coordonnées de vecteur [Solution n°16 p 35] [Solution n°17 p 35]

ABCDABCD

Fondamental

A A

Définition

représentation paramétrique

Exemple

t

Remarque

[Solution n°18 p 35] (AB)

Indice :

Un vecteur directeur de la droite est (AB)

[Solution n°19 p 35] [Solution n°20 p 36]

Indice :

Il faut déterminer s'il existe deux paramètres et permettant à un même triplet de coordonnées tt'

de vérifier les deux représentations paramétriques.(x ;y ;z) [Solution n°21 p 36] [Solution n°22 p 36] [Solution n°23 p 37]

Indice :

On pourra montrer qu'elles sont perpendiculaires

On pourra trouver deux points et respectivement sur et [Solution n°24 p 37]

Soit ABCD un tétraèdre.

I est le milieu du segment [BD] et J est le milieu du segment [BC]

L'intersection des plans (ACD) et (AIJ) est

ABCDEFGH

[EH][BF] (BIG) (AE)

Le point K

[AE] [AE] E est égal à

Les vecteurs , et sont

Le milieu du segment est :[KG]

[IB] [HJ] passe par le point de coordonnées a un vecteur directeur de coordonnées :

Les droites et sont

Le point est

Les vecteurs , et sont coplanaires

La droite est parallèle au plan (AB)(xOz)

La droite est parallèle à l'axe des ordonnées.(AB) La droite passant par le point et dirigée par et la droite (AB) sont coplanaires.

Fondamental : Caractérisation d'une droite

M vecteur directeur

Fondamental : Caractérisation d'un plan

M xyA

Fondamental : Conséquences

Fondamental

Fondamental : Théorème du toit

Attention

d d' d//d'

Exercice p. 10

Exercice p. 9

Exercice p. 9

Exercice p. 8

(SAC)

IK[SA][SC](IK)

(AC) (IK)(ABC)

Exercice p. 10

Pour la face AEFB

Pour la face EFGH

Pour la face CDHG

Pour la face ABCD

Pour finir

Exercice p. 14

Exercice p. 12

Méthode : 1ère méthode : A l'aide du plan médiateur ABI [CD] (CD)(AB) (AB)(CD) Méthode : 2ème méthode : Montrer que (CD) orthogonale à (ABI)

ADC(AI)A

BCD (AI)(BI)(ABI) (CD) (ABI)(CD) (AB)(CD)

Exercice p. 14

Exercice p. 14

Exercice p. 14

IJKL (AC)(IJKL)on peut affirmer - p.28 (AC)(IJKL)

Exercice p. 16

Exercice p. 16

Exercice p. 15

Exercice p. 15

(BD)(IJKL)

Utilisation de la relation de Chasles

propriétés vues précédemment - p.27

Exercice p. 21

Exercice p. 21

Exercice p. 20

Exercice p. 20

Exercice p. 16

les propriétés vues précédemment - p.27 B (AB)(CD)donc coplanaires - p.28 ABCD (AB)

Exercice p. 22

Exercice p. 22

Exercice p. 21

(x ;y ;z) (AB) t t t'

Exercice p. 22

Exercice p. 22

quotesdbs_dbs12.pdfusesText_18