[PDF] Carbon is found in all living things Carbon atoms move constantly





Loading...








[PDF] Mole & Molar Mass - Montgomery College

Calculate the moles of carbon in 0 0265 g of pencil lead How many aluminum atoms are in a can weighing 16 2 g? 0 0265 g C × 1 mol 




[PDF] Some basic chemistry

Electrons are found in energy levels around the nucleus as shown in the diagram representing a carbon atom with 6 protons, 6 neutrons and 6 electrons Sub- 

[PDF] The Unique Carbon Atom

Carbon atoms are unique because they can bond together to form very long, durable chains To identify as many sources of carbon and silicon as possible;

[PDF] Teaching Activity: Formulas and Codes for Carbon Compounds

A compound composed of hydrogen and carbon atoms two carbon atoms held together by a single bond Be sure to check on vocabulary comprehension

The Carbon Atom in Crystalline Structure - jstor

An especial interest is attached to all that we can discover by the new methods of crystal analysis concerning the nature and properties of the carbon atom




[PDF] Understanding Skeletal Formulae

position of the atoms stays the same Some examples of this are shown in Figure 1 In all of the these examples each carbon atom forms four bonds

[PDF] Tutorial on Stereochemistry I Locating the stereocenter a - UAB

a) Locate all sp3 hybridized carbon atoms in a structure b) Determine whether there are 4 different groups attached to this carbon Examples:

[PDF] Lesson Element How many atoms in my signature? - Teacher - OCR

How many atoms is my signature? contains 6 02 x 1023 carbon atoms We update our resources on a regular basis, so please check the OCR website to 

[PDF] Chemical Formulae

C2H6, 2 atoms of carbon combine with 6 atoms of hydrogen to form ethane If we know the formula of a compound, determining the molar mass is simple




[PDF] Some basic chemistry

a carbon atom with 6 protons, 6 neutrons and 6 electrons As you will see later, this is because chemical reactions They can be used to identify an element

[PDF] Carbon is found in all living things Carbon atoms move constantly

All animals, from humans to the dinosaurs are part of the carbon cycle When animals eat food, they get carbon in the form of carbohydrates and proteins

[PDF] How many atoms in my signature - OCR

This activity is a classroom activity in which the learners calculate the number of atoms in a 2 1 1 (c): the carbon-12 isotope is the standard for atomic masses

PDF document for free
  1. PDF document for free
[PDF] Carbon is found in all living things Carbon atoms move constantly 137274_7CTA_carbon_on_the_move.pdf 1 Carbon is found in all living things. Carbon atoms move constantly through OLYLQJ RUJMQLVPV POH RŃHMQV POH MPPRVSOHUH MQG POH (MUPO·V crust in what is known as the carbon cycle. The directions taken by carbon atoms through this cycle are very complicated and can take millions of years to make a full circle. All animals, from humans to the dinosaurs are part of the carbon cycle. When animals eat food, they get carbon in the form of carbohydrates and proteins. In animals, oxygen combines with food in the cells to produce energy for daily activity and then gives off carbon. The carbon combines with oxygen to form carbon dioxide (CO2) and is released back into the atmosphere as a waste product when animals breathe and exhale.

From 145-65 million years ago, Earth was much

hotter than today and covered with dense, tropical swamp forests. The trees and other plants were immense and provided an endless supply of food for the giant animals that roamed the land. Somewhere in the air above one of these forests, a lone carbon atom has joined up with two oxygen atoms to form a molecule of CO2. The CO2 molecule was sucked into the tiny holes (stomata) on the leaf of a fern plant and joined with sunlight, chlorophyll and water to make food and HQHUJ\ LQ POH SOMQP·V cells through photosynthesis. The oxygen (O2) from the CO2 molecule was sent back into the atmosphere; the carbon atom (C) was detached and used to make a molecule of sugar. If that carbon atom had been eaten instead, a totally different situation would have developed. IHP·V VM\ that a giant plant-eating dinosaur (herbivore) ate the fern for breakfast, and swallowed the carbon in the fern in the form of carbohydrates and proteins. In the process of respiration, oxygen combined with the carbohydrates MQG SURPHLQV LQ POH GLQRVMXU·V cells to provide energy for its daily activity. 2 The CO2 was a waste product and was flushed out from POH GLQRVMXU·V NRG\ ROHQ OH PRRN M GHHS NUHath and exhaled, hours after he digested and was still feeling content from his big breakfast. The carbon that had been a part of the leafy fern was released into the atmosphere.

When the dinosaur died, most of the carbon

atoms in his body went into the soil. Tiny organisms, including bacteria, fungi and scavengers, broke down the big carbon molecules into smaller ones. By releasing these nutrients from the dead tissue, the process of decomposition made them available to other living organisms in the ecosystem. Over many years, layers of soil, water and high temperatures and pressures turned the dinosaur into a fossil. The bones that remained gave up the carbon in them to the atmosphere. Soon after, the fern died and sank into the muck at the bottom of the swamp. Over thousands of years, more plants grew in the swamp and their remains also settled into the swamp, forming a layer of dead plant material containing carbon several feet thick called peat. Soil and other materials slowly covered the ancient swamp and buried the decaying plants under a thick layer of sediment. The sediment hardened, turning into sedimentary rock. The carbon atom was trapped in the remains of the swamp while the high pressure of the layers slowly compressed the material into ´ŃRMOµ. Today people mine these ancient coal beds and burn the coal in power plants to create electricity to fuel industry, transport goods and people, and to warm homes and businesses. Burning (combustion) releases the energy stored in the carbon compounds in the coal and reconnects the carbon atom with oxygen in the air to form CO2 again. Animals do just the opposite of plants: they take in air from the atmosphere, use the oxygen, and exhale the CO2. 3 Every so often, CO2 molecules escaped being buried and floated along with other CO2 molecules over the ocean surface.

In places where the water was warm, it

absorbed these molecules. Oceans soak up huge amounts of carbon and help keep too much CO2 from staying in the atmosphere.

Once our CO2 molecule was dissolved in the

ocean water, it could have been captured by an ocean organism that used it to make its shell. There are trillions upon trillions of ocean creatures of all sizes that capture atmospheric carbon in the form of CO2 and use it to make calcium carbonate (CaCO3) shells in the process of calcification.

Most of the carbonate shells are produced by

microscopic creatures called plankton, which float in all oceans of the world. Although they do not live very long, plankton absorb great amounts of carbon in their shell-building activities. By keeping carbon contained within their shells, marine organisms keep it from being returned to the atmosphere, where it would continue to build up. When they die, their shells sink to the bottom of the ocean floor and form sediments of limestone and natural chalk. Rocks that form through the deposition of sediments and other materials are known as sedimentary rocks; chalk is probably one of the most well-known examples of this type of rock, thanks to its common use. Chalk is a form of limestone and the chemical formula is CaCO3. Its main ingredient is ancient fossilized sea organisms, which were deposited and exposed to high pressure over centuries, so deposits often occur in areas that were once underwater. Through a simple chemical reaction with vinegar, the carbon stored in this chalk can be released back into the atmosphere, where it will combine with oxygen to form CO2. 4

Student Sheet 5

INVESTIGATING QUESTIONS:

1. JOMP POH GRHV POH PHUP ´ŃMUNRQ Ń\ŃOHµ PHMQ"

2. How do all animals, from dinosaurs to humans, relate to the carbon

cycle?

3. Explain how a carbon atom that existed as carbon dioxide (CO2)

during the Carboniferous Period could have ended up at the bottom of a murky swamp.

4. How did this carbon atom eventually form coal? What is coal used for

today?

5. Now explain how the same carbon atom (that existed as CO2 during

POH FMUNRQLIHURXV 3HULRG ŃRXOG OMYH HQGHG XS LQ M GLQRVMXU·V stomach.

6. How did this carbon atom become re-released into the atmosphere?

7. How did the carbon atom meet a tiny marine organism? What did the

carbon atom help the marine organism build?

8. How did the carbon atom become natural chalk?

9. Explain how the carbon contained in the natural chalk, which could be

from the exhaled breathe of a dinosaur, can be released from the chalk

ASSESSMENT ACTIVITY:

OPTION 1. Describe and draw the carbon pathway using your favorite dinosaur (herbivore or carnivore). Start from the dinosaur to the shell of a marine organism (label it) and then move to chalk. Show 6-10 steps that carbon must travel through. OPTION 2. Draw a dinosaur on the geological carbon cycle diagram and draw arrows to show the steps from how the dinosaur got carbon to how carbon dioxide got from the dinosaur into the chalk.

Atom Documents PDF, PPT , Doc

[PDF] bitcoin atom

  1. Science

  2. Physics

  3. Atom

[PDF] build an atom basics phet

[PDF] can atom be seen under microscope

[PDF] can you see atom under microscope

[PDF] carbon atom how many electrons

[PDF] central atom exception to octet rule

[PDF] chemistry atom practice test

[PDF] chemistry atom quizlet

[PDF] cornell university atom

[PDF] cornell university atom picture

Politique de confidentialité -Privacy policy