[PDF] Applied Aerodynamics - Forgotten Books





Loading...








[PDF] Fifth Edition Aerodynamics for Engineering Students

Aerodynamics for engineering students / E L Houghton and P W Carpenter Advanced versions of the method exploited modern computing techniques




[PDF] Advanced Aerodynamics - NASA Technical Reports Server

Advanced Aerodynamics Selected NASA Research Presentations made at the Fifth Annual Status Review of the NASA Aircraft Energy Efficiency (ACEE)

[PDF] Aerodynamics for Engineering Students - WordPresscom

to solve engineering problems related to the design and analysis of aerodynamic objects The design of vehicles such as airplanes has advanced to the level 

[PDF] Fundamentals of Aerodynamicspdf

John D Anderson, Jr Page 4 Fundamentals of Aerodynamics Sixth Edition

[PDF] Classical Aerodynamic Theory - Stanford University

It should not be forgotten that the writings of F W Lanchester provide many of the physical insights that were elaborated in these mathematical theories




[PDF] Applied Aerodynamics - Forgotten Books

they advanced the theory of the subject in various degrees The present epoch of aviation may be said to have begun with the publication of the 

[PDF] Aerodynamics

Aerodynamic Forces and Moments e Center of Pressure f Dimensional Analysis: The Buckingham Pi Theorem g Flow Similarity h Fluid statics

[PDF] Chapter 5: Aerodynamics of Flight - Federal Aviation Administration

By using the aerodynamic forces of thrust, drag, lift, and during advanced stages of this spiral condition or excessive

[PDF] ME 540 Advanced Aerodynamics

ME 540 Advanced Aerodynamics Spring 2012 Professor: Sheryl Grace Course Description This course will cover the basics of both steady and unsteady 




[PDF] Aerodynamics for Professional Pilots - Kimerius Aircraft

Advanced knowledge of physics is not required to understand this text, but it is assumed that the reader has studied High School physics and is familiar 

[PDF] Fifth Edition Aerodynamics for Engineering Students - Aeronautical

Aerodynamics for engineering students / E L Houghton and P W Carpenter Advanced versions of the method exploited modern computing techniques

[PDF] Advanced Aerodynamic Devices to Improve the - CORE

papers on-line, download the PDF file and to print a copy at no cost for your use only 1 2001-01-2072 Advanced Aerodynamic Devices to Improve the

[PDF] Aerodynamics for Professional Pilots - (Kimerius)

The subject we are studying is called aerodynamics, which means that it has Advanced knowledge of physics is not required to understand this text, but it automated leaning systems that take care of the chore for the pilot, but in a manual

[PDF] AAE6105 Advanced Aerodynamics - - C5 DEFINITIVE COURSE

To develop students' capability in aerodynamic analysis of canonical geometries, airfoils and wings with the consideration of compressibility Intended Learning

[PDF] Applied Aerodynamics - Forgotten Books

they advanced the theory of the subject in various degrees The present epoch of automatic and manual control in the non- rigid type, air from the balloonets

[PDF] AERODYNAMICS, AERONAUTICS, AND FLIGHT MECHANICS

IPREFACE This second edition of Aerodynamics, Aeronautics, and Flight Mechanics marks fifty If the pilot pulls back on the control column as the throttle is advanced value of 1 20 for CL,,,, agrees almost exactly with the airplane's manual

PDF document for free
  1. PDF document for free
[PDF] Applied Aerodynamics - Forgotten Books 2623_3AppliedAerodynamics_10526036.pdf

APPLIEDAERODYNAMICS

ByL.BAIRSTOW,Amiateofthe

RoyalCollegeofScienceinMechanics;Whitworth

Scholar;FellowandMemberofCounciloftheRoyal

AeronauticalSociety,etc.

AEROPLANESTRUCTURES

ByA.J.SUTTONPIPPARD,M.Sc..ArmoM.

FellowoftheRoyalAeronauticalSociety,

andCapt.I.LAURENCEPancuun.lateR.A.l AssociateFellowoftheRoyalAeronauticalSociety.WithanIntroductionbyL.BAtRS'row,F.R.S.

THEAEROENGINE

ByMajorA.T.EVANSandCaptainW.GRYLLS

ADAMS,M.A.

THEDESIGNOFSCREW

PROPELLERS

LONGMANS,GREENANDC0.

NEWYORK.LONDON,BOMBAY,CALLUTTA,ANDMADRAS

APPLIEDAERODYNAMICS

BY LEONARDBAIRSTOW,ADVISE!ONAERODYNANICSTOTHEAIRMINISTRY:MEMBEROFTHEADVISORYCOMMITTEE FORAEEONAUTICS.All!INVENTIONSCOMMITTEE.ACCIDENTSINVESTIGATIONCONMITTRE. ANDADVISORYONCIVILAVIATION:LATEQUPERINTKNDRNfIeOPTKR AFEODYNANICSDEPARTMENTOPTHRNATIONALPHYSICALLABORATORY

ILL0sdTIONSAND

NEWYORK

LONGMANS,GREENANDCO.

FOURTHAVENUEAND3015STREET

39,PATERNOSTERROW,LONDON

BOMBAY.CALCUTTA,ANDMADRAS

1920

A11right:hram!

233672E

APR10moCkg?Kl?g

lac. EYTS Bic

PREFACE

Tnaworkaimaattheextractionofprinciplesof6ightfrom,andthe

illustrationoftheuseof,detailedinformationonaeronauticsnowavailablefrommanysources;notablythepublicationsoftheAdvisory

CommitteeforAeronautics.Themainoutlinesofthetheoryof6ightaresimple,butthestageofapplicationnowreachednecessitatescarefulexaminationofsecondaryfeatures.Thisbookiscastwiththisdistinction

inViewandstartswithadescriptionofthevariousclassesofaircraft,bothheavierandlighterthanair,andthenproceedstodevelopthe

lawsofsteady6ightonelementaryprinciples.Laterchapterscomplete

thedetailasknownatthepresenttimeandcoverpredictionsandanalysesofperformance,aeroplaneacrobatics,andthegeneralproblems

ofcontrolandstability.Thesubjectofaerodynamicsisalmostwholly basedonexperiment,andmethodsaredescribedofobtainingbasic informationfromtestsonaircraftin6ightorfromtestsinawindchannelonmodelsofaircraftandaircraftparts. Theauthorisanxioustoacknowledgehisparticularindebtednessto

theAdvisoryCommitteeforAeronauticsforpermissiontomakeuseofreportsissuedunderitsauthority.Extensivereferenceismadetothosereportswhich,priortothewar,wereissuedannually;itisunderstood

thatallreportsapprovedforissuebeforethebeginningof1919arenowreadyforpublication.Tothismaterialtheauthorhashadaccess,but

itWillbeunderstoodbyallintimatelyuaiutedwiththereportsthat

thecontentscannotbefullyrepresenbyextracts.Thepresentvolumeisnotanattemptatcollectionoftheresultsofresearch,butacontributiontotheirapplicationtoindustry.

Forthelastyearofthewartheauthorwasresponsibletothe

DepartmentofAircraftProductionfortheconductofaerodynamicresearchonaeroplanesin6ight,andhisthanksaredueforpermission

tomakeuseofinformationacquired.ForpermissiontoreproducephotographsacknowledentismadetotheAdmiraltyAirshipDepartment,Messrs.HandleyageandCc.,theBritishandColonialAeroplane

Cc.,thePliw-nixDynamoCc.,Messrs.D.NapierandCc.,andELM.

StationeryOjice.

L.BAIBSTOW.mumsWren,

October6th,1919.

viiiCONTENTS

AERIALBIANOEUVRESANDTHEEQUATION01"MOTION

CONTENTS

ofpetrolandoildMoreaccuratemethodofprediction-GeneraltheorydData ofclimbdTheoryofreductionfromactualtostandardatmospheredLevelkights

CONTENTS

LISTOFPLATES

Fourteentensofmatterinkight

FightingBiplaneScout

CockpitofanAeroplane

RotaryEnginedAir-cooledStationaryEngine

Waiter-cooledEngine

NearlycompletedRigidAirship

C000Q0O0Q0Q

ExperimentalarrangementofTubeAnemometeronanAeropla 0

ModelAeroplanearrangedtoshowAutorotation

EddiesbehindCylinder

FlowofWaterpastanInclinedPlate.LowandHighSpeeds

FlowofAirpastanInclinedPlate.LowandHighSpeeds

VeryStableModeldSlightlyStableModel

StableModelwithtwoRealFinsdModelwhichdevelopsanUnstable OscillationdModelwhichillustratesLateralInstabilities

CHAPTERI

GENERALDESCRIPTIONOFSTANDARDFORMSOFAIRCRAFT

In'raonvcrron

IntheOpeningreferencestoaircraftasrepresentedbyphotographsof moderntypes,bothheavier-than-airandlighter-than-air,attentionwill bemoreespeciallydirectedtothosepointswhichspecijcallyrelatetothe subject-matterofthisbook,i.e.toappliedaerOdynamics.Strictlyin terpreted,thewordaerodynamicsisusedonlyforthestudyoftheforces

onbodiesduetotheirmotionthroughtheair,butformanyreasonsitisnotconvenienttoadheretoocloselytothisdefinition.Inthecaseof

heavier-than-aircraftoneoftheaerodynamicforcesisrequiredtocounter balancetheweightoitheaircraft,andisthereforedirectlyrelatedtoa non-dynamicforce.Inlighter-than-aircraft,sizedependsdirectlyon theweighttobecarried,buttheweightitselfisbalancedbythebuoyancy ofamassofentrappedhydrogenwhichagainhasnodynamicorigin.As thesizeofaircraftincreases,theresistancetomotionatanypredetermined speedincreases,andtheaerodynamicforcesforlighter-than-aircraft dependuponandareconditionedbynon-dynamicforces. Theinter-relationindicatedabovebetweenaerodynamicandstatic forceshasextensionswhichak' ecttheexternalformtakenbyaircraft. Oneofthemostimportantitemsinaircraftdesignistheeconomical distributionofmaterialsoastoproduceasufjcientmarginofstrength fortheleastweightofmaterial.Acceptingthestatementthatadditional aconsequenceofincreasedweight,itwillbeappreciatedthat theproblemofexternalformcannotbedeterminedsolelyfromaerodynamic considerations.Asanexampleofasimpletypeofcompromisemaybe instancedtheproblemofwingform.Thegreatestliftforagivenresistance isobtainedbytheuseofsinglelongandnarrowplanes,theadvantagebeing lessandlessmarkedastheratiooflengthtobreadthincreases,butremaining appreciablewhentheratioisten.MostaerOplaneshavethisaspect ratiomorenearlyequaltosixthenten,andinsteadofthesingleplaneadoublearrangementispreferred,theek' ectofthedoublingbeingan appreciablelossofaerodynamicekiciency.Thereasonswhichhaveled

tothisresultarepartlyaccountedforbyaspecialconvenienceinjghtingwhichaccompaniestheuseofshortplanes,butafactorofgreaterimportanceisthatarisingfromthestrengthdesiderata.Theweightof

wingsoflargeaspectratioisgreaterforagivenliftingcapacitythanthat ofshortwings,andtheexternalsupportnecessaryinalltypesofaerOplane ismoredifjculttoachievewithaerodynamiceconomyforasinglethan foradoubleplane.Aerodynamically,alimitisjxedtotheweight 1n

2APPLIEDAERODYNAMICS

carriedbyawingatachosenspeed,andforsafealightingthetendency

hasbeentojxthisspeedatalittleoverfortymilesanhour.ThisgivesalowerlimittothewingareaofanaerOplanewhichhastocarryaspecijed

weight.Thegeneralexperienceofdesigiershasbeenthatthislimitisaseriousrestrictioninthedesignofamonoplane,butoffersverylittle

biplane.Inafewcases,threeplaneshavebeensuperposed,butthetypehasnotreceivedanygeneraldegreeofacceptance.For

smallaerOplanes,thefurtherlossofaerodynamicefjciencyinatriplane hasbeenacceptedforthesakeofthegreaterrapidityofmanaauvrewhich canbemadetoaccompanyreducedspanandchord,whilstinverylarge aerOplanesthechiefadvantageofthetriplaneisareductionoftheoverall dimensions.Uptothepresenttimeitappearsthatanadvantageremains withthebiplanetypeofconstruction,althoughverygoodmonOplanesand triplaneshavebeenbuilt. Theillustrationshowsthataircrafthaveenteredthestageofengineer ingasdistinctfromaerodynamicalsciencehinthatthejnalproduct

isdeterminedbyanumberofconsiderationswhicharemutuallyrestrictiveandinwhichthepracticalknowledgeofusageisaveryimportantfactor

intheattainmentofthebestresult. Althoughairisthe6uidindicatedbythetermaerodynamics,it hasbeenfoundthatmanyofthephenomenaof6uidmotionareindependent

oftheparticular6uidmoved.Advantagehasbeentakenofthisfactinarrangingexperimentalwork,andinalaterchapterastrikingOptical

illustrationofthetruthoftheaboveobservationisgiven.Thedistinction betweenaerodynamicsandthedynamicsof6uidmotiontendstodisappear inanycomprehensivetreatmentofthesubject. Intheconsiderationofaerialmanoeuvresandstabilitytheaero

dynamicsofthemotionmustberelatedtothedynamicsofthemovingmasses.Itisusualtoassumethataircraftarerigidbodiesforthepurposes

indicated,andingeneraltheassummionisjustijable.Inafewcases,as incertainjnsofairshipswhichde6ectunderload,greaterrejnementmay benecessaryasthescienceofaeronauticsdeveIOps. Itwillreadilybeunderstoodthataerodynamicsinitsstrictinter pretationhaslittledirectconnectionwiththeinternalconstructionof aircraft,theimportantitemsbeingtheexternalformandthechangesof itwhichgivethepilotcontroloverthemotion.Asthesubjectisinitself

extensive,andastheinternalstructureisbeingdealtwithbyotherwriters,thepresentbookaimsonlyatsupplyingtheinformationbymeansof

whichtheforcesonaircraftinmotionmaybecalculated. Thescienceofaerodynamicsisstillveryyoung,anditisthirteenyears onlysincethejrstlongheponanaeroplanewasmadeinpublicbySantos Dumont.ThecircuitoftheEiffelTowerinadirigibleballoonpreceded thisfeatbyonlyashortperiodoftime.Aeronauticsattractedthe attentionofnumerousthinkersduringpastcenturies,andmanyhistorical accountsareextantdealingwiththeresultsoftheirlabours.Formany reasonsearlyattemptsat6ightallfellshortofpracticalsuccess,although theyadvancedthetheoryofthesubjectinvariousdegrees.Thepresent epochofaviationmaybesaidtohavebegunwiththepublicationofthe

STANDARDFORMSOFAIRCRAFT3

experimentsmadeby'LangleyinAmericaintheperiod1890to1900. Theapparatususedwasawhirlingarmjttedwithvariouscontrivances forthemeasurementoftheforcesonkatplatesmovedthroughtheairat theendofthearm. Onelineofexperimentmayperhapsbedescribedbrie6y.Anumber ofplatesofequalareaweremadeandarrangedtohavethesametotal weight,afterwhichtheywereconstrainedtoremainhorizontalandto falldownverticalguidesattheendofthewhirlingarm.Thetimeoffall

oftheplatesthroughagivendistancewasmeasuredandfoundtodepend,notonlyontheSpeedoftheplatethroughtheair,butalsoonitsshape.

Atthesamespeeditwasfoundthattheplateswiththegreatestdimension acrossthewindfellmoreslowlythanthoseofsmalleraspectratio.For smallvelocitiesoffallthetimeoffallincreasedmarkedlywiththeSpeed oftheplatethroughtheair.Byachangeofexperimentinwhichthe plateswereheldonthewhirlingarmataninclinationtothehorizontal andbyrunningthearmatincreasingspeedsthevalueofthelatterwhen theplatejustlifteditselfwasfound.Repetitionofthisexperiment showedthataparticularinclinationgavelessresistancethananyother fortheconditionthattheplateshouldjustbeairborne.

FromLangleyfsexperimentsitwasdeducedthataplateweighingtwopoundspersquarefootcouldbesupportedat85m.p.h.iftheinclination

wasmadeeightdegrees.Theresistancewasthenone-sixthoftheweight,andmakingallowanceforotherpartsofanaeroplaneitwasconcluded

thatatotalweightof750lbs.couldbecarriedfor.theexpenditureof25 horsepower.Earlyexperimenterssetthemselvesthetaskofbuildinga completestructurewithintheselimitations,andsucceededinproducing aircraftwhichliftedthemselves. Langleyputhisexperimentalresultstothetestofa6ightfromthe tOpofahouseboatonthePotomacriver.Owingtoaccidenttheaero planedivedintotheriverandbroughttheexperimenttoaveryearlyend. InEngland,MaximattemptedthedesignofalargeaerOplaneand engine,andachievedanotableresultwhenhebuiltanengine,exclusive ofboilersandwater,whichweighed180lbs.anddeveloped860horse power.Toavoidthedifjcultiesofdealingwithstabilityin6ight,the aerOplanewasmadecaptivebyjxingwheelsbetweenupperandlower rails.Theexperimentscarriedoutwereveryfewinnumber,butalift oflbs.wasobtainedbeforeoneofthewheelscarriedawayafter contactwiththeupperrail. Forsometenyearsaftertheseexperiments,aviationtookanew direction,andattemptstogainknowledgeofcontrolbytheuseofaero planeglidersweremadebyPilcher,LilienthalandChanute.Fromahill builtforthepurposeLilienthalmadenumerousglidesbeforebeingcaught inapowerfulgustwhichhewasunabletonegotiateandwhichcosthim hislife.Inthecourseofhisexperimentshediscoveredthegreatsuperiority ofacurvedwingovertheplanesonwhichLangleyconductedhistests. Byasuitablechoiceofcurvedwingitispossibletoreducetheresistance tolessthanhalfthevalueestimatedfor6atplatesofthesamecarrying capacity,Theonlycontrolattemptedintheseearlyglidingexperiments

4APPLIEDAERODYNAMICS

wasthatwhichcouldbeproducedbymovingthebodyoftheaeronaut inadirectiontocounteracttheek' ectsofthewindforces. InthesameperiodveryrapidprogresswasmadeinthedeveIOpmvnt ofthelightpetrolmotorforautomobileroadtransport,andbetween1900

and1908itbecameclearthattheprospectsofmechanical6ighthadmateriallyimproved.Thejrstachievementsofpower-drivenaeroplanes

tocallforgeneralattentionthroughouttheworldwerethoseoftwo Frenchmen,HenriBarmanandBleriot,whomadenumerousshort6ights whichwerelimitedbylackofadequatecontrol.Thesetwopioneerstook Oppositeviewsastothepossibilitiesofthebiplaneandmonoplane,but intheendthefirstproducedanaeroplanewhichbecameverypopular asatrainingaeroplanefornewpilots,whilstthesecondhadthehonour ofthejrstcrossingoftheEnglishChannelfromFrancetoDover. Thelackofcontrolreferredto,existedchie6yinthelateralbalanceof theaeroplanes,itbeingdikiculttokeepthewingshorizontalbymeans oftherudderalone.TherevolutionarystepcamefromtheBrothersWright inAmericaastheresultofapatientstudyoftheproblemsofgliding.A lateralcontrolwasdevelopedwhichdependedonthetwistingorwarping oftheaeroplanewingssothattheliftonthedepressedwingcouldbe increasedinordertoraiseit,withacorrespondingdecreaseoflift ontheotherwing.Asthechangesofliftduetowarpingwereaccompanied

bychangesofdragwhichtendedtoturntheaeroplane,theBrothersWrightconnectedthewarpandruddercontrolssoastokeeptheaeroplane

onastraightcourseduringthewarping.Theprincipleofincreasingthe liftonthelowerwingbyaspecialcontrol18nowuniversallyapplied,but therudder1snotconnectedtothewingkapcontrolwhichhastakenthe placeofwingwarping.FromthetimeoftheWrights'jrstpublic6ights inEuropein1908theaviatorsoftheworldbegantomcreasetheduration oftheirkightsfromminutestohours.Progressbecameveryrapid,and thespeedof6ighthasrisenfromthe85m.p.h.oftheHenriFarmanto nearly140m.p.h.inamodernjghtingscout.Therangehasbeen increasedtoover2000milesinthebombingclassofaeroplane,andthe AtlanticOceanhasrecentlybeencrossedfromNewfoundlandtoIrelandby theVickersfVimybomber. Assoonastheproblemsofsustainingtheweightofanaemplaneand ofcontrollingthemotionthroughtheairhadbeensolved,manyinvestiga tionswereattemptedofstabilitysoastoelucidatetherequirementsin anaeroplanewhichwouldrenderitabletocontrolitself.Partialattempts

weremadeinFrancefortheaeroplanebyFerber,Seeandothers,butthemostsatisfactorytreatmentisduetoBryan.Startingin1908incollabora

tionwithWilliams,Bryanappliedthestandardmathematicalequations ofmotionofarigidbodytothedisturbedmotionsofanaeroplane,andthe culminationofthisworkappearedin1911.Themathematicaltheory remainsfundamentallyintheformproposedbyBryan,butchangeshave beenmadeinthemethodofapplicationastheresultofthedevelopment ofexperimentalresearchundertheAdvisoryCommitteeforAeronautics. Themathematicaltheoryisfoundedonasetofnumbersobtainedfrom experiment,anditischie6yinthedeterminationofthesenumbersthat

STANDARDFORMSOFAIRCRAFT5

developmenthastakenplaceinrecentyears.Someextensionsofthe mathematicaltheoryhavebeenmadetocover6ightinanaturalwind andinspiralpaths. ExperimentalworkonstabilityonthemodelscaleattheNational PhysicalLaboratorywascc-ordinatedwith6yingexperimentsatthe RoyalAircraftFactory,andtheresultsofthemathematicaltheoryof

stabilitywereappliedbyBuskintheproductionoftheRE.20.aeroplane,which,withcontrolontherudderonly,was6ownfordistancesof60or70milesonseveraloccasions.Bythistime,1914,themainfoundationsof

aviationaswenowknowithadbeenlaid.Thelaterhistoryislargely thatofdetaileddevelopmentunderstressoftheGreatWar. Thehistoryofairshipshasfollowedadifferentcourse.Theproblem ofsupportneveraroseinthesamewayasforaeroplanesandseaplanes, asballoonshadbeenknownformanyyearsbeforetheadventoftheair ship.Thejrstchangefromthefreeballoonwaslittlemorethanthe attachmentofanengineinordertogiveitindependentmotionthrough theair,andthepoweravailablewasverysmall.Thesphericalballoon hasahighresistance,itscourseisnoteasilydirected,andthedirigible balloonbecameelongatedatitsearlieststages.Thelongcigar-shaped formsad0ptedbroughttheirownspecialdifjculties,astheytooaredikicult tosteerandareinclinedtobuckleandcollapseunlesssukicientprecautions aretaken.Steeringandmanagementhasbeenattainedinallcasesby thejttingofjns,bothhorizontalandvertical,totherearoftheairship envelope,andtheproblemofafjxingjnsofsufjcientareatothe6exible envelopeofanairshiphasimposedengineeringlimitationswhichprevent asimpleapplicationofaerodynamicknowledge. Theproblemofmaintenanceofformofanairshipenvelopehasledto severalsolutionsofverydifferentnatures.Inthenon-rigidairshipthe

envelopeiskeptin6atedbytheprovisionofsufjcientinternalpressure,eitherbyautomaticvalveswhichlimitthemaximumpressureorbythe

pilotwholimitstheMum.Theinterioroftheenvelopeisdivided bygastightfabricintotwoorthreecompartments,thelargestofwhich isjlled .withhydrogen,andthesmalleronesarefullyorpartiallyin6ated withaireitherfromtheslipstreamofanairscreworbyaSpecial fan.Astheairshipascendsintoairatlowerpressurethevalvestothe airchambersopenandallowairtoescapeasthehydrogenexpands,and solongasthisispossiblelossofliftisavoided.Thegreatestheightto whichanon-rigidairshipcangowithoutlossofhydrogenisthatforwhich theairchambersorballoonetsareempty,andhencethesizeofthe balloonetsispreportionedbytheceilingoftheairship. Ifthecarofanairshipissuspendednearitscentre,theenvelopeat resthasgasforcesactingonitwhichtendtoraisethetailandhead.The undersideoftheenvelopeisthenintensiononaccountofthegaslift, whilsttheupperside ,isincompression.Asfabriccannotwithstand compression,sufjcientinternalpressureisappliedtocounteracttheeffect oftheliftinproducingcompression. Thecarofthenon~rigidairshipisattachedbycablestotheunderside oftheenvelope,andastheseareinclined,aninwardpullisexertedwhich9

6APPLIEDAERODYNAMICS

tendstoneutralisethetensioninthefabric.Forsomeparticularinternal pressurethefabricwilltendtopucker,andSpecialexperimentsaremade todeterminethispressureandtodistributethepullinthecablessoas tomakethepressureassmallaspossiblebeforepuckeringoccurs.The" experimentismadeonamodelairshipwhichisinvertedandjlledwith water.Theloadsinthecables,theirpositionsandthepressureareall undercontrol,andthenecessarymeasurementsareeasilymade.The theoryoftheexperimentisdealtwithinalaterchapter. Inkighttheexterioroftheenvelopeissubjectedtoaerodynamic pressureswhichareintensenearthenose,butwhichfalloffvery rapidlyatpointsbehindthenose.Fromatendencyofthenosetoblow inunderpositivepressure,achangeoccurstoatendencytosuckoutat

adistanceoflessthanhalfthediameteroftheairshipbehindthenose,andthissuction,invaryingdegrees,persistsoverthegreaterpartofthe

envelope.AthighSpeedsthetendencyofthenosetoblowinisvery greatascomparedwiththeinternalpressurenecessarytoretaintheform oftherestoftheenvelope,andareductionintheweightoffabricusedis obtainedifthenoseisreinforcedlocallyinsteadofmaintainingitsshape byinternalpressurealone.Inoneofthephotographsofthischapterthe reinforcementofthenoseisveryclearlyshown. Theproblemofthemaintenanceofformofanon-rigidairshipis appreciablysimplijediftheweighttobecarriedisnotallconcentrated inonecar. Inthesemi-rigidairshiptheenvelopeisstilloffabricmaintainedto formbyinternalpressure,butbetweentheenvelopeandcarisinterposed alonggirderwhichdistributestheconcentratedloadofthecaroverthe wholesurfaceoftheenvelope.Thistypeofairshiphasbeenusedin France,buthasreceivedmostdevelopmentinItalyitisnotusedinthis country. Rigidairshipsdependuponametalframeworkforthemaintenance oftheirform,andinGermanyweredevelopedtoaveryhighdegreeof efjciencybyCountZeppelin.Thelargestairshipsareofrigidconstruction andhaveagrossliftofnearlyseventytons.Theframeworkisusually

ofalightaluminiumalloy,occasionallyofwood,andinthefuturesteelmaypossiblybeused.Thestructureisalightlatticeworksystemofgirders

runningalongandaroundtheenvelopeandbracedbywiresintoastiff frame.Inmoderntypesakeelgirderisprovidedinsidetheenvelopeat thebottom,whichservestodistributetheloadfromthecarsandalso

furnishesacommunicationway.Thenumberofcarsmaybefourormore,andthebendingundertheliftofthehydrogen1skeptsmallbyacareful

choiceoftheirpositions.Someofthetransversegirdersarebracedinside theenvelopebyanumberofradialwires,thecentresofwhicharejoined byawirerunningthewholelengthoftheairshipalongitsaxis.Inthe compartmentssoproducedthegas-containersare6oated,andtheliftis transferredtotherigidframebythepressureonanettingofsmallcord. Thelatticeworkiscoveredbyfabricinordertoproduceasmooth unbrokensurfaceandsokeepdowntheresistance.Speedsof75m.p.h. havebeenreachedinthelatestBritishtypesofrigidairship,andthereturn

8APPLIEDAERODYNAMICS

thedirectionofPrandtl,ofwhichnoresultshavebeenobtainedinthis country.SomeoftheGermanwritersonstabilitywerefollowingclosely

alongparallellinestothoseofBryaninBritain,andhad,priorto1914,arrivedattheideaofmaximumlateralstability.

TheotherEuropeanlaboratoryofnotewasatKoutchinonearMoscow,withD.Riabouehinskyasdirector.Thislaboratoryappearstohavebeen

aprivateestablishment,andplayedayeryusefulpartinthedevelopment ofsomeofthefundamentaltheoriesof6uidmotion.Thepracticaldemand onthetimeoftheexperimentersappearstohavebeenlessseverethanin themoreWesterncountries.

ANationalAdvisoryCommitteeforAeronauticswasformedatWashingtononApril2,1915,bythePresidentoftheUnitedStates.

Reportsofworkhaveappearedfromtimetotimewhichlargelyfollow thelinesoftheolderBritishCommitteeandaddtothegrowingstockof valuableaeronauticaldata.BeforedealingwithSpecijccasesofaircraftitmaybeusefultocompare andcontrastmanfseffortswiththemostnearlycorrespondingproducts ofnature.Betweenthebirdsandtheman-carryingaeroplanethereare pointsofsimilarityanddifferencewhichstrikeanobserverimmediately.

Bothhavewings,thoseinthebirdbeingmovablesoastoallowof6apping,whilstthoseintheaeroplanearejxedtothebody.Boththebirdand

theaeroplanehavebodieswhichcarrythemotivepower,inonecase muscularandintheothermechanical.Bothhavetheintelligencefactor inthebody,theaerOplaneasapilot.Theaeroplanebodyisjttedwith anairscrew,anorganwhollyunrepresentedinbirdandanimallife,the propulsionofthebirdthroughtheairaswellasitssupportbeingachieved bythe6appingofitswings.Inbothcasesthebodiesterminateinthin surfaces,ortails,whichareusedforcontrol,butwhilsttheaerOpIanehas averticaljnthebirdhasnosuchorgan.Thewingsofabirdaresomobile atwillthatmanceuvresofgreatcomplexitycanbemadebyalteringtheir positionandshape,manceuvreswhicharenotpossiblewiththerigidwings ofanaeroplane.Inadditiontothedik' erencebetweenairscrewandkappingwings,aeroplanesandbirdsdiffergreatlyinthearrangementsfor alighting,theskidsandwheelsoftheaeroplanebeingtotallydissimilar tothelegsofthebird. Thestudyofbird6ightasabasisforaviationhasclearlyhadamarked in6uenceontheparticularformwhichmodernaer0planeshavetaken, andnomethodofaerodynamicsupportisknownwhichhasthesame valueasthatobtainedfromwingssimilartothoseofbirds.Thefactthat 6appingmotionhasnotbeenadopted,atleastforextensivetrial,appears tobedueentirelytomechanicaldifjculties.Inthisrespectnatural developmentindicatessomelimitationtothesizeofbirdwhichcan6y. Thesmallerbirds6ywitheaseandwithaveryrapid6appingofthewings largerbirdsSpendlongperiodsonthewing,butgeneralinformation indicatesthattheyaresoaringbirdstakingadvantageofupcurrents behindclik' soralargesteamer.Withthestilllargerbirdstheemuand ostrich,6ightisnotpossible.Thehistoryofbird-lifeisinstrxctaccordance withthemechanicalprinciplethatstructuresofasimilarnatureget

STANDARD~FORMSOFAIRCRAFT9

relativelyweakerastheygetlarger.Man,althoughhehassteelanda largeselectionofothermaterialsathisdisposal,hasnotfoundanything somuchbetterthanthemuscleofthebirdastomaketheproblemof supportinglargeweightsby.6apping6ightanymorepromisingthanthe resultsforthelargestbirds.Inlookingforanalternativeto6apping thescrewpropellerasdevelopedforsteamshipshasbeenmodijedforaerial use,andatpresentistheuniversalinstrumentofpropulsion. Theadeptionofrigidwingsinlarge6yingmachinesinordertoobtain sufjcientstrengthalsobroughtnewmethodsofcontrol.Mechanical principlesrelatingtotheej' ectofsizeonthecapacityformanuauvreShow thatrecoveryfromadisturbanceisslowerforthelargerconstruction. Thegustsencounteredaremuchthesameforbirdsandaeroplane,and theslownessofrecoveryoftheaemplanemakesitimprobablethatthe beautifulevolutionsofabirdincounteringtheeffectsofagustwillever beimitatedbyaman-carryingaeroplane.Inonerespecttheaeroplane hasadistinctadvantage:itsSpeedthroughtheairisgreaterthanthat ofthebirds,andSpeedisitselfoneofthemosteffectivemeansofcombating theeffectofgusts.

Furtherreferencetobird6ightisforeigntothepurposeofthisbook,whichrelatestoinformationobtainedwithoutspecialattentiontothe

studyofbird6ight. Theairshipenvelopeandthesubmarinehavemoreresemblanceto thejshesthantoanyotherlivingcreatures.GenerallySpeaking,theform ofthelargerjshesprovidesaverygoodbasisfortheformofairships. Itiscuriousthatthejnsofthejshareusuallyverticalasdistinctfrom thehorizontaltailfeathersofthebird,andthejnsoverandunderthe centralbodyhavenocounterpartintheairship.Boththeartijcialand livingcraftobtainsupportbydisplacementofthemediuminwhichthey aresubmerged,andrisingandfallingcanbeproducedbymoderatechanges ofvolume.Theresemblancebetweenthejshesandairshipsisfarless closethanthatbetweenthebirdsandaeroplanes.

GENERALDESCRIPTIONorPaarrcvnxaAxacnarr

Anumberofphotographsofmodernaircraftandaeroenginesare reproducedastypicalofthesubjectofaeronautics.Theywillbeusedto dejnethosepartswhichareimportantineachtype.Thedetailsofthe motionofaircraftarethesubjectoflaterchaptersinwhichtheconditions ofsteadymotionandstabilityaredevelopedanddiscussed. TheAntoninadThefrontispieceshowsalargeaer0planein6ight. BuiltbyMessrs.HandleyPageCc.,theaerOplane'istheheaviestyet 6ownandweighsaboutlbs.whenfullyloaded.Itsenginesdevelop

1500horsepowerandpropeltheaeroplaneataSpeedofabout100miles

anhour.Iteisofnormalbiplaneconstructionforitswings,theSpecial characteristicsbeingintheboxtailandinthearrangementofitsfour engines.Eachenginehasitsownairscrew,thepowerunitsbeingdivided intotwobythebodyoftheaer0plane,eachhalfconsistingofapairof enginesarrangedbacktoback.Oneairscrewofeachpairisworkingin

10APPLIEDAERODYNAMICS

thedraughtoftheforwardscrew,andthistandemarrangementisasyet somewhatnovel.

Biplane(Fig.dFig.1showsaSingle-seaterjghtingscofut,theSE.5,muchusedinthelaterstagesofthewar.Itsfourwingsareofequallength,

andformthetwoplaneswhichgivethenametothetype.Thelowerwings areattachedtotheundersideofthebodybehindtheairscrewandengine cowl,whilsttheupperwingsarejoinedtoashortcentresectionsupported fromthebodyonaframeworkofstrutsandwires.Awayfromthebodythe upperandlowerplanesaresupportedbywingstrutsandwirebracing, andthewholeformsastiffgirder.In6ighttheloadfromthewingsis transmittedtothebodythroughthewingstrutsandthewiresfromtheir upperendstotheundersideofthebody.Thesewiresarefrequently referredtoasliftwires.Thedownwardloadonthewingswhichaecom paniestherunningoftheaeroplaneoverroughgroundistakenbyanti liftwires,whichrunfromthelowerendsofthewingstrutstothecentre sectionoftheupperplane. Inthedirectionofmotionoftheaeroplanein6ightareanumberof bracingwiresfromthebottomofthevariousstrutstothetopofthe

neighbouringmember.Thesewiresstiffenthewingsinawaywhichmaintainsthecorrectangletothebodyoftheaeroplane,andareknown

asincidencewires.Thebracingsystemisredundant,oneormore membersmaybreakwithoutcausingthecollapseofthestructure. Thewingsofeachplanewillbeseenfromthephotographtobebent upwardsinwhatisknownasadihedralangle,theobjectofwhichisto assistinobtaininglateralstability.Forthelateralcontrol,wing6aps areprovided,theextentofwhichcanbeseenonthewingsontheleftof thejgure.Onthelower6aptheleverforattachmentoftheoperating cableisvisible,thelatterbeingledintothewingatthefrontspar,and hencebypulleystothepilotfscockpit.Thepositionsofthefrontandrear sparsareindicatedbytheendsofthewingstrutsintheforeandaft direction,andrunalongthewingsparalleltotheleadingedges.

ThebodyrestsontheSparsofthebottomplane,andcarriestheengineandairscrewintheforwardend.Theengineiswater-cooled,andthe

necessaryradiatorsaremountedmthenoseimmediatelybehindtheair screw.Blinds,shownclosed,arerequiredinaer0planeswhichclimbto greatheights,sincethetemperatureisthenwellbelowthefreezingpoint ofwater,andunrestricted6owofairthroughtheradiatorduringaglide wouldleadtothefreezingofthewaterandtolossofcontroloftheengine. Theblindscanbeadjustedtogiveintermediatedegreesofcoolingto correspondwithenginepowersintermediatebetweenglidingandthe maximumpossible. Alongsidethe'bodyandstretchingbackbehindthepilotfsseatisone oftheexhaustpipeswhichcarrythehotgaseswelltotherearoftheaero plane.Thepilot'sseatisjustbehindthetrailingedgeoftheupperwing. Abovetheexhaustpipeandnearthefrontofthebodyisacoveroverthe cylindersononesideoftheengine,thecoverbeingusedtoreducetheair resistance. Theairscrewisintheextremeforwardpositionontheaeroplane,and

DigtizedbyGoogle

STANDARDFORMSOFAIRCRAFT11

hasfourblades.ThediameterisjxedinthiscasebythehighSpeedof

theairscrewShaft,andnot,asinmanycases,bythegroundclearancerequiredforsafetywhenrunningovertheground.Belowthebodyandunderthewingsofthelowerplaneisthelanding

chassis.Theframeconsistsofapairofvee-Shapedstrutsbasedonthe bodyandjoinedatthebottomendsbyacrosstube.Thestructure eis supportedbyadiagonalcross-bracingofwires.Thewheelsandaxleare heldtotheundercarriagebybindingsofrubbercordsoastoprovide 6exibility.Theshocksoflandingaretakenpartlybythisrubbercord andpartlybythepneumatictyresonthewheels.Withtheaer0plane bodynearlyhorizontalthewheelaxleisaheadofthecentreofgravity oftheaeroplane,sothattheeffectofthejrstcontactwiththegroundis tothrowupthenose,increasingtheangleofincidenceanddrag.Ifthe Speedofalightingistoogreattheliftmayincreasesufjcientlytoraise theaeroplaneofftheground.Theartofmakingacorrectlandingisoneof themostdifjcultpartstobelearntbyapilot. ThetailoftheaeroplaneisnotclearlyShowninthisjgure,and Withanenginedeveloping210horsepowerandaloadbringingthegross weightoftheaemplaneto2000lbs.,theaerOplaneillustratediscapable ofaspeedofover180m.p.h.andcanclimbtoaheightoffeet. Thelimittotheheighttowhichaircraftcanclimbisusuallycalledthe ceiling.h Monoplane(Fig.dThemoststrikingdifferencefromFig.1isthe changefromtwoplanestoasingleone,andinordertosupportthewings againstlandingShocks,apyramidofstrutsorcabanehasbeenbuilt overthebody.Fromtheapexofthepyramidbracingwiresarecarried topointsontheuppersidesofthefront ,andrearspars.Thelowerbracing wiresgofromtheSparstotheundersideofthebody,andeachisduplicated. Ontherightwingnearthetipisatubeanemometerusedaspartof theequipmentformeasuringthespeedoftheaeroplane.Inbiplanesthe anemometerisusuallyjxedtooneofthewingstruts,astheeffectofthe presenceofthewingonthereadingislessmarkedthaninthecasenow illustrated. InthistypeofaerOplane,madebytheBritishdzColonialAeroplane Coyhtheenginerotates,andtheairscrewhasasomewhatunusualfeature inthespinnerwhichisattachedtoit.Theairscrewhastwoblades only,andthistypeofconstructionhasbeenmorecommonthanthefour bladedtypeforreasonsofeconomyoftimber.Thedifferencesof efjciencyarenotmarked,andeithertypecanbemadetogivegood service,thechoicebeingdeterminedinsomecasesbytheSpeedofrotation oftheairscrewshaftofanavailableengine. TheundercarriageisverysimilartothatshowninFig.1.Onone ofthefrontstrutsisasmallwindmillwhichdrivesapMpforthepetrol feed.Windmillsarenowfrequentlyusedforauxiliaryservices,suchas theelectricalheatingofclothingandthegenerationofcurrentforthe. wirelesstransmissionofmessages. Thetailisclearlyvisible,andunderneaththeextremeendofthebody

12APPLIEDAERODYNAMICS

isthetail-skid.Thisskidishingedtothebody,andissecuredbyrubber cordatitsinnerend,soastodecreasetheshockofcontactwiththeground. Thehorizontalplaneatthetailisseentobedivided,thefrontpartor tailplanebeingjxed,whilsttherearpartorelevatorismovableatthe pilotfswish.Thecontrolcablesgoinsidethefuselageattherootofthe tailplane.Underneath,thetailplane18seentobebracedtothebody above,thebracingwiresareattachedtothejn,which,likethetailplane, isjxedtothebody.Therudderishiddenbehindthejn,buttherudder leverforattachmentofthecontrolcablecanbeseenabouthalfwayup thejn. Thepilotsitsunderthecabane,andhisdownwardviewishelped byholesthroughthewings.Immediatelyinfrontofhimisawindscreen, andalsointhisinstanceamachine-gun,whichjresthroughtheairscrew.

Flying-boat(Fig.dThedij'

erenceofShapefromthelandtypesis markedinseveraldirections,aswillbeseenfromtheillustrationrelatingto thePhoenixCorkkying-boatP.5.Theparticularfeaturewhichgives itsnametothetypeistheboatstructureunderthelowerwing,andthis replacesthewheelundercarriageoftheaeroplaneinordertorenderpossible alightingonwater.The6yingboatisshownmountedonatrolleyduring transitfromtheshedstothewater.Ontheundersideoftheboat,just behindthenationalitycircles,isastepwhichplaysanimportantpartin thepreliminaryrunonthewater.Asecondstepoccursunderthewings attheplaceoflastcontactwiththeseaduringakight,butishiddenby thedeepShadowofthelowerwing. Underneaththelowerwingattheouterstrutsisawing6oatwhich keepsthewingoutOfthewaterinanySlightroll.Thewingstructureis muchlargerthanthoseofFigs.1and2,andtherearesixpairsOfinter planestruts.Theupperplaneisappreciablylongerthanthelower,the extensionsbeingbracedfromthefeetoftheouterstruts.Theleverson thewing6apsoraileronsarenowveryclearlyshownowingtothe proximityofwavestothelowerwing,aileronsarenotjttedtothem. ThetailisraisedhighabovetheboatandisintheSlipstreamsfrom thetwoairscrews.Asthecentrelineoftheairscrewsisfarabovethe

centreOfgravity,switchingontheenginewouldtendtomakethekyingboatdive,wereitnotsoarrangedthattheslip-streameffectonthetail

isarrangedtogiveanOppositetendency.Thejnandrudderareclearly shown,asarealsotheleversontherudderandelevators.Besideshaving adihedralangleonthewings,smalljnshavebeenjttedabovethetop wingsaspartofthelateralbalanceOfthekying-boat. Theenginesarebuiltonstrutsbetweenthewings,andeachengine drivesatractorairscrew.Theenginesareruninthesamedirection, althoughatanearlystageofdevelopmentofkying-boatstheekectsof geSOOpicactionoftherotatoryairscrewswereeliminatedbyarranging forrotationinOppositedirections.Thiswasfoundtobeunnecessary. Thetailofthekying-boathasbeenespeciallyarrangedtocomeintothe slipstreamoftheairscrews,butinaeroplanesthisoccurswithout Specialprovisionordesire.Notonlydoestheairscrewincreasetheair Speedoverthetail,butitalterstheangleofincidenceandblowsthetail

Flo.4.dCockpitofanaeroplane.

DgtzedbyG

STANDARDFORMSOFAIRCRAFT18

upordowndependingonitssetting.ThereisalsoatwistintheSlipstream whichisfrequentlyunsymmetricallyplacedwithreSpecttothejnandrudder andtendstoproduceturning.Theeffectsofswitchingtheengineonand

Offmaybeverycomplex.

Inordertoeasethepilotfseffortsmanyaeroplanesarejttedwithan adjustabletailplane,andiftheyarestabletheadjustmentcanbemade soastogiveanychosen6yingspeedwithouttheapplicationofforceto thecontrolstick. PilotfsCockpit(Fig.dThephotographofthePantherwastaken fromabovetheaeroplanelookingdownandforward.Atthebottomofthe jgureistheedgeoftheseatwhichrestsonthetopofthepetroltank.Along thecentreofthejgureisthecontrolcolumnhingedatthebottomtoarock. ingshaftsothatthepilotisabletomoveitinanydirection.Bysuitable cableconnectionsitisarrangedthatfore-and-aftmovementdepressesor

raisestheelevators,whilstmovementtorightorleftraisesorlowersvtherightailerons.Someoftheconnectionscanbeseen;behindthecontrol

columnisaleverattachedtotherockingshaftandhavingatitsendsthe cablesfortheailerons.Thecablescanbeseenpassingininclineddirections infrontofthepetroltank.OnthenearSideofthecontrolcolumnbut partlyhiddenbytheseatisthelinkwhichoperatestheelevators. Inthecaseofeachcontrolthemotionofthecolumnrequiredisthat whichwouldbemadewereitjxedtotheaeroplaneandthepilotheld independentlyandheattemptedtopulltheaeroplaneintoanydesired position.Inotherwords,ifthepilotpullsthesticktowardshimthe.nose oftheaeroplanecomesup,whilstmovingthecolumntotherightbrings theleftwingup. Onthetopofthecontrolcolumnisasmallswitchwhichisusedbythe pilottocutouttheenginetemporarily,anOperationwhichisfrequently requiredwitharotaryenginejustbeforelanding. Acrossthephotographandalittlebelowtheenginecontrolswitches istherudderbar,thehingeofwhichisverticalandbehindthecontrol column.Thetwocablestotherudderareseentocomestraightback underthepilotfsseat.Intheruddercontrolthepilotpushestherudder bartotherightinordertoturntotheright. Severalinstrumentsareshowninthephotograph.Inthetapleft corneristheaneroidbarometer,whichgivesthepilotanapproximate ideaOfhisheight.Inthecentreisthecompass,aninstrumentSpecially designedforaircraftwheretheconditionsofusearenotveryfavourable togoodresults.Immediatelybelowthecompassandpartlyhiddenby itistheairspeedindicator,whichisusuallyconnectedtoatubeanemometer suchaswasshowninFig.2ontheedgeOfthewing.eStillloweronthe instrumentboardandbehindthecontrolcolumnisthecross-levelwhich indicatestoapilotwhetherheisside-Slippingornot.Totherightof thecross-levelarethestartingswitchesfortheengine,twomagnetosbeing usedasaprecautionarymeasure.Belowandtotherightoftherudder baristheenginerevolution-indicator.

14APPLIEDAERODYNAMICS

ENGINESO

Air-cooledRotaryEngine(Fig.5a).dInthistypeofengine,theRR:2,theairscrewisboltedtothecrankcaseandcylinders,andthewholethen

rotatesaboutajxedcrankshaft.Thecylinders,nineinnumber,developa netbrakehorsepowerofabout280ataSpeedof1100to1800revolutionsper minute.Thecylindersareprovidedwithgills,whichgreatlyassistthecool ingofthecylinderduetotheirmotionthroughtheair.Withoutanyforward

motionoftheaerOplane,coolingisprovidedbytherotationOfthecylinders,andanappreciablepartofthehorsepowerdevelopedisabsorbedinturning

theengineagainstitsairresistance.Airandpetrolareadmittedthrough pipesshownatthesideofeachcylinder,andboththeinletandexhaust valvesaremechanicallyoperatedbytherodsfromtheheadofthecylinder tothecrankcase.Thecammechanismforoperatingtherodsisinside thecrankcase.Thehubfortheattachmentoftheairscrewisshownin thecentre. Atypeofengineofgenerallysimilarappearance.hasstationary cylindersandisknownasradial.hItisprobablethatthecoolinglosses inaradialenginearelessthanthoseinarotaryengineofthesamenet power,butnodirectcomparisonappearstohavebeenmade.The effectivenessofanenginecannotbedissociatedfromthemeanstakento coolitscylinders.Theresistanceofcylindersinaradialengineand radiatorsinawater-cooledengineshouldbeestimatedandallowedfor beforecomparisoncanbemadewitharotaryengine,thelossesofwhich havealreadybeendeductedintheenginetest-bedjgures.Forengines withstationarycylinderstest-bedjguresusuallygivebrakehorsepower withoutallowanceforaerodynamiccoolinglosses. Vac-typeAir-cooledEngine(Fig.5b).dTheengineshownhastwelve cylinders,developsabout240horsepowerandisknown ,asthe R.A.F.4d.Thecylindersarearrangedabovethecrankcasein tworowsofsix,withananglebetweenthem,hencethenamegiven tothetype.Inordertocoolthecylindersacowlhasbeenprovided, sothattheforwardmotionoftheaerOplaneforcesairbetweenthe cylindersandoverthecylinderheads.Attheextremeleftofthephoto graphistheairscrewhub,andinthisparticularenginetheairscrewis gearedsoastoturnathalftheSpeedofthecrankshaft,thelattermaking

1800to2000r.p.m.Totherightofandbelowtheairscrewhubisoneof

themagnetoswithitsdistributingwiresforthecorrecttimingOfthe explosionsintheseveralcylinders.Atthebottomofthephotographare

theinletpipes,carburettors,petrolpipesandthrottlevalves.Water-cooledEngine(Fig.dWater-cooledengineshavebeenused

morethananyothertypeinbothaeroplanesandairships.Thetwo photographsoftheNapier450h.p.engineshowwhatanintricate mechanismtheaeroenginemaybe.Thecylindersarearrangedinthree rowsoffour,eachonebeingsurroundedbyawaterjacket.Thefeed pipesofthewater-circulatingsystemcanbeseeninFig.6bgoingfrom thewaterpumpatthebottomofthepicturetothelowerendsofthe cylinderjackets,whilstabovethemarethepipeswhichconnectthe

Fla.5(a).dRotaryengine.

Fla.5(b).dAir-cooledstationaryengine.

DigntizedbyGoc

16APPLIEDAERODYNAMICS

theshipandringsrunningroundit.Twotypesofringarevisible,oneofwhichiswhollycomposedofsimplegirders,whilstthesecondhasking

postsasstik' enersontheinside.Fromthecornersofthissecondframe

radialwirespasstothecentreoftheenvelopeandformoneofthedivisionsoftheairship.Thecentresofthevariousradialdivisionsareconnected

byanaxialwire,whichtakestheendpressureofthegasbagsinthecase ofde6ationofoneofthemorofinclinationoftheairship.Thecordnetting againstwhichthegasbagsrestcanbeseenveryclearly.Theairshipis onebuiltfortheAdmiraltybyMessrsBeardmore. TheNon-rigidAirship(Fig.dThenon-rigidtypeofconstruction isessentiallydifferentfromthatdescribedabove,theshapeoftheenvelope beingmaintainedwhollybytheinternalgaspressure.TheN.S.typeof airshipillustratedinFig.9hasagrossweightof11tons,and travelsatalittlemorethan55m.p.h.Thelength-is

0262feet,andthemaximumwidthoftheenvelope57feet.Fig.9bgivesthebestideaof

thecross-sectionofthistypeofairship,andshowsthreelobesmeetingin well-dejnedcorners.ThetypewasoriginatedinSpainbyTorresQuevedo anddevelopedinParisbytheAstraCompany.Itcontainsaninternal ropesandfabricbetweenthecorners.The satisfactorydistributionofloadsonthefabricduetotheweightofthe carandenginesispossiblewiththisconstructionwithoutnecessitating suspensionfarbelowthelowersurfaceoftheenvelope.Fig.90,taken frombelowtheairship,showsthewiresfromthecartothejunctionof thelobesatthebottomoftheenvelope,andthesetakethewholeload underlevel-keeleconditions.Tobracethecaragainstrolling,wiresare carriedoutoneithersideandjxedtothelobesatsomedistancefromthe planeofsymmetryoftheairship.Theprincipleofreliefofstressby' distributionofloadhasbeenutilisedinthisship,-thecarandengine nacellesbeingsupportedasseparateunits.Communicationispermitted acrossagangwaywhichaddsnothingofvaluetothedistributionof load.

Theenginesaretwoinnumber,situatedbehindtheobservationcar,andeachisprovidedwithitsownairscrew.Beneaththeenginesandalso

belowthecararebumpingbagsforuseonalighting. Astheshapeoftheairshipisdependentontheinternalgaspressure, specialarrangementsaremadetocontrolthisquantity,andthefabricpipes showninFig;90showhowairisadmittedforthispurposetoenclosed portionsoftheenvelope.Theenvelopeisdividedinsidebygastight fabric,sothatinthelowerlobesbothoftheforeandrearpartsofthe airship,smallchambers,orballoonets,areformedintowhichaircanbe pumpedorfromwhichitcanbereleased.Thepositionoftheseballoonets canbeseeninFig.90,attheendsofthepairoflonghorizontalfeed pipes;theyarecrossconnectedbyfabrictubeswhicharealsoclearly visible.Thehigh-pressureairisobtainedfromscoopsloweredintothe

slipstreamsfromtheairscrews,thescoopsbeingvisibleinallthejgures,butarefoldedagainsttheenvelopeinFig.9a.Valvesareprovidedin

thefeedpipesforusebythepilot,whoin6atesordekatestheballoonets asrequiredtoallowforchangesinvolumeofthehydrogenduetovariations

STANDARDFORMSOFAIRCRAFT17

ofheight.Automaticvalvesarearrangedtoreleaseairifthepressure Theweightoffabricnecessarytowithstandthepressureofthegas isgreatlyreducedbyreinforcingthenoseoftheairshipasshownin Fig.9b.Themaximumexternalairforceduetomotionoccursatthe noseoftheairship,andathighspeedsbecomesgreaterthantheinternal pressureusuallyprovided.Theregionofhighpressureisextremelylocal, andbytheadditionofstiffeningribstheexcessofpressureoverthe internalpressureistransmittedbacktoapartoftheenvelopewhereitis easilysupportedbyasmallinternalpressure.Occasionallythenoseof anairship1sblowninathighSpeed,butwiththearrangementsadopted theconsequencesareunimportant,andthecorrectshape18recoveredbyanincreaseofballoonetpressure. Thein6ationofoneballoonetandthede6ationoftheotherisacontrol bymeansofwhichthenoseoftheairshipcanberaisedorlowered,andso effectachangeoftrim,buttheusualcontrolisbyelevatorsandrudders. IntheN.8.typeofairshiptherudderisconjnedtothelowersurface,and theupperfinisofreducedsize.This,thelargestofthenon-rigidairships, istheproductoftheAdmiraltyAirshipDepartmentfromtheirstation atKingsnorth,andhasseenmuchserviceasasea-scout. KiteBalloons(Fig.dTheearlykiteballoonwasprobablyaGerman type,withastringofparachutesattachedtothetailinordertokeep theballoonpointingintothewind.Theliftonakiteballoonispartly duetobuoyancyandpartlyduetodynamiclift,thelatterbeinglargely

predominantinwindsof40or50m.p.h.Theballooniscaptive,andmayeitherbesentaloftinanaturalwindorbetowedfromaship.Twotypes

ofmodernkiteballoonareshowninFig.10,(a)and(b)showingthelatest andmostsuccessfuldevelopment.Tothetailoftheballoonarejxed threejns,whicharekeptin6atedinawindbythepressureofairina swapattachedgtothelowerjn.Withthisarrangementtheballoon swingsslowlybackwardsandforwardsaboutaverticalaxis,andtravels sidewaysasanaccompanyingmovement. ThekitewireisshowninFig.lobascomingtoamotorboat.The secondropewhichdipsintotheseaisanautomaticdeviceformaintaining theheightoftheballoon.Thegeneralsteadinessoftheballoondepends onthepointofattachmentofthekitewire,andtheimportantdifference illustratedbythetypesFig.10(a)and(c)isthatthelatterbecomes

longitudinallyunstableathigh-windspeedsandtendstobreakaway,theformerdoesnotbecomeunstable.Thegeneraldisposition

oftheriggingisshownmostclearlymFig.10a,whereariggingband isshownfortheattachmentofthecarandkiteline.

CHAPTER11

THEPRINCIPLESOFFLIGHT

(i)TunAsaopnxns Indevelopingthematterundertheaboveheading,anendeavourwillbe madetoavoidthejnerdetailsbothofcalculationandofexperiment.In thelaterstagesofanyengineeringdevelopmenttheamountoftimedevoted tothedetailsinordertoproducethebestresultsisapttodullthesense ofthoseimportantfactorswhicharefundammtalandcommontoall discussionsofthesubject.Itusuallyfallstoafewpioneerstoestablish themainprinciples,andaviationfollowstherule.Therelationsbetween lift,resistanceandhorsepowerbecamethesubjectofgeneraldiscussion amongstenthusiastsintheperiod1896-1900mainlyowingtotheresearches ofLangley.Maximmadeanaeroplaneembodyinghisviews,andwecan nowseethatonthesubjectsofweightandhorsepowertheseestablishedthefundamentaltruths.Methodsof dataandofmakingcalculationshaveimmovedandhavebeenextended tocoverpointsnotarisingintheearlydaysof6ight,andoneextension istheconsiderationof6ightataltitudesofmanythousandsoffeet. Themainframeworkofthepresentchapteristherelatingofexpo mentaldatatotheconditionsofkight,andtheexperimentaldatawillbe takenforgranted.Laterchaptersinthebooktakeuptheexamination oftheexperimentaldataandthejnerdetailsoftheanalysisandprediction ofaeroplaneperformance.WingsdThemostprominentimportantpartsofanaeroplanearethe wings,andtheirfunctionisthesupportingoftheaeroplaneagainstgravita tionalattraction.Theforceonthewingsarisesfrommotionthroughthe air,andisaccompaniedbyadownwardmotionoftheairoverwhichthe wingshavepassed.Theprincipleofdynamicsupportina6uidhasbeen calledthesacrijcialhprinciple(byLordRayleigh,Ibelieve),andstated broadlyexpressesthefactthatifyoudonotwishtofallyourselfyoumust makesomethingelsefall,inthiscaseair. IfAB,Fig.11;betakentorepresentawingmoviuginthedirectionofthe arrow,itwillmeetairatrestatCandwillleaveitatEEenduedwitha downwardmotion.Now,fromNewtonfslawsofmotionitisknownthat therateatwhichdownwardmomentumisgiventothe6uidisequalto thesupportingforceonthewings,andifweknewtheexactmotionof theairroundthewingtheupwardforcecouldbecalculated.Theproblem

is,however,toodifjcultforthepresentstateofmathematicalknowledge,andourinformationisalmostentirelybasedontheresultsoftestson

modelsofwingsinanartijcialaircurrent. 18

THEPRINCIPLESOFFLIGHT19

Thedirectmeasurementofthesustainingforceinthiswaydoesnot involveanynecessityforknowledgeofthedetailsofthe6ow.Itisusual todividetheresultantforceRintotwocomponents,Lthelift, eandD thedrag,buttheessentialmeasurementsintheaircurrentarethemagni tudeofRanditsdirection7,thelatterbeingreckonedfromthenormal tothedirectionofmotion.Theresolutionintoliftanddragisnotthe onlyusefulform,anditwillbefoundlaterthatinsomecalculationsitis convenienttousealinejxedrelativetothewingasabasisforresolution ratherthanthedirectionofmotion. Nomatterbywhatmeanstheresultsareobtained,itisfoundthatthe supportingforceorliftofanaeroplanewingcan~berepresentedbycurves suchasthoseofFig.12.Theliftingforcedependsontheanglea.(Fig.11) theaerofoilmakestherelativewind,anditisinterestingto jndthatthebepositivewhena.isnegative,i.e.whenthe relativewindisapparentlyblowingontheuppersurface.Thechord,is. thestraightlinetouchingthewingontheundersurface,isinclineddown wardsat8°ormorebeforeawingofusualformceasestolift. Theliftonthewingdependsnotonlyontheangleofincidenceand ofcoursethearea,butalsoonthevelocityrelativetotheair,andfor full-scaleaeroplanestheliftisproportionaltothesquareoftheSpeedat thesameangleofincidence.Ofcourseinanygiven6yingmachinethe weightofthemachineisjxed,andthereforetheliftisjxed,anditfollows

fromtheabovestatementthatonlyonespeedof6ightcancorrespondmthagivenangleofincidence,andthatthespeedandangleofincidencemustchangetogetherinsuchawaythattheliftisconstant.Thisrelation

caneasilybeseenbyreferencetoFig.12.ThecurveABCDEisobtainedbyexperimentasfollowsAwing(inpracticeamodelofitisusedand

20APPLIEDAERODYNAMICS

multiplyingfactorsapplied)ismovedthroughtheairataspeedof40m.p.h. Inoneexperimenttheangleofincidenceismadezero,andthemeasured liftis840lbs.ThisgivesthepointPofFig.12.Whentheangleof incidenceis5°theliftis900lbs.,andsoon.Inthecourseofsuchan experiment,thereisreachedanangleofincidenceatwhichtheliftisa maximum,andthisisshownatDinFig.12foranangleofincidenceof

17°orForanglesofincidencegreaterthanthisitisnotpossibleto

carrysomuchloadat40m.p.h.Withoutanyfurtherexperimentsitis nowpossibletodrawtheremainder:ofthecurvesofFig.12.AtBthelift for40m.p.h.hasbeenfoundtobe610lbs.AtB1itwillbe610XGS)hlbs., 24300
eQkjk

BSaeA

-sAomcunarlonorCHORD(DEGREES)

Fro.l2.dWingliftandspeed.

at610X(jglbsandsoon,theliftforagivenanglebeingproportional tothesquareofthespeed. NowsupposethatthewingsforwhichFig.12waspreparedarctobe usedonanaeroplaneweighing2000l.At85m.p.h.thewingscannotbe

madetocarrymorethan1580lbs.,andconsequentlytheaeroplanewillneedtogetupaspeedofmorethan85m.p.h.beforeitcanleavetheground.

At40asweseeatD,theweightcanjustbelifted,andthiscon stitutestheslowestpossible6yingspeedofthataeroplane.Theangleof incidenceisthen17to18degrees.Ifthespeedisincreasedto50m.p.h. therequiredliftisobtainedatanangleofincidenceratherlessthan andsoon,untiliftheengineispowerfulenoughtodrivetheaerOplaneat

100m.p.h.theangleofincidencehasasmallnegativevalue.

22APPLIEDAERODYNAMICS

ItisnowpossibletomakeTable]showingtheresistanceoftheaeroplaneatvariousspeeds,andtoestimMethenethorsepowerrequiredto

propelanaeroplaneweighing2000lbs.Thelossesintheorgansofpro pulsionwillnotbeconsideredatthispoint,butwillbedealtwithalmost diatelywhendeterminingthehorsepoweravailable. Aroughideaofthebrakehorsepoweroftheenginerequiredfor

ANGLEOFINCIDENCEDEGREES

Fro.13.dWingdragandspeed.

horizontal6ightcanbeobtainedbyassumingapropellerof

60percent.inallcases.Itwillthenbeseenthattheaeroplanewould

justbeableto6ywithanengineof45horsepowerataspeedof approximately50m.p.h.At70m.p.h.thebrakehorsepowerofthe enginewouldneedtobenearly80,whilstto6yat100m.p.h.would neednolessthan225horsepower.Byvariousmodijcationsofwingarea thehorsepowerforagivenspeedcanbevariedconsiderably.butthe examplegivenillustratesfairlyaccuratelythelimitsofspeedofan

THEPRINCIPLESOFFLIGHT28

aeroplaneoftheweightassumed;c.g.anenginedeveloping100horse powermaybeexpectedtogiveakight-speedrangeoffrom40m.p.h. to80m.p.h.toanaeroplaneweighing2000lbs.

ResistanceofreatofTotalresistance

aeroplane(lbs),(lbs). ThePropulllve[comm-Uptothepresentthecalculationshave referredtothebehaviouroftheaeroplane,withoutdetailedreferenceto themeansbywhichmotionthroughtheairisproduced. proposedtoshowhowthenecessaryhorsepowerisestimatedinorderthat theaeroplanemay6y.Thisestiniatefinvolvestheconsiderationofthe airscrew. Anairscrewactsontheairinamannersomewhatsimilartothatof awing,andthrowsairbackwardsinacontinuousstreaminorderto produceaforwardthrust.Thethrustisobtainedfortheleastex penditureofpoweronlywhentherevolutionsoftheengineareinavery specialrelationtotheforwardspeed. Increaseofthespeedofrevolutionwithoutalterationoftheforward speedoftheaeroplaneleadstoincreasedthrust,butthelawofincreaseis complex.Increasingthespeedoftheaeroplaneusuallyhastheeffectof decreasingthethrust,againinamannerwhichitisnoteasytoexpress simply.Calculationscanbemadetoshowwhattheairscrewwilldo underanycircumstances,butthediscussionwillbelefttoaspecialchapter. Onesimwelawcan,however,bededucedfromthebehaviourofair screws,andisofmuchthesamenatureasthatalreadypointedoutforthe supportingsurfaces.Itwasstatedthat,iftheangleofincidenceiskept constant,theliftanddragofawingincreaseinproportiontothesquare ofthespeed.Nowintheairscrew,itwillhefoundthattheangleof incidenceofeachbladesectioniskeptconstantiftherevolutionsare increasedinthesamepreportionastheforwardspeed,andthatunder suchconditionsthethrustandtorquebothvaryasthesquareofthe speed.Iffromaforwardspeedof40m.p.h.andarotationalspeedof

600r.p.m.theforwardspeedbeincreasedto80m.p.h.andthe

rotationalspeedto1200thethrustwillbeincreasedfourtimes. Givenatableofjgures,suchasTable2,whichshowsthethrustof anairscrewatseveralSpeedsofrotationwhentravellingat40m.p.h. throughtheair,resultscanbededucedforthethrustatothervaluesof theforwardspeedinthemannerdescribedbelow. nethorsepowerisheremeantthepowernecessarytodriveB perfectlgrefjcientmeansofpropulsionexisted.Theconditionsarevery anaeroplanewhengliding;

24APPLIEDAERODYNAMICS

ThejguresinTable2wouldbeobtainedeitherbycalculationorby anexperiment.Testsonairscrewsarefrequentlymadeattheendofa longarmwhichcanberotated,sogivingtheairscrewitsforwardmotion. Actualairscrewsmaybetestedonalargewhirlingarm,oramodelair screwmayheusedinawindchannelandmultiplyingfactorsemployed toallowforthechangeofscale.

Forwardspeed40m.p.h.

Revs.perminute.Thrust

ItwillbenoticedfromTable2thattheairscrewgivesnothrustuntil rotatingfasterthan500r.p.m.Atlowerspeedsthanthistheairscrew wouldopposearesistancetotheforwardmotion,andwouldtendtobe turningasawindmill.Whenthesubjectisenteredintoinmoredetail itwillbefoundthatthenumberofrevolutionsnecessarybeforeathrust isproducedisdeterminedbythepitchoftheairscrew.Theterm

pitchisobtainedfromananalogybetweenanairscrewandascrew,theadvanceofthelatteralongitsaxisforonecompleterevolutionbeingknownasthepitch.hWhilstthereareobviousmechanicaldifferences

betweenasolidscrewturninginitsnutandanairscrewmovingina mobile6uid,theexpressionhasmanyadvantagesinthelattercaseand willbereferredtofrequently.Forthepresentitisnotnecessarytoknow howpitchisdejned. ThenumbersgiveninTable2correspondwiththecurvemarked ABCinFig.14.Todeducethoseforanyotherspeed,say60the jrstcolumnismultipliedby38andthesecondby,givingthe followingtable:

Forwardspeed00m.p.h.

Revs.perminute.Thrust(M).

Itwillbenoticedthattheairscrewmustnowberotatingmuchmore rapidlythanbeforeinordertoproduceathrust.Theremainingcurves ofFig.14wereproducedinasimilarway,andrelatetospeedsofthe

THEPRINCIPLESOFFLIGHT25

ing2000lbs.Thethrustnecessarytosupporttheaeroplaneintheairat speedsof40,50,60,70and100m.p.h.hasbeenobtainedinTable1,and usingFig.14itisnowpossibletoobtainthepropellerrevolutionswhich arenecessarytoproducethisrequiredthrust.Thepointsaremarked C,C,,03,C3and04.Toproduceathrustof610lbs.at40m.p.h.the propellermustbeturningatabout1880asshownatthepoint0. speedrisesto50m.p.h.theenginemaybeshutdownveryappro therevolutionsbeingonly980.Forhighervelocitiesof6ightthe

AlRSCREWREVOLUTIONS0

F10.leadThrustandspeed.

revolutionsincreasesteadily,untilat100m.p.h.therateofrota tion18over1600r.p.m.Theenginemay,however,notbepowerfulenough todrivethepropellerattheserates,anditisnownecessarytoestimate, inamannersimilartothatforthrust,howmuchhorsepower18required. TheinitialdatagiveninTable4areagainassumedtohavebeen

TABLE4.dArasonxwHoasnrowxnarmSeam).

Forwardspeed40m.p.h.

26APPLIEDAERODYNAMICS

obtainedexperimentally,andthejguresfromthistable' areplottedin

Fig.15inthecurveABC.Toobtainthecurvefor60m.p.h.thejrstcolumnofTable4ismultipliedby$23andthesecondby(jgobtaimngthenumbersgiveninTable5.

r.pm

AIRSCREWREVOLUTIONS.

Thecurvessoobtainedforvariouskightspeedsindicate

powerbeforetheairscrewhasstepped.TheSpeedsarelowerthanthoseforwhichthethrusthasbecomezero,andindicatethepointsatwhich

theairscrewbecomesawindmill.Inanaeroplane,however,theresistancetoturningoftheenginewouldgreatlyreducethespeedatwhichthewindmillbecomesekf

ectivebelowthatindicatedforno-horsepower,andstoppage ofthepetrolsupplytotheenginewouldoftenresultinthestoppageoftheairscrew.

THEPRINCIPLESOFFLIGHT27

FromFigs.14and15it18noweasytojndthebrakehorsepowerof theenginewhichwouldbenecessarytodrivetheaeroplanethroughthe atspeedsfrom40to100m.p.h.FromFig.14itisfoundthatthe aeroplanewhentravellingat50m.p.hthroughtheairneedsanairscrew

speedof980r.p.m.Todrivetheairscrewatthisspeed18seenfromFig.pointC,,toneed89horsepower.ForotherSpeedsthehorsepoweris

indicatedbythepointsC,02,C3andC4,andthecollectedresultsare giveninTable6.

8ofamplancHomewardMme.)neon-cantor

OnFig.15alineOPhasbeendrawnwhichrepresentstheworkwhich particularenginecoulddoatthevariousspeedsofrotation,thisagain

isanexperimentalcurve.Theengineissupposedtobegiving120h.p.at1200r.p.m.Itwillbeseen,fromFig.15,thattheengineisnotpowerful

enoughtodrivetheaeroplaneateitherthelowestorthehighestSpeedsfor thecalculationshavebeenmade.Formanypurposestheinformation

giveninFig.15ismoreconvenientlyexpressedintheformshowninFig.16,wheretheabscissa18the6ightSpeedoftheaerOplane.ThecurveABCDE

ofthelatterjgure18plottedfromthepointsC,01,Oz,03andC4ofFig.15,whilethelineFGHcorrespondswiththepointsB,E,,BJB,andB4.

Thejrstcurveshowsthehorsepowerrequiredfor6ight,andthesecond thehorsepoweravailable.Fromthediagram1nthisformitiseasilyseen thatthepointFrepresentstheslowestspeedatwhichtheaeroplanecan ky,inthiscase403m.p.h.,andthatHshowsthepossibilityofreachinga speedofnearly98m.p.h. Fig.16showsmorethanthis,foritgivesthereservehorsepoweratany speedof6ight.Thisreservehorsepowerisroughlyproportionaltothe Speedatwhichtheaeroplanecanclimb,andthecurveshowsthatthebest climbingSpeedismuchnearertothelowerlimitofspeedthantothe GenealncmarksonFigc.12d16dCalculationsrelatingtothe6ightspeed ofanaeroplaneareillustratedfairlyexactlybythecurvesinFig.12-16. Asthesubjectisenteredintoindetailmanysecondaryconsiderationswill beseentocomein.Thedifjcultieswillbefoundtoconsistverylargely

inthedeterminationofthestandardcurvesmarkedABCDEinthejgures,andtheanalysisofresultstoobtainthesedataconstitutesoneofthemore

laboriouspartsoftheprocess.Thecomplicationisverylargelyoneof detail,andshouldnotbeallowedtoobscurethecommonbasisof6ight conditionsforallaeroplanesastypijedbythecurvesofFigs.12d16.

28APPLIEDAERODYNAMICS

ClimbingFlightdInthemoregeneraltheoryoftheaeroplaneitis ofinteresttoShowhowthepreviouscalculationsmaybemodijedto include6ightsotherthanthoseinahorizontalplane.Therateatwhich aerOplanecanclimbhasalreadybeenreferredtoincidentallyincon naotienwithFig.16. Itisclearfromtheoutsetthattheairforcesactingontheaeroplane dependonitsspeedandangleofincidence,andarenotdependent acting forceswillvarywiththeattitudeoftheaeroplane.Iftheaeroplane hingtheairscrewthrustwillneedtobegreaterthanforhorizontal 6ight,whilstifdescendingthethrustisreducedandmaybecomezero ornegative.Thereisaminimumangleofdescentforanyaeroplanewhen coco70ac

SPCEDOF(wasoutnounTHROUGHam)

Fm.16.dHorsepowerandspeedforlevelkight.

theairscrewisgivingnothrust,andthisangleisoftenreferredtoastheangleofglidefortheaeroplane.hMorecorrectlyitshouldbereferred

toastheleastangleofglide.h Themethodofcalculationofglidingandclimbing6ightisillustrated

inFig.17,whichisadiagramoftheforcesactingonanaeroplaneinfree6ightbutwithits6ightpathinclinedtothehorizontal.

Inhorizontal6yingitwillbeassumedthatthedirectionofthethrustis horizontal,inwhichcaseitdirectlybalancestheresistanceoftheremainder oftheaerOplanetomotionthroughtheair.'Intheabovediagramthis statementmeansthatT=D.SimilarlytheweightoftheaerOplaneis exactlycounterbalancedbytheliftonthewings,i.e.LW.Theangleof incidenceofthewingsmaybevariedbyadjustmentoftheelevator,in whichcasethethrustwouldnotstrictlyliealongthewind.Ifnecessary aslightcomplicationofformulacouldbeintroducedtomeetthiscase,but theek' ectofthisvariationissmall,and,inaccordancewiththeideaon

30APPLIEDAERODYNAMICS

Equation(2)cannowbeusedtoshowhowdiagrams12and18maybe alteredtoallowforinclinedkight.Inthejrstplacetheordinatesof Fig.18,which,afteradditionofthedragofthebody,showthevalue ofDformanyanglesofincidence,needtobedecreasedbymultiplying bycos0togiveDcos0.Theeffectofthismultiplicationisverysmall asarule.At10°thefactoris0985,andat0940.Foravery steepSpiralglideatsaythedifferencebetweencos0andunitybecomes important,cos0beingthen0707. TothevalueofDcos0istobeaddedatermWsin9inordertoobtain

thethrustoftheairscrewwhenclimbingatanangle0.Wemaythenmakeatableasbelow,usingjguresfromTable1toobtainthesecond

column.

TABLE7.-T1mva'rwwwmama.

DraginbcrlmntalAlrmvthrustwhen

nightxcos9climbingat6h(lbs). Theangleofclimbwaschosenarbitrarilyatandtocompletethe investigationofthepossibilitiesofclimbTable7wouldberepeatedfor otherangles.UsingFigs.14and15fortheairscrewasforhorizontal 6ight,wemaynowcalculatethehorsepowerrequiredfor6ightwhen climbing,andsoobtainthejguresofTable8.

TABLE8.dHoasxrownawantcamma.

Atthelowestandhighestspeedsofthetablethehorsepowerrequired isfarg'reaterfthanthatavailable,andthejguresarenotwithintherange ofFi16.maynowproceedtoplotthehorsepowerofTable8againstspeed toobtainadiagramcorrespondingwithFig.16.Thenewcurvemarked A1B101D1inFig.18comparedwithABCDEasreproducedfromFig.16 showsanincreaseofnearly50h.p.atallSpeedsduetotheclimbat ThehighestSpeedof6ightisshownbytheintersectionofAlBlclwith FGHatH5.FGHisthehorsepoweravailable,andisthesameasthe similarlymarkedcurveofFig.16.ThehighestSpeedis7and

THEPRINCIPLESOFFLIGHT81

sincetheangle0isconstantalongAlBlcltherateofclimbwillbe greatestatthispointfortheconditionsassumed.Rateofclimb,V,his commonlyestimatedinfeetperminute,andwethenhave

Max.V,ford5°88XVah,xsin0

88Xx00875

ThecalculationsshowninTables7and8havebeenrepeatedforother anglesofclimbandoneangleofdescenttoobtaincorrespondingcurves

ODKIOOIPLIOPIY(MILESPERHOUR)

Fm.18.dHorsepowerandspeedforclimbingflight.

i brlig.18.TheintersectionsH4,H0,etcthenprovidedataforTable9ow.

TABLE9.dRu'zor0mmumSeas».

Unimnmratsa!climbAnglectclimb.torlivenI

5915
582
5113

Flightnotpossible.

Table9showsthattherateofclimbvariesrapidlywiththe6ightspeed theneighbourhOOd100m.p.h.to80butthatfrom ,65m.p.h.to

56m.p.h.thevalueofrateofclimbvariesonlyfrom725to780.This

illustratesthewell-knownfactthatthebestrateofclimbofanaeroplane isnotmuchaffectedbysmallinaccuraciesinthe6ightspeed. Thetableshowsanotherinterestingdetail;themaximumangleof

82APPLIEDAERODYNAMICS

climbisbutthegreatestrateofclimboccursatasmallerangle. Forreasonsconnectedwiththecontroloftheaeroplaneanangleof8°or thereaboutswouldprobablybechosenbyapilotinsteadofthe showntobethebest.

Dim-Bydivingismeantdescentwiththeengineon,as

distinguishedfromaglidemwhichtheengineiscutok' .Iftheenginebe keptfullyonitisfoundthatthespeedofrotationoftheairscrewrises

higherandhigherastheangleofdescentincreases.Thereis,however,anupperlimittotheSpeedatwhichanaeroplaneenginemayberunwith

safety.andmourillustrationanappropriatelimitwouldbe1600r.p.m. ThespeedofrotationcorrespondingwithH4was1550r.p.m.,anditwill beseenthatthenewrestrictionwillcomeintooperationforsteeper descent.Fig.14,ifextended,wouldnowenableustodeterminethethrust oftheairscrewatany13dwithoutreferencetothehorsepower,butit willbeevidentthatthe'limitsofusefulnessofeachofthepreviousjgures havebeenreached,andanextensionofexperimentaldataisnecessaryto coverthehigherspeeds. Thefactthatundercertaincircumstancesforcesvaryasthesquare offorwardSpeedoftheaeroplanesuggestsamorecomprehensiveformof presentationthanthatofFigs.12,18,14and15,andthenewcurvesof Figs.19and20showanextensionoftheoldinformationtocoverthe newpointsoccurringintheconsiderationofdiving.Thevaluesofthe extendedportionaresosmallthatonanyappreciablescaleitisonly possibletoshowtherangecorrespondingwithsmallanglesofincidence andforsmallvaluesofthrustandhorsepower.

TABLElo.dA1asoa:wTnausrwussnrvmo.

thrustThecurveconnectingV3m.p.h.andspeedisshowninFig.21.

Insteadofequation(2)willbeusedtheequation

Va nish.Vzm.

TheuseofD1insteadofDcos0isconvenientnowsincethe

levelkightathighSpeedsisnotdeterminedinanyothercalculation.IncompilingTable11someangleofpathsuchasd10°ischosen,andvarious

speedsof6ightareassumed.FromtheseSpeedsthethirdcolumnis

THEPRINCIPLESOFFLIGHT88

ulstedandgivesoneofthequantitiesofFig.19.Thevalue-0197 ble11)occursatanangleofd0°16(Fig.andfromthesamejgure

ANGLEO

Aerodynamics Documents PDF, PPT , Doc

[PDF] about aerodynamics study

  1. Engineering Technology

  2. Aerospace Engineering

  3. Aerodynamics

[PDF] advanced aerodynamics pdf

[PDF] aerodynamic drag

[PDF] aerodynamic heating

[PDF] aerodynamic inc

[PDF] aerodynamic noise

[PDF] aerodynamic overlay ksp

[PDF] aerodynamic performance meaning

[PDF] aerodynamic performance of centrifugal compressors

[PDF] aerodynamic test facilities

Politique de confidentialité -Privacy policy