[PDF] The biochemistry of diabetes





Loading...








[PDF] the physiological and biochemical effects of diabetes on the balance

Increased free radicals in diabetes may be caused the pathogenesis of atherogenesis, atherosclerosis and the degeneration in the biological macromolecules; pro-




[PDF] The biochemical basis of disease - CORE

3 déc 2018 · The causes of diabetes are thought to be a combination of genetic and envi- ronmental factors, and it is recognised that being overweight is a 

[PDF] The Clinical Biochemistry of Diabetes Mellitus in Singapore - IFCC

In a recent DiabCare Asia Study conducted to assess the status of diabetes mellitus control and chronic complications, about 50 of almost 1700 Singapore 

[PDF] Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk

16 avr 2021 · In this review, we focused on the biochemical aspects of diabetes, risk factors including both environmental and genetic, disease complications, 

[PDF] Clinical Biochemistry Diabetes mellitus

Normal Insulin Metabolism • Insulin – Produced by the ? cells in the islets of Langherans of the pancreas – Facilitates normal glucose range of 3 9 




[PDF] Biochemistry and Molecular Cell Biology of Diabetic Complications

The test evaluation at showed in Biochemistry and molecular cell biology for complications of diabetes of General Hospitals Al Sadr General Teaching in Al 

REVIEW ARTICLE The biochemistry of diabetes - Portland Press

The biochemistry of diabetes insulin dependent diabetes (NIDDM) will be used diabetes mellitus is increased metabolism of glucose by

[PDF] BIOL212- Biochemistry of Disease Metabolic Disorders: Diabetes

BIOL212- Biochemistry of Disease Metabolic ❑Diabetes mellitus is, after Non-insulin dependent diabetes ❑Type II diabetes accounts for > 90 of

[PDF] The biochemistry of diabetes

REVIEW ARTICLE The biochemistry of diabetes insulin dependent diabetes ( NIDDM) will be used diabetes mellitus is increased metabolism of glucose by

PDF document for free
  1. PDF document for free
[PDF] The biochemistry of diabetes 30011_7biochemj00235_0011.pdf

Biochem.J;(1988)250,625-640(PrintedinGreatBritain)REVIEWARTICLEThebiochemistryofdiabetesRoyTAYLORandLoranneAGIUSDepartmentofMedicine,UniversityofNewcastleuponTyne,FramlingtonPlace,NewcastleuponTyneNE24HH,U.K.INTRODUCTIONWehaveattemptedtoreviewthisbroadsubjectnotbybeingcomprehensive,butratherbyemphasizingareasofrecentadvance.Thehallmarkofdiabetesmellitusisaninabilitytocontrolbloodglucose.Therearetwomajorclinicalsyndromes:onecharacterizedbyinsulindependenceandearlyageofonsetwithweightlossandketonuria,andthesecondcharacterizedbyrelativelylateronset,insensi-tivitytoinsulinandpartialinsulindeficiency.Dearthofpreciseknowledgeaboutpathogenesismakesaetiologicalclassificationhazardous,andinthisreviewthedescriptivetermsinsulin-dependentdiabetes(IDDM)andnon-insulindependentdiabetes(NIDDM)willbeused.METABOLICDISTURBANCEINMANCarbohydratemetabolismFastingstate.Innormalsubjects,fastingbloodglucoseismaintainedconstantbycontrolofhepaticglucoseoutput.Afteranovernightfast,approx.75%ofhepaticglucoseoutputisaccountedforbyglycogenolysisandtherestbygluconeogenesisfromlactate,alanine,glycerol,andpyruvateindecreasingorderofimportance(Hers&Hue,1983).Hepaticglucoseoutputiscontrolledbybasallevelsofinsulinandglucagon.Basalhepaticextractionofinsulinandglucagonisapprox.500(Waldhausletal.,1982);andhenceinsulinandglucagonconcentrationsintheperipheralcirculationarelowerthanintheportalvein.Atleast70%ofextrahepaticglucoseutilizationoccursininsulin-insensitivetissues(brain,redbloodcellsandrenalmedulla)(Vranic&Wrenshall,1968).InNIDDM,fastingbloodglucoseisraisedindirectproportiontohepaticglucoseoutput(Bogardusetal.,1984;Reversetal.,1984;DeFronzoetal.,1985),andappearsunlikelytobearesultofdecreasedinsulinactionattheperipheryasithasnotbeenshowntocorrelatecloselywithinsulin-stimulatedglucosedisposal(Bogardusetal.,1984;DeFronzoetal.,1982a).AsfastingplasmainsulinandC-peptideconcentrationsarenormalinNIDDM,theelevatedhepaticglucoseoutputislikelytoreflectadegreeofhepaticinsulininsensitivity.Studyoftheinsulindose-responseofsuppressionofhepaticglucoseoutputsupportsthisconcept(Reversetal.,1984).Postprandialstate.Innormalsubjects,first-passhepaticglucoseextractionislowandover90%ofanoralglucoseloadreachestheperipheralcirculation(Radziuketal.,1978;Pehlingetal.,1984).Overthesubsequentfewhoursapproximatelyone-thirdofglucoseisclearedbytheliver(Katzetal.,1983).Uncertaintypersistsabouttheproportionofglucosestoredbytheliverwhichisderivedfrom3-carbonprecursorsformedintheperiphery,butthisiscurrentlythoughttobeconsiderable(Katz&McGarry,1984).Thepost-mealhyperinsulinaemiainhibitslipolysisandstimulatesstorageofglucoseandfattyacidsasglycogeninmuscleandliverandastriacylglycerolinadiposetissue.InNIDDMsubjects,studyofplasmainsulinlevelsthroughoutthedayhasdemonstratedthat,althoughtheincrementalresponsestomealsaredecreasedanddelayed,theprolongedpostprandialpeaksensurethatmeandiurnalplasmainsulinlevelsareelevated(Liuetal.,1983).Postprandialratesofgluconeogenesisarenotsuppressed(Wahrenetal.,1972;Halletal.,1979)andtotalhepaticglucosereleaseasassessedisotopicallyisexcessive(Firthetal.,1986a).Gluconeogenesisfrommeal-derived3-carbonprecursorsissomewhatgreaterinNIDDMthaninnormalsubjects.Followingglucoseingestion,splanchniclactateuptakechangestonetoutputandforearmoxygenuptakeandlactatebalancedonotchange(Meistasetal.,1985;Jacksonetal.,1986).Thesefindingssuggestthatintestineorlivermetabolizesglucosetolactate,someofwhichiseventuallystoredbytheliverasglycogenandfattyacid.Mostoftheglucosetakenupbymusclemustthereforebestored.Jacksonetal.(1987b)demonstratedatransientperiodoflactateuptakeinforearmmuscleafterglucoseloading(probablyamassactioneffectrelatedtohyperlactataemia)andshowedthattherewasnomarkeddecreaseinskinlactateoutputoverthesameperiod.Fastingsuperficialvenouslactateconcentrationsaregreaterthaneitherarterialordeepvenousconcentrations,andthereforeskinmustbeoneofthemajororgansoflactateproduction(Jacksonetal.,1987b).Althoughtheinsulin-mediatedincrementinmuscleglucoseuptakeissubnormalinNIDDM,absolutepostprandialratesofglucoseuptakearenormalwhenmeasureddirectlybytheforearmtechniqueatprevailingbloodglucoseconcentrationsdespitethemarkedinsulininsensitivity(Jacksonetal.,1973;Firthetal.,1986a).Thisreflectsthemassactioneffectofglucoseontissueuptake(Reversetal.,1984).Relativelyfewstudiesonhumanmuscleenzymeshavebeencarriedout.Falholtetal.(1987)founddecreasedfastingactivityofhexokinaseandphosphofructokinase,suggestingapotentialdecreaseinglycolysisinNIDDMsubjects,butglucose-6-phosphatedehydrogenaseandmalicenzymeactivitieswereelevatedandsowasmuscletriacylglycerol.However,thepatientsstudiedwereremarkablyhyperinsulinaemic,fastingplasmainsulinlevelsbeing6-foldelevated,andthusnotrepresentativeofthemajorityofNIDDMsubjects.Vol.250625Abbreviationsused:IDDM,insulin-dependentdiabetesmellitus;NIDDM,non-insulin-dependentdiabetesmellitus;VLDL,very-low-densitylipoprotein;GH,growthhormone;IGF,insulin-likegrowthfactor;NEFA,non-esterifiedfattyacids.

R.TaylorandL.AgiusTable1.MeandiurnalplasmaconcentrationsofintermediarymetabolitesunderdifferingdegreesofglycaemiccontrolandinsulinaemiaDatarepresent12hday-timemeans,*24hmeans,ort4hmeans,comparedwithnormalsubjects.SU,sulphonylurea;SC,subcutaneousinsulin;N,normal;4,significantlyraised;4,significantlylow.Subjectsand3-Hydroxy-GlucoseInsulintherapyLactatePyruvateAlanineGlycerolNEFAbutyrate(mmol/l)(m-units/i)ReferenceNIDDMDietN444_N7.016Nattrass(1982)DietNNNN-N7.9-tSheppardetal.(1983)Diet4444N411.823tSamadetal.(1987)Diet----4418.47Nankervisetal.(1982)Diet----4-12.233tFrazeetal.(1985)Nil444N-413.2-tSheppardetal.(1983)SU44444N11.4-tI.R.Jones(unpublishedwork)SUNNN4NN5.220Nattrassetal.(1978)SU4441-N13.226Nattrass(1982)Metformin4444NN7.019Nattrassetal.(1977)IDDMSCN_N4-412.929Madsbadetal.(1981)SC4tNN-412.131*Capaldoetal.(1984)SCNN4N-48.516*Marshalletal.(1987)SC44N4NN8.352Nosadinietal.(1982)Biostator44N4NN5.681Nosadinietal.(1982)InsubjectswithIDDM,postprandialhyperglycaemiaistheconsequenceofthelackofanappropriatesharpincreaseincirculatinginsulinlevels,andreflectsin-adequaciesinthedynamicsofinsulindelivery.Hepaticreleaseofglucoseisrelativelyuninhibitedandthis,togetherwiththedemonstratedresistancetoinsulininperipheraltissues(Proiettoetal.,1983;Yki-Jarvinenetal.,1984),resultsinpostprandialhyperglycaemia.TheresultsofstudiesoncirculatingconcentrationsofintermediarymetabolitesaresummarizedinTable1.AstrikingfeatureisthehighlactateinIDDMandpoorlycontrolledNIDDM.Strongcorrelationshavebeenreportedbetweenmean24hplasmainsulinandlactateconcentrations(Capaldoetal.,1984;Albertietal.,1975).Thehighlactatepersistsduringestablishmentofnormoglycaemiaovera24hperiod,althoughinthissituationmeasuredCoricycleactivityissuppressed(Nosadinietal.,1982).Itispossiblethatthehyper-lactataemiamayrepresentanimbalanceofinsulinactiononperipheraltissuescomparedwithliver,assub-cutaneousorintravenousinsulinadministrationleadstoequallevelsofinsulinintheperipheralcirculationandportalvein,unlikethenormalsituation.Restorationoftheportal-peripheralinsulingradientreturnslactateconcentrationstowardsnormal(Jimenezetal.,1985;Stevensonetal.,1983).InpoorlycontrolledNIDDMsubjects,theportal-peripheralinsulingradientispre-served,butitispossiblethatperipheraltissuesbecomerelativelymoreresistanttoinsulinaction(seebelow).Proinsulinappearstohaveaslightlygreatereffectontheliverthanonperipheraltissuesinvivoandtheriseinplasmalactateusuallyassociatedwithinsulininfusionisnotseenwhendosesofproinsulinareinfusedtoproducesimilarincrementsinoverallglucosedisposal(Davisetal.1986).Changesincirculatingpyruvateandalaninetendtoreflectlactateconcentrationsandhencedegreeofmetaboliccontrolandhyperinsulinaemia(Table1).Thesorbitol(polyol)pathwayOneoftheconsequencesofhyperglycaemiainhumandiabetesmellitusisincreasedmetabolismofglucosebythesorbitolpathway.Thisinvolvesthereductionofglucosetosorbitolcatalysedbyaldosereductase(EC1.1.1.21)andtheoxidationofsorbitoltofructosebysorbitoldehydrogenase(EC1.1.1.14).Aldosereductaseispresentinhumanbrain,nerves,aorta,muscle,erythrocytesandocularlens(Srivastavaetal.,1984;Das&Srivastava,1985b).Althoughthepurifiedenzymehasalowaffinityforglucose(Kmapprox.100mM)(Moon-sammy&Stewart,1967),itcanbeactivatedbyglucose6-phosphate,NADPHandglucose(Das&Srivastava,1985a,b).Sorbitolisnotpermeabletocellmembranesandtendstoaccumulateinthecell.Athigh[glucose]thefluxthroughthesorbitolpathwayinrabbitlensmayaccountforone-thirdofglucosemetabolism(Gonzalezetal.,1984).ThishasimportantimplicationsintermsofredoxchangesofNADPandNADcouplesandmetabolismofglucosebyalternativepathways(Jeffrey&Jornvall,1983).ConversionofglucosetosorbitolbyaldosereductaserequiresNADPHandformsNADP+(Fig.1)andtherebycompeteswithotherNADPH-requiringreactions.NADPHisrequiredfortheconversionofoxidizedtoreducedglutathione,apowerfulantioxidantwhichprotectscellularcomponentsfromoxidativedamage,andforfattyacidandcholesterolbiosynthesis.ThepentosephosphatepathwayisthemajorsourceofNADPHinmosttissuesanditsfluxisgenerallydeterminedbytheNADP+/NADPHratio.ConversionofsorbitoltofructoseiscoupledtoreductionofNAD+toNADHandthiscompeteswithglycolysisattheglyceraldehydedehydrogenasestepforNAD+(Gonzalezetal.,1986).AnincreaseintheNADH/NAD+ratiofavoursincreasedconversionofdihydroxyacetone1988626

ThebiochemistryofdiabetesGlucoseHexokinaseGlucose6-phosphate*NADPHRibulose--/5-phosphate1PentosephosphateNADP+1pathwaySorbitolNADPHNADP+NAD+ise2GSSGSeGSSGGSHGlutathioneFreductaseFructose-----------------------------am-.xNADHGlyceraldehyde3-phosphate_NAD+-|NADH3-PhosphoglycerateDihydroxyacetonephosphateNADHNAD+Glycerol3-phosphatePyruvate-Acetyl-CoANADHiNAD+L-LactateNADPHNADP+&FattyacidFig.1.ThesorbitolpathwayanditslinkswiththepentosephosphatepathwayandglycolysisthroughtheNADP+andNADIredoxcouplesThesorbitolpathwayinvolves:conversionofglucosetosorbitolbyaldosereductaseandsorbitoltofructosebysorbitoldehydrogenase.ReactionscoupledtooxidationofNADPHareindicatedby*andreactionscoupledtoreductionofNADIareindicatedby**.AldosereductasecompeteswithglutathionereductaseforNADPHandsorbitoldehydrogenasecompeteswithglyceraldehyde-3-phosphatedehydrogenaseforNADI.(1)Anincreasedfluxthroughaldosereductasefavoursanincreasedactivityofthepentosephosphatepathway(Gonzalesetal.,1986)andincreasedfluxthroughsorbitoldehydrogenasefavoursincreasedconversionofdihydroxyacetonephosphatetoglycerol3-phosphate(Gonzalezetal.,1983)anddecreasedconversionofglyceraldehyde3-phosphateto3-phosphoglycerate.phosphatetoglycerol3-phosphate.Inratlens,increasedfluxthroughaldosereductaseisassociatedwithincreasedpentosephosphatepathwayactivity,decreasedglycolysis(Gonzalezetal.,1986),accumulationofglycerol3-phosphateanddepletionofreducedglutathione(Whikehart&Soppet,1981;Gonzalezetal.,1984).DisturbancesinlipidmetabolismFattyacidmobilizationandproductionandutilizationofketonebodies.Oneofthemostprominentfeaturesofinsulindeficiencyisrapidmobilizationoffattyacidsfromadiposetissue.InIDDM,excessivelipolysisduringinsulindeficiencyisthecombinedresultofinsulinlackandinsulinresistance(Singhetal.,1987).OneoftheconsequencesofexcessivemobilizationoffattyacidsinIDDMistheproductionofketonebodies(acetoacetate,3-hydroxybutyrateandacetone)inliver.Fattyacidstakenupbytheliver,afterconversiontotheirCoAesters,areeitheresterifiedtoglycerolipidoroxidizedtoacetyl-CoAinmitochondria.Ahighproportionoftheacetyl-CoAformedisconvertedtoacetoacetateand3-hydroxybutyrate.TherateoftransferoffattyacylunitstothemitochondriaisregulatedbytheactivityofcarnitinepalmitoyltransferaseI(EC2.3.1.21),whichfacestheintermitochondrialmembranespaceandcatalysesthefirststepspecifictomitochondrialfattyacidoxidation.CarnitinepalmitoyltransferaseIisregulatedbymalonyl-CoA,anintermediateinfattyacidsynthesis,anditisalsoregulatedbyaphosphorylationmechanism.Malonyl-CoAdecreasestheaffinityoftheenzymeforitsVol.250AldosereductasSorbitoldehydrogena627

R.TaylorandL.Agius*CH3COCH2CO2-+H+AcetoacetateabCO2*CH3COCH3Acetone*CH3COCH20HcAcetolh/CH3COCHOMethylglyoxalCH3COCH20PdVAcetolphosphateCH3CH(OH)CH20PL-Propane-1,2-diolphosphate*CH3CH(OH)CH20HL-Propane-1,2-diolfCH3CH(OH)CHO*CH3C02L-LactaldehydeAcetateQI+CH3CH(OH)C02D-Lactatek->CH3COC02Pyruvate-CH3CH(OH)CO2";zL-Lactate*D-GlucoseFig.2.PostulatedpathwaysforthemetabolismofacetonetoglucoseandacetateIntermediatesmarkedby*increaseinhumanplasmaduringketosis(Reichardetal.,1986).Enzymes:a,acetoacetatedecarboxylase;b,acetonemono-oxygenase(NADP+);c,acetolkinase;d,propanediolphosphatedehydrogenase(NADP+);e,phosphatase;f,lactaldehydereductase[NAD(P)+];g,lactaldehydedehydrogenase(NAD+);h,acetolmono-oxygenase(NADP+);i,2-oxoaldehydedehydrogenase[NAD(P)+];j,glyoxylaseIandII;k,D-2-hydroxyaciddehydrogenase(FAD);1,lactatedehydrogenase(NAD+).fattyacyl-CoAsubstrate(McGarryetal.,1977),whilephosphorylationincreasestheaffinityforsubstrate(Haranoetal.,1985).Ininsulindeficiency,therateoffattyacidsynthesisinliverdeclinesandconsequentlytheconcentrationofmalonyl-CoAalsodecreases,andtheaffinityofcarnitinepalmitoyltransferaseformalonyl-CoAalsodecreases(Gamble&Cook,1985),thusrelievingtheinhibitionofcarnitinepalmitoyltransferasebymalonyl-CoA.Changesinthekineticpropertiesofdetergent-solubilizedcarnitinepalmitoyltransferasefollowingexposureoflivercellstoglucagon(activation)orinsulin(inactivation)havealsobeenobserved(Haranoetal.,1985;Agiusetal.,1986b),indicatingthatadditionalmechanismscontributetoactivation(ordeinhibition)ofcarnitinepalmitoyltransferaseininsulindeficiency,there-byfavouringincreasedtransferoflong-chainfattyacidsintomitochondria.Theutilizationofacetoacetateand3-hydroxybutyrateasoxidativefuels(orlipogenicsubstrates)byavarietyoftissuesiswellestablished(Robinson&Williamson,1980)andincreaseswithbloodketonebodycon-centrationinthefed-to-fastedtransition(Milesetal.,1980).Inmuscle,atketonebodyconcentrationsattainedinprolongedstarvationordiabeticketosis,therateofuptakereachessaturation(Owen&Reichard,1971).Consequently,withincreasingketonebodyproductionandtherebyplasmaconcentration,thereisaprogressivedecreaseintotalfractionalclearance(Fery&Balasse,1985).Althoughthebiochemicalroutesofmetabolismofacetoacetateand3-hydroxybutyratearewellestablished,theconversionofacetoacetatetoacetoneanditssubsequentexcretionormetabolismhasonlyrecentlyreceivedattention.Inman,plasma[acetone]correlateswith,andisgenerallyhigherthan,[acetoacetate]infastinganddiabeticketosis(Owenetal.,1982)andtheproductionrateisestimatedtobeabouthalftherateofketogenesis(Reichardetal.,1986).Conversionofacetoacetatetoacetonecanoccureithernon-enzymicallyorcatalysedbyacetoacetatedecarboxylase(EC4.1.1.4)(Argiles,1986).Theoccurrenceofthisenzymehasbeendemonstratedinvariousrattissues,butonlyinhumanplasma(Koorevaar&vanStekelenburg,1976).Thehighacetoneproductionrateinmansuggeststheoccurrenceoftheenzymeinothertissues.Atlowplasmaacetoneconcentrations(1-2mM),asoccurinfastingketosis,about20%isexcreted(inbreathandurine)andtherestmetabolized,whereasathigherconcentrations,asindiabeticketosis(7-9mM),about80%isexcreted(Owenetal.,1982).Intherat,acetoneishydroxylatedtoacetolwhichiseitherconvertedtomethylglyoxalortopropane-1,2-diol(Fig.2).Theformerisconvertedtopyruvateeitherdirectlyorindirectly(Cassavaetal.,1984),whereaspropane-1,2-dioliseitheroxidizedtoL-lactateorconvertedtoacetateandformate(Kosugietal.,1986a,b)(Fig.2).Studiesontheincorporationof[2-'4Clacetoneintoglucoseintherathaveshownthatatlowplasma[acetone]itismetabolizedprimarilytolactateand1988HC02-Formate628

Thebiochemistryofdiabetespyruvate,butathighplasma[acetone],acetateformationpredominates(Kosugietal.,1986b).Recentevidencesuggeststhatinhumandiabeticketosisacetonemetabol-ismmaybeverysimilar(Reichardetal.,1986).[2-14C]-Acetonewasincorporatedintoglucoseviapyruvateandlactateinthemajorityofpatients,but,inonesubjectwithhighplasma[acetone],labelincorporationwaspredominantlyviaacetateformation(Reichardetal.,1986).Thesefindingssuggestthat,inmoderateketosisinman,acetoneisapotentialgluconeogenicsubstrate.Triacylglycerolsecretionandclearance.TheplasmatriacylglycerolconcentrationiselevatedinbothIDDMandNIDDM(Nikkila,1984).InIDDM,decreasedclearanceseemstobethemaincauseofthehightriacylglycerollevel(Bagdadeetal.,1968;Nikkilaetal.,1977;Taskinen&Nikkila,1979),whereasinNIDDMthetriacylglycerolaemiamaybeduetoincreasedproduc-tionbytheliver(Greenfieldetal.,1980;Kissebahetal.,1982;Dunnetal.,1984)anddecreasedclearance(Nikkilaetal.,1977;Taskinenetal.,1982;Pfeiferetal.,1983).Productionoftriacylglycerolbytheliverinvolvestheesterificationoffattyacid,eithersynthesizeddenovointheliverfromdietarycarbohydrateandaminoacid,orderivedfromadiposetissuereserves.ThetriacylglyceroliseitherstoredintracellularlyoritispackagedwithapoproteinsandsecretedintheformofVLDL.Undercertainconditionsfattyacidesterificationincreaseswithincreasingfattyacidconcentrationandappearstobenon-saturable(Ontko,1972).VLDLsecretion,incon-trast,maybelimitedbytheavailabilityofaproproteinsorothercomponentsofthelipoproteinparticle.WhenVLDLsecretionreachessaturation,triacylglycerolaccumulatesinsidetheliver.TheelevatedplasmatriacylglycerolindiabetesisgenerallyassociatedwithVLDL,althoughincreasesinotherlipoproteins(LDLandHDL)alsooccur(Gibbons,1986).Inabsoluteinsulindeficiency,theplasmaconcen-trationandturnoveroffattyacidsincreases,whereasfattyacidsynthesisdenovodecreasesandtheproportionoffattyacyl-CoAthatisesterifiedasopposedtooxidizedalsodecreases.Anyabsoluteincreaseinhepaticfattyacidesterificationdependsonwhethertheincreaseinfattyacidavailabilitycompensatesfortheincreasedfractionaldiversiontowardsmitochondrialoxidation.InpatientswithIDDM,intensiveinsulintherapy,whichisassociatedwithahighermeanplasmainsulincomparedwithconventionalinsulintherapy,resultsinadecreaseintriacylglycerolsecretionrate(Dunnetal.,1987,Pietrietal.,1983).Whethertheeffectoftheincreasedinsulin-izationwasprimarilyduetoadecreaseinfattyacidavailabilityortoinhibitionofVLDLsecretionisnotclear.TriacylglycerolsecretionratesaregenerallyhigherinNIDDMthaninIDDM(Greenfieldetal.,1980).InnormolipaemicNIDDM,triacylglycerolsecretionandclearancearebothincreased,whereasinhyperlipaemicNIDDM,fractionalturnoverrateisreducedsuchthatincreasedtriacylglycerolremovaldoesnotcompensatefortheincreaseinsecretionrate(Kissebahetal.,1982).InNIDDMwithdecreasedVLDLclearance,thecom-positionofVLDLisabnormal,withahightriacyl-glycerol/apoproteinBratio(Taskinenetal.,1986),indicatingmultipleabnormalitiesinVLDLmetabolism.Akeyissueiswhetherchangesinadiposetissuelipolysis,orintrahepaticmechanismsinvolvingeitherchangesinfractionalesterificationoffattyacidorintheassemblyandsecretionofVLDL,areresponsiblefortheincreaseintriacylglycerolsecretionrateinNIDDM.StudiesinvitroontheeffectsofinsulinonfattyacidesterificationandsecretionofVLDLhaveledtoconflictinghypotheses.Intheperfusedratliver,insulinacutelyincreasestriacylglycerolsecretion(Topping&Mayes,1982;Laker&Mayes,1984),butinrathepatocyteculturesincubatedunderconditionsofhighratesoffattyacidsynthesisdenovo,insulindecreasestherateoftriacylglycerolsecretionduringa16-18hincubation(Durringtonetal.,1982;Patschetal.,1983,1986).Onthebasisoftheformerstudies,elevatedtriacylglycerolsecretionratesinNIDDMaresuggestedtobeduetohyperinsulinizationoftheliver,increasingesterificationandVLDLsecretion,whereasonthebasisofthelatterstudiesitmightbearguedthathepaticinsulinresistancemayberesponsibleforthelackofinsulininhibitionoftriacylglycerolsecretion.ThelackofunderstandingofthephysiologicaleffectsofinsulinonhepaticfattyacidesterificationandVLDLsecretionrenderstheinterpretationofthelesionsindiabetesverydifficult.HORMONEACTIONSINMANInsulinMechanismofinsulinaction.Theextenttowhichprimaryorsecondarydefectsininsulinreceptoractivitycanexplaincellularinsensitivitytoinsulinisstillhotlydebated.Theinsulinreceptoriswellcharacterized(Kahn,1985)anditsgenehasbeencloned(Ullrichetal.,1985).Itcomprisestwo135kDaasubunitswhichareextracellularandcontaininsulin-bindingsites,andarelinkedbydisulphidebondstotwo95kDa/,subunits.The/3subunithasahydrophobictransmembraneregion,andanintracellulardomainwhichhasseveraltyrosineresidues,atyrosinekinaseandanATP-bindingsite.Insulinbindingtotheasubunitsactivatesthe/3subunittyrosineproteinkinaseandbringsaboutphosphorylationoftyrosineresiduesonthe/3subunit.Activationofthe/3subunitkinasemaybeinvolvedintransmissionoftheinsulinsignal,perhapsbyinitiatingaphosphorylation/dephosphorylationcascade(Dentonetal.,1981).KinaseactivityoftheinsulinreceptorcanbedecreasedbycyclicAMP-dependentproteinkinasephosphorylationofserineorthreoninesitesonthe,subunit,andthiscouldconceivablyunderliecatecholamine-inducedinsulinresistance(Roth&Beaudoin,1987).Instatesofextremeinsulinresistance(Grigorescuetal.,1987;Grunbergeretal.,1984;LeMarchand-Brusteletal.,1985)andNIDDM(Freidenbergetal.,1987;Caroetal.,1986)theprocessofsignaltransmissionfromthereceptorasubunitinsulin-bindingsitetoactivatethekinaseappearstobedefectiveatoneormoresites.AminoacidsubstitutionintheATP-bindingregionorthetyrosinekinaseregion(Chouetal.,1986;Ellisetal.,1986)abolishesinsulinaction.Whetherornotthekinaseisinvolvedinmediatingallactionsofinsulinremainsuncertain.Someantireceptorantibodiessimulateinsulinactionwithoutchangingkinaseactivity(Simpson&Hedo,1984;Forsayethetal.,1987).Notallactionsofinsulinaremodulatedinparallelbytreatmentofinsulin-resistantstates,suggestingthatdivergentpathwaysofintracellularinsulinsignaltransmissionmaybeseparatelyaffected(Bodenetal.,1983;Pedersen&Hjollund,1982).AremarkablearrayofsecondmessengersofinsulinVol.250629

R.TaylorandL.Agiusaction(Saltieletal.,1986;Gottschalk&Jarrett,1985)andsubstratesfortheinsulinreceptorkinase(Whiteetal.,1985;Accilietal.,1986)havebeenreported,butallawaitsubstantiation.Theactionofinsulininstimulatingglucosetransportinadiposetissueandmusclehasbeenintensivelystudied.Insulinbringsaboutrapidtranslocationofglucosetransportersfromanintracellularpooltotheplasmamembrane(Karnielietal.,198la;Cushman&Wardzala,1980).IgnoringpotentialtechnicaldifficultiesinassessingglucosetransporternumberbycytochalasinBbinding,insulinalsoenhancesintrinsicactivitypertransporterunit(Kahn&Cushman,1985).Instatesofinsulinopeniaorinsulininsensitivity,totalglucosetransporternumberdecreasesandthisislikelytoreflectlackofinsulineffectuponglucosetransportersynthesis(Karnielietal.,1981b;Hissinetal.,1982).Itmustbeconsidered,however,thatadecreaseintransporternumbercouldreflectacompensatorychangeinthefaceofhyper-glycaemia.Theroleoftheglucosetransportersysteminthepathogenesisofhyperglycaemiaremainsuncertain,asdothemechanismsoftranslocationtotheplasmamembraneandchangeinintrinsicactivity.StudiesinvivoinNIDDM.Whereasnormalsubjectsincreaseglucoseutilizationbyover300%0duringinsulininfusion,NIDDMsubjectsdosobyonly30%(Reavenetal.,1985;Donneretal.,1985;Swislockietal.,1987).ObesityandNIDDMfrequentlycoexist.HollenbeckandcolleagueshavedemonstratedthattheeffectofobesityuponmeasuredinsulinsensitivityissimilarinnormalandNIDDMsubjects,andthatthiseffectissmallincomparisonwiththeeffectofNIDDMperse(Hollenbecketal.,1984).Theparametermostcommonlyusedtoassessinsulinsensitivityistissueuptakeofglucoseadministeredintravenously,usuallyunderconditionsofhyper-insulinaemiasufficienttoinhibitnethepaticglucoseproduction.Henceuptakeandstorageofglucoseasglycogenpredominantlyinmuscleismeasured(Rizzaetal.,1980;Reversetal.,1984;DeFronzoetal.,1985).Asthisisincreasedbymassactionduringhyperglycaemia,theeffectofinsulininhyperglycaemicstatesmaybeoverestimated.Theexperimentalevidenceforinsulininsensitivity,gatheredinthehighlyartificialsettingofconstanthyperinsulinaemia,iscorroboratedbyobserva-tionsupondiurnalprofilesofbloodglucoseandplasmainsulin.Severalstudieshavedemonstratedtheco-existenceofhyperglycaemiaandrelativehyperinsulin-aemiainNIDDMsubjects(Swislockietal.,1987;Liuetal.,1983).Theoldertechniquesofassessmentofinsulinsensitivitywerenotabletodistinguishbetweentherelativecontri-butionsofmuscleandlivertotheapparentinsulinresistance.DeFronzoetal.(1985)demonstratedthatduringahyperinsulinaemiceuglycaemicclampapprox.8500oftheintravenouslyadministeredglucosewastakenupbyperipheraltissues(almostentirelymuscle).Ashepaticglucoseproductionappearedtobereducedtozeroundertheconditionsoftheclamp,itwasdeducedthatperipheraltissueinsulininsensitivitywasthepredominantlesioninNIDDM.Methodologicalprob-lemscauseoverestimationofthedegreeofsuppressionbyinsulinofhepaticglucoseproductioninNIDDMandnormalsubjects,butnonethelesshepaticinsulininsensi-tivityappearstocontributerelativelylittletooverallmeasuredinsulinsensitivity(Belletal.,1986;Firthetal.,1986a).StudiesinvitroinNIDDM.AdipocytesfromnewlydiagnosedNIDDMsubjectsdemonstrateminimalresponsivenesstoinsulinintermsofglucoseoxidationorlipogenesis(Bolinderetal.,1982;Hjollundetal.,1985).Interestingly,lipolysiswasfoundtobenormallyinhibitedbyinsulinincellsfromthesamesubjects(Bolinderetal.,1982).Insulinreceptornumberhasbeenshowntobenormalwhenmeasuredat37°C(Hjollundetal.,1985;Kashiwagietal.,1983).Onesiteofdefectmaybewithintheinsulinreceptoritself.Freidenbergetal.(1987)studiedinsulinreceptorspartiallypurifiedfromisolatedadipocytestakenfromabdominalsubcutaneoustissueofmoderatelyobeseNIDDM,moderatelyobesenormalandleannormalsubjects.Theconcentrationofinsulinrequiredforhalf-maximalstimulationofinsulinreceptorautophosphorylationwassimilarforallgroups,butthatforinsulinreceptorkinaseactivitytowardstheartificialsubstratepoly(Glu-Tyr)wasincreasedintheNIDDMgrouponly.Obesitypersehadnoeffectoninsulinstimulationofkinaseactivity.Althoughthesedataappeartoargueforadefectininsulinreceptorkinaseasanexplanationforthepost-bindingdefectcharacteristicofNIDDM,theresultsdependoncomparisonofequalnumbersofreceptors.ReceptornumberwasdeterminedbyextrapolationofaScatchardplottothex-axis,anotoriouslyinexactprocedurewhichdependslargelyonthebehaviourofthelow-affinitybinding.Thebiologicalsignificanceofthelatterisuncertain.Furthermore,quantificationofinsulinreceptorsbyonefunction,binding,inordertoassessasecondfunction,kinaseactivity,presupposesafixedrelationbetweenvariableswhichholdsforallinsulinreceptors.Sinhaandcolleagueswereunabletodemonstratedifferencesinauto-phosphorylationandkinaseactivitybetweenreceptorspreparedfromadiposetissueofmorbidlyobeseNIDDMandmorbidlyobesesubjectswithnormalglucosetolerance(Sinhaetal.,1987).Inthelatterstudy,datawerecorrectedtoequalbindingactivityofreceptorsuspensionsratherthanequalinsulinreceptornumber.Muscleinsulinreceptornumberhasbeenshowntobeabout30%decreasedinveryobesesubjectswithNIDDMornormalglucosetolerancecomparedwithleansubjects(Caroet'al.,1987).Insulinreceptorkinaseactivitywasdecreasedtothesameextentinthediabeticandnormalobesegroups,suggestingthatdiabetesdidnotfurtherexacerbatethekinasedefectofobesity.Instreptozotocindiabetesintherat,insulinreceptornumberwas607000increasedandtheinsulin-stimulatedautophosphorylationandkinaseactivityonexogenoussubstratesperunitreceptorwerediminished(Burantetal.,1986).Insulintreatmentfor3daysreversedthesechanges.NostudiesofviablehumanmuscleinvitrohaveexaminedNIDDM,althoughinsulinstimulationinviablehumanmusclestripshasrecentlybeendemonstratedwithrespecttoglucoseuptakeandglycogensynthesis(Dohmetal.,1987;Taylor&Argyraki,1987).Limitedinformationisavailableonsubstrateconcentrationsandenzymeactivitiesinneedlebiopsyspecimensofmuscle.ThestudiesofFalholtetal.(1985,1987)havebeendiscussedabove.SubnormalinsulinstimulationofglycogensynthaseinNIDDMsubjectswasnotrestoredbyan8weekperiodofgoodcontroloninsulintherapy(Y.T.Kruzsynska,unpublishedwork).1988630

ThebiochemistryofdiabetesTheisolationofviablehumanhepatocytespresentsanimportanttechnicaladvanceinmetabolicstudies(Caroetal.,1986).Hepatocytesfromanobesenon-diabeticgroupexhibitedamoderateright-shiftoftheinsulindose-response,buthepatocytesfromaNIDDMgroupfailedtoincreaseaminoaciduptakeratesevenatIO-'M-insulin.Insulinreceptornumberwassimilarinallthreegroupsasjudgedbyinsulinbindingexperimentsper-formedonintactcellsat4'C.EitherpatientselectionorexperimentaldifferencesmayaccountforthediscrepancywiththeresultsofAmerandcolleagues,whofounda2-foldincreaseininsulinbindingtotheliverplasmamembranesfromNIDDMsubjects(Ameretal.,1986).StudiesinIDDM.TheinsulinsensitivityofglucosedisposalinIDDM(DeFronzoetal.,1982b;Proiettoetal.,1983)impliesthatthedailydosageofinsulin(U.K.average52units/day)isinexcessofnormaldailysecretionrates.Thishasrecentlybeendemonstrated(Polanskyetal.,1986).AswithNIDDM,errorsininterpretationofradioactivetracermethodsleadtothesuppositionthathepaticglucoseproductionissuppressednormallybyinsulin.ItisnowapparentthattheliverofIDDMsubjectsismodestlyresistanttoinsulin(Belletal.,1986).IncontrastwiththefindingsinstudiesofadipocytesfromNIDDMsubjects,adipocytesfrompoorlycon-trolledIDDMsubjectsdissplayedincreasedinsulinreceptorbindingandnormalinsulinsensitivitywithrespecttoglucoseoxidationandlipogenesis(Pedersen&Hjolland,1982;Lonnrothet-al.,1983;Yki-Jarvinenetal.,1984).Ithasbeensuggestedthatconventionaltwice-dailyinjectionofinsulincauseshyperinsulinaemiawhichmaypartiallybeavoidedbycontinuoussubcutaneousinsulininfusion.Thelattertherapywasobservedtoincreasemaximally-stimulatedratesofglucosetransporttowardsnormalwithoutchangeineitheradipocyteinsulinbindingorinsulinsensitivity(Marshalletal.,1988).Thesedatasuggestthatsomeoftheobservedabnormalitiesinadiposetissuemaybesecondarytotheinsulintherapy.Hyperglycaemiaitselfdoesnotappeartocauseinsulinresistance,asmaintenanceofnear-normalglycaemiafor6weeksinagroupofpreviouslypoorly-controlleddiabeticsubjectsdidnotimproveinsulin-stimulatedglucosedisposalrates(Kruszynskaetal.,1986).Nochangesintheactivationstateofmuscleglycogensynthaseeitherbasallyorinresponsetoinsulinwereinduced,andtheresponsetoinsulinwaslessthaninnormalsubjects.GlucagonPlasmaglucagonlevelsarehighinuntreateddiabetes(Gerichetal.,1976a)andparticularlyduringepisodesofdiabeticketoacidosis(Mulleretal.,1973),butarerapidlysuppressedbyinsulintreatment(Gerichetal.,1976b;Starketal.,1987).InIDDM,glucagonsecretioninresponsetohypoglycaemiaisfrequentlybluntedorabsent.Thissubnormalresponsedevelopswithin1-5yearsafterdiagnosisandbecomesmoremarkedinlateryears(Gerichetal.,1973;Bensonetal.,1977;Bollietal.,1983).ImpairedglucagonsecretionisalsoobservedinNIDDM(Bollietal.,1984).Glucagonhasaprimaryroleinincreasinghepaticglucoseoutputbystimulatingglycogenolysisandgluco-neogenesis.Indiabeticsubjects,inhibitionofglucagonsecretionmarkedlysuppressesthedevelopmentofhyper-glycaemiaafterinsulinwithdrawal(Gerichetal.,1975).Thestimulatoryeffectofaglucagoninfusiononglucoseoutputappearstransient,becauseitreturnstonormalwithinabout90mindespitepersistentlyhighglucagonconcentrations,probablyduetofeedbackinhibitionviainsulinsecretion(Bratusch-Marrainetal.,1979).Thoughthestimulationofglycogenolysismaybetransient(Komjatietal.,1985),thatofgluconeogenesisisprobablysustainedbecausehighglucagonlevelsunaccompaniedbyappropriateincreasesininsulinsecretionresultinasustainedincreaseinhepaticglucoseoutput(Rizzaetal.,1979a,b).Atphysiologicallevels,glucagoninfusionhasbeenshowntohaveeithernoeffectonglucoseuptakeortocausemildglucoseintolerance(Bajorunasetal.,1986);whetherthelatterisduetoadirecteffectofglucagononextrahepatictissuesortostimulationofcatecholaminesecretionisnotclear.However,studiesinvitrousingisolatedadipocyteshaveshownthatpreincubationwithglucagondecreasessubsequentinsulinreceptorbindingandstimulatedglucosetransport(Yamauchi&Hashizume,1986).Glucagonalsohasadirectacutestimulatoryeffectonadipocytelipolysis(Lefebvre,1966;Honnor&Sagger-son,1980).Thereislittleevidenceforstimulationofketogenesisbyphysiologicallevelsofglucagoninnormalman(Liljenquistetal.,1974;Schade&Eaton,1976),althoughincreasedketonebodylevelsareobservedinsubjectsmadeinsulin-deficientwithsomatostatin(Gerichetal.,1976c).Ininsulin-depriveddiabetics,suppressionofglucagonsecretionwithsomatostatinimpairsketonebodyproduction(Gerichetal.,1975),suggestingthatendogenousglucagoncontributestothemaintenanceofketogenesis.CatecholaminesCatecholaminelevels(adrenalineandnoradrenaline)areelevatedininsulin-dependentdiabeticsduringketo-acidosisorpoormetaboliccontrol(Christensen,1974).Inman,adrenalinecausesatransientincreaseinhepaticglucoseproduction(Rizzaetal.,1980)mediatedthroughafl-receptormechanism,whilenoradrenalineisweaklyhyperglycaemicinnormalandinsulin-deficientman(Schade&Eaton,1978).Whenglucagonsecretionisnormal,blockadeoftheadrenergicreceptorsystemdoesnotmodifyglucosecounter-regulationfollowinginsulin-inducedhypoglycaemia(Rizzaetal.,1979a),suggestingthatcatecholaminesmaynotbeessentialforglucosehomoeostasisinhypoglycaemia.However,duringinfusionofinsulinandsomatostatin,toinhibitglucagonsecretion,adrenergicblockadepreventstheincreaseinhepaticglucoseproductioninresponsetohypoglycaemia(Hansenetal.,1986),suggestingthatcatecholaminesmightbeimportantforglucosecounter-regulationwhenglucagonsecretionisimpaired.Adrenaline,nor-adrenalineanddopaminehavebeenshowntobeketo-genicinman;theireffectislargelyduetostimulationoflipolysisinadiposetissue,buttheymayalsohaveadirectketogeniceffectontheliver(Kelleretal.,1984a;Keller,1986).Stimulationofthesympatheticnervesintheperfusedrat_liverincreasesglucoseproductionandketogenesis(Beuersetal.,1986),suggestingthatnor-adrenalinemayhavearoleinregulationthroughsympatheticnervestimulation.Vol.250631

R.TaylorandL.AgiusGrowthhormonePlasmaGHprofilesareelevatedindiabeticswithlong-termcomplicationsandpoormetaboliccontrol(Fineberg&Merimee,1974;Gerich,1984).ItisuncertainwhetherthehighGHlevelsarethecauseortheconsequenceofthemetabolicimbalance.InfusionofphysiologicallevelsofGHinnormalandhypophysectomizedsubjectsisassociatedwithanearlyinsulin-likeeffectonbloodglucosefollowedbyinsulinresistance.Theformerisduetoincreasedglucoseclearanceandsuppressedglucoseoutput;thelatterisduetoimpairedsuppressionofglucoseoutputanddecreasedglucoseclearance(MacGormanetal.,1981;Bratusch-Marrainetal.,1982,1984).PhysiologicaldosesofGHincreaseketonebodylevelsinman(Schadeetal.,1978;Metcalfeetal.,1981;Kelleretal.,1984b).Thisisduetoincreasedlipolysisandpossiblyalsoincreasedketogenesisatthehepaticlevel.AlthoughsomedirecteffectsofGHontheliverhavebeendemonstrated,includingstimulationofglucosetransportandoxidation(Fix&Moore,1981),increasedactivityofphosphatidatephosphohydrolase(Pittneretal.,1986)andacuteinactivationofacetyl-CoAcarboxylaseatmicromolarGHconcentrations(Born-steinetal.,1983),thereisasyetnoevidenceinvitroforadirectketogeniceffectofGHonlivercellsatphysiologicalhormonelevels.Inadiposetissueinvitro,acuteinsulin-likeeffectsofGHonglucosetransportandoxidation,leucineoxidationandglycogensynthesisandstimulationoflipolysisafterprolongedexposurearewelldocumented,althoughtheeffectsaremoreprominentinadiposetissuefromhypophysectomizedthanfromnormalanimals(Davidson,1987).ThehighGHlevelsinIDDMhavebeenimplicatedtobeinvolvedinthelong-termcomplicationsassociatedwithneovascularization(Gerich,1984).GHregulatestheproductionofinsulin-likegrowthfactors(IGF)bytheliver,althoughIGFlevelsdonotalwayscorrelatewithGH(Heringtonetal.,1983).IGFIlevelsareraisedinplasmaandocularvitreousindiabeticswithproliferativeretinopathy(Grantetal.,1986)andevidenceinvitrohasshownthatIGFIincreasestheproliferationofbovineretinalendothelialcellsinculture(Kingetal.,1985).GlucocorticoidsCortisolexcessincreaseshepaticglucoseoutputandketogenesisininsulin-depriveddiabetics(Barnesetal.,1978)andinnormalsubjectstreatedwithsomatostatintoinhibitinsulinsecretion,butnotwheninsulinsecretionisunimpaired(Johnstonetal.,1982).Highcortisollevelshavebeenobservedindiabeticketosisandhavebeenimplicatedtoaggravateincreasedlipolysisinadiposetissueandincreasedfractionaldiversionoffattyacidstowardsmitochondrialketogenesisatthehepaticlevel(Johnston&Alberti,1982).Glucocorticoidincreasedketogenesisandgluconeogenesisinrathepatocytesintheabsenceofinsulin,butnotinitspresence(Agiusetal.,1986a).Thestimulatoryeffectismuchsmallerthanthatofglucagon,supportingtheclinicalevidencethatcortisolhasarelativelyminorroleasregulatorofketogenesis.INSULINSECRETIONPhysiologically,plasmaglucoseconcentrationisamajorregulatorofinsulinsecretion.Thiseffectmaybemimickedandpotentiatedbyaminoacids(Floydetal.,1966),potentiatedbyglucoseinsulinotropicpeptide(Dupreetal.,1973;Jonesetal.,1987)andinhibitedbycatecholamineswhichactpredominantlyviathea-adrenergicreceptors(Robertsonetal.,1976).Whetherthesignalforinsulinreleaseisgeneratedbyaglucosereceptorsuchastheglucosetransporterorbyastepinthemetabolismofglucoseremainsuncertain.Ithasbeenarguedthatthecapacityofmoleculestostimulateinsulinsecretionisdirectlyproportionaltotheirsuitabilityas,cellfuelsforglycolysis(Ashcroft,1981;Sener&Malaisse,1984).Glyceraldehydeandpyruvatearerespectivelygoodandineffectiveinsulinsecretagogues(Zawalichetal.,1978;Seneretal.,1978).Whatevertheprecisenatureoftheinitiatingsignal,itisclearthatinsulinreleaseiscloselyassociatedwithariseinintracellularfreecalcium(Rorsmanetal.,1984).However,underanumberofexperimentalconditions,glucosebringsaboutaparadoxicaldecreaseinintracellularfreecalcium.GlucoseaffectscellularuptakeandeffluxofCa2"andmovementoffreeCa2"intoorganelle-boundcalcium,theseprocessesexhibitingdifferentlatencies(forreviewseeHellman,1986).Assessmentofpancreatic,cellcapacity/responsive-nessinNIDDMiscomplicatedbyprevailingbloodglucoseconcentrations.AlthoughNIDDMsubjectshavenoabsolutedeficiencyofinsulinasassessedbydiurnalplasmainsulinprofiles(Liuetal.,1983)andnormalorraisedfastingplasmainsulin(DeFronzo&Ferrannini,1982)thiscannotbeinterpretedasindicatingnormalityof,cellfunction.Whennormalsubjectsareexaminedduringhyperglycaemia,resultingratesofinsulinsecretionarefarhigherthaninequivalentlyhyperglycaemicNIDDMsubjects(Halteretal.,1979;Ferneretal.,1986).Conversely,whenNIDDMsubjectsarerenderednormoglycaemicbypriorinsulininfusion,steadystateinsulinlevelsafterawash-outperiodarelowerthaninweight-matchednormalsubjects(Turneretal.,1976).Followinganintravenousbolusofglucose,firstphaseinsulinreleaseisabsentinNIDDMsubjects,andindeedatemporarysharpdecreaseininsulinsecretionratesisoccasionallyobserved(Brunzelletal.,1976;Metzetal.,1979;Hellman,1986).AlthoughitisfrequentlyassumedthatsecondphaseinsulinreleaseisnotgrosslyabnormalinNIDDM,itisdependentuponthedegreeofhyper-glycaemia(Ferneretal.,1986).Initialassessmentoftheeffectofsuchnon-glucoseinsulinsecretagoguesasisoproterenolorargininesug-gestedthat,cellsofNIDDMsubjectsrespondednormally(Pfeiferetal.,1981).Examinationoftheslopeofglucosepotentiationdemonstratedthat,althoughtheinsulinresponsetoarginineinNIDDMsubjectsatabloodglucosearound22mmol/lwasequivalenttothatofnormalsubjects,thelatterexhibiteda5-foldenhance-mentofresponsewhenbloodglucosewasraisedto22mmol/l(Robertson&Chen,1977;Wardetal.,1984).Theglucoselevelrequiredforhalf-maximalresponsive-nesstoargininewasnormalinNIDDM.Thesefindingsimplyageneralizedlossof,cellcapacityratherthanaproblemofglucosesensingasthebasisoftheinsulinsecretoryabnormalityinNIDDM.Insupportofthis,postmortemstudieshavesuggesteda40-60%decreaseinmean,cellmassinNIDDM(Saitoetal.,1979;Gepts&Lecompte,1981).A70-90%pancreatectomydoesnotusuallybringaboutovertdiabetes(Brooks,1979),emphasizingtheimportanceofconcurrenceofamoderatedecreaseinboth,cellfunctionandtissue1988632

ThebiochemistryofdiabetessensitivityinthepathogenesisofNIDDM.Dysfunctionofanormalnumberof,cellsinducedbysomatostatininmanandpartialpancreatectomyintheratbothgiverisetoimpairedfirstandsecondphaseinsulinresponsestoglucoseandnormalresponsestonon-glucosestimuli(Wardetal.,1983;Leahyetal.,1984).EarlydefectsininsulinsecretioninIDDMItisnowrecognizedthatIDDMisadiseaseofslowonset,eventhoughclinicalpresentationmaybesuddenanddramatic(Tarnetal.,1987).Thepreclinicalphasemaylastfor5yearsormore,maybecharacterizedbyafluctuatingrateof,cellattrition(Spenceretal.,1984)andfirstphaseinsulinresponsemaydecreaseslowlybeforedisappearing(Srikantaetal.,1983).Itishighlylikelythatanimmunologicalattackcausesthepro-gressive,celldamage(Bottazzo,1986).However,immunological/?cellattackmaynotalwaysprogresstoIDDM,andmildabnormalitiesininsulinsecretionmayresult(Millwardetal.,1986;Heatonetal.,1987).ThepotentialforhaltingtheimmunologicaldamagehasledtoclinicalstudiesoftheeffectoftheimmunosuppressiveagentcyclosporinA.Althoughearlyresultsappearencouraging,itispossiblethatspontaneousfluctuationsindiseaseprogressionor'honeymoonphase'mayexplainthesedata(Stilleretal.,1984;Assanetal.,1985).THERAPEUTICASPECTSMechanismofactionofsulphonylureasSulphonylureashaveapronouncedacuteeffectinstimulatinginsulinrelease(Yalowetal.,1960).However,sulphonylureaspotentiateinsulinactioninrecentlypancreatectomizedanimals(Houssayetal.,1957;Caren&Corbo,1959)andtheyinhibitlipolysisandketogenesis,inadditiontoenhancingglycogenandnon-esterifiedfattyacidsynthesisinvitroapparentlyindependentlyofinsulin(Stone&Brown,1967;Boshelletal.,1960;Fleigetal.,1984,Salhanicketal.,1983).Chronicadministra-tionofsulphonylureasisnotassociatedwithpersistenceofinsulinotropiceffects(Duckworthetal.,1972).Adirectdrugeffectontissueinsulinsensitivityhasbeenclaimed(Koltermanetal.,1984;Wardetal.,1985),althoughcontraryevidenceexists(Marchandetal.,1985).Thepositivestudiesareopentointerpretation,asenhancedinsulinsensitivitymaybeasecondaryeffectofimprovedmetaboliccontrol,whetherachievedbydietarymeans(Pedersenetal.,1981),exercise(Yki-Yarvinenetal.,1984),orinsulintherapy(Andrewsetal.,1984;Garveyetal.,1985).Studiesonisolatedcellsinvitrohaveproducedsimilarlydiscordantresults(Vignerietal.,1982;Goldfineetal.,1984;Altanetal.,1985;Wardetal.,1985).StudiesinvivoofsulphonylureaeffectsinNIDDMaredifficulttointerpret,asanydirectdrugeffectcannotbeseparatedfromsecondaryeffectsmediatedviaincreasedinsulinsecretionorimprovedmetaboliccontrol.InIDDMsubjects,lackinganyinsulinsecretorycapacity,noeffectontissueinsulinsensitivitycouldbedetected(Grunbergeretal.,1982;Keller,1986).However,Pernetandcolleaguesdemonstratedthatatlowinsulininfusionratessufficienttoachievemoderatephysiologicallevelsofinsulin,glibenclamideappearedtoenhancetheinsulin-mediatedglucosedisposal(Pernetetal.,1985).Asthiseffectcouldnotbeseenathigherinsulinlevels,itispossiblethatitreflectsanalterationinhepaticratherthanperipheraltissuemetabolism.TheobservationofaraisedplasmainsulintoC-peptideratiohasledtothesuggestionthatdecreasedhepaticinsulinextractionisadirectdrugeffect(Beck-Nielsenetal.,1986;Scheenetal.,1984;Koltermanetal.,1983).Tolbutamidedecreasesinsulinextractionintheperfusedratliver(Marshalletal.,1970).Ifthisisthecase,thelesseramountofinsulininteractingwithandtakenupbyhepatocytesisrelativelymorepotentindecreasingnethepaticglucoseoutputinthepresenceofthedrug.MechanismofactionofmetforminMetformindoesnotincreaseplasmainsulincon-centrationsandithasbeenpostulatedtoactbydecreasinggluconeogenesis(Meyeretal.,1967;Jacksonetal.,1987b;Nosadinietal.,1987)orincreasinginsulin-mediatedglucosedisposal(Prageretal.,1986;Nosadinietal.,1987;Paganoetal.,1983).Invitro,metforminincreasesbasalbutnotmaximal,insulin-stimulatedratesofglucoseoxidationinratfatcells(Fantus&Brosseau,1986)andenhancesinsulin-mediatedglucoseuptakeinmuscleofdiabeticrodents(Bailey&Puah,1986;Frayn&Adnitt,1972).InNIDDMsubjects,metforminappearstoincreaseinsulin-mediatedglucoseuptake(Prageretal.,1986;Nosadinietal.,1987).Thisconcurswithpreviousstudiesonphenforminactioninthehumanforearm(Butterfieldetal.,1961),supportingadirectdrugeffect.MetforminadministrationtoIDDMsubjectsbroughtaboutaslightincreaseinmaximalinsulin-stimulatedglucoseuptakerates(Ginetal.,1985)andadecreaseindailyinsulinrequirements(Prageretal.,1986;Nosadinietal.,1987).However,Jacksonetal.(1987a),studyingagroupofNIDDMsubjectswhoexhibitedagoodresponsetometformintreatment,foundnoevidenceforanincreaseinmuscleglucoseuptakeafteranoralload.Rather,theimprovementinglycaemiccontrolappearedtobeduetodecreasedhepaticglucoseoutput(Jacksonetal.,1987a).Theglucosetolerancecurvewasnotchangedinshapebutstartedfromalowerpoint.Thereisevidenceforametformin-induceddecreaseingluconeogenesisbutnothepaticglycogenolysis(Meyeretal.,1967;Haeckel&Haeckel,1982).UnlessglycogenolysisaccountsforalesserproportionoffastinghepaticglucoseoutputinNIDDMthannormalsubjects,itmustbeinvolvedinanysubstantialreductioninhepaticglucoseoutput.Ageneralincreaseinhepaticinsulinsensitivitycouldaccountfortheobservations.Theeffectsofmetformininincreasingplasmaarteriallactateconcentrationsmaybeinterpretedasconfirmingthedrug-inducedinhibitionofgluconeogenesis(Jacksonetal.,1987a),sincemetformindoesnotincreaselactateproductionintheforearmofNIDDMsubjectsinvivo(Jacksonetal.,1987a).EffectsofdietarytherapyDietarycompositionaffectsmetaboliccontrolinsubjectswithimpairedglucosetoleranceanddiabetes.Prescriptionoflowcarbohydratedietsforalldiabeticsubjectswasthenormuntil1984,andthisinevitablyledtoconsumptionofahighfatdiet.Thiswasunsoundinviewofthepropensityofdiabeticsubjectstoischaemicheartdiseaseandhyperlipidaemia.Theobservationthatdietswithahighproportionofunrefinedcarbohydrateimprovedmetaboliccontrolwasofgreatinterest.SuchVol.250633

R.TaylorandL.Agiusdietshavebeenshowntoimproveinsulinsensitivityinvivoandinisolatedadipocytes(Hjollundetal.,1983,1987).AlthoughsomestudiessuggestthatadditionofsucrosetothedietofNIDDMsubjectsdoesnotaffectglycaemiccontrolunderexperimentalconditions(Bantleetal.,1983),thehyperlipidaemiceffectofaddedsucrose(Coulstonetal.,1985)hasbeendemonstrated.ManyNIDDMsubjectsareobese.Aweightlossaveraging6.7kgproducednochangesininsulin-mediatedglucoseuptakeatphysiologicalinsulincon-centrationsnorinadipocytemetabolisminvitro(Zawadzkietal.,1987).Inasimilargroup,weightlossof16.8kgaveragewasassociatedwithadecreaseinhepaticglucoseoutputdespitenochangeinfastingplasmainsulin,andincreasedglucoseuptakeathighphysio-logicalplasmainsulinlevelswasenhanced(Henryetal.,1986).Theunchangedfastingplasmainsulinlevelsdespiteapronounceddecreaseinbloodglucosesuggeststhat,cellsensitivitytoglucoseisimproved.EffectofinsulintreatmentAlthoughthetitlesoftheearlystudiesontheeffectofinsulintherapyoninsulinsensitivityinNIDDMsug-gestedthatitcouldbereturnedtonormal(Scarlettetal.,1982,1983),thedatawerelessimpressive.Hepaticsensitivitytoinsulinmaybeincreasedatonlymodestimprovementinglycaemiccontrolwhenperipheraltissueinsulinsensitivityisunaffected(Nankervisetal.,1982).Theimprovementseeninperipheraltissueinsulinsensitivityappearstobemostmarkedintheleastobeseindividuals(Andrewsetal.,1984).However,theminornatureofthechangesintissuesensitivityareemphasizedbytheobservationthatfastingplasmaglucoseandglucoseintolerancereturntopretreatmentlevelsshortlyafterinsulinwithdrawal,whereasthechangesintissuesensitivitypersistforupto6weeks(Gormleyetal.,1986).InsulintherapyinNIDDMimprovesinsulinsecretioninresponsetoglucagon(Garveyetal.,1985)andoralglucose(Andrewsetal.,1984;Gormleyetal.,1986;Hidakaetal.,1982).Unfortunately,fewofthesestudieslookedatlipidmetabolisminanattempttoestablishwhetherornotchangesininsulinactionmayberelatedtochangesinNEFAlevels(Randleetal.,1963).ImprovementofdiabeticcontrolfromabysmaltopoorwasassociatedwithareductioninfastingNEFAandketonebodies(Nankervisetal.,1982).Asimprovementofmetaboliccontrolbyexogenousinsulinandsulphonylureaadministrationresultsinsimilarchangesinhepaticglucoseoutputorperipheraltissueinsulinsensitivity,itisquitepossiblethatneithertherapyactsdirectlyoninsulinsensitivity,butthatsomeaspectofthemetabolicstateitselfisresponsible(Firthetal.,1986b).Indeed,dietarytherapyalonedecreasesfastingbloodglucoseandimprovesinsulin-stimulatedratesofglucoseoxidation(Bodenetal.,1983).DecreaseincirculatingNEFAimprovesglucoseutilization(Randleetal.,1963),butunfortunatelyNEFA,inter-mediarymetabolitesandcounter-regulatoryhormoneswerenotmeasuredinthemajorityofabovestudies.Itmaybehypothesizedthatonlyoneofseveralconcurrentdefectsismodifiedbyinsulintherapy.Conventionalsubcutaneousinsulinadministrationresultsinslowabsorptionfromthesiteofinjectionthroughoutthedayandhyperinsulinaemiainthesystemicbutnotportalcirculation.Hence,evenwhenbloodglucoseisalmostnormalizedonsucharegime,abnormalitiesinplasmafreeinsulinlevelsandinter-mediarymetabolitesremain.Achievementofstrictnormoglycaemiabyintravenousinsulinadministrationstillrequireshyperinsulinaemia(Nosadinietal.,1982).Administrationofinsulindirectlyintotheportalsystembyintraperitonealdeliverydoesindeedreducethehyperinsulinaemia(Jimenezetal.,1985;Husbandetal.,1984).Thenormalizationofcarbohydrateandlipidmetabolismindiabeticdogsbyintraportalbutnotintravenousinsulinadministrationhasbeenreported(Stevensonetal.,1983a,b).However,intraportalislettransplantationwithperipheralvenousdrainagenor-malizedglucosetolerance(Guyetal.,1987).Theresultsofstudiescurrentlyunderwayintothemetaboliceffectsofrelativelyhepatospecificinsulinswillbeofgreatinterest.NEWTHERAPIESFORDIABETESTetradecylglycidate(methylpalmoxirate)andEto-moxirareoxiranecarboxylicacidswhoseCoAestersinhibitcarnitinepalmitoyltransferaseI,therebypreventingmitochondriallongchainfattyacidoxidation.Thismightbeexpectedtoincreaseglucoseutilizationviatheglucose-fattyacidcycleandindeedthesecompoundsarehypoglycaemicinfastinganimals(Tutwileretal.,1978;Eistetter&Wolf,1982).Suggestionofanactionininhibitinggluconeogenesisinanimalsandmanisofgreatinterest(Selbyetal.,1987).Carnitinepalmitoyltransferaseinhibitiononlyinhibitsfattyacidoxidation.Theflux-generatingstepforfattyacidmetabolismislipolysis.NicotinicacidinhibitslipolysisinadiposetissueandthuslowersplasmaNEFAlevels.Oraladministrationofthenicotinicacidanalogue,Acipimox,isfollowedbyadecreaseinglycerol,NEFAand3-hydroxybutyratelevelsbyapprox.80%within2h,andanimprovementinglucosetoleranceandperipheralglucoseuptake(Piattietal.,1987).Thea-glucosidaseinhibitoracarboseanditsnewerderivativeBayml099havebeenshowntohavedramaticeffectsindecreasingpostprandialexcretionsofglucose,lactateandpyruvateinnormalanddiabeticsubjects.Despitethemarkedpostprandialchangesinbloodglucoseprofiles,overallindicesofglycaemiccontrolindiabeticsubjectshavebeenremarkablylittlechanged(Lardinoisetal.,1984;Samadetal.,1988).Theroleofsuchsubstancesinthemanagementofdiabeticpatientsremainsspeculative.CHRONICCOMPLICATIONSOFDIABETESLongtermdiabetesbringsaboutdistinctabnormalitiesinthemicrocirculationandinnervousfunctionwhichareclinicallymanifestedasnephropathy,retinopathyandneuropathy.Theriskofdevelopingsuchcom-plicationsisrelatedtolongtermaverageglycaemiccontrol(Tchobroutsky,1978;Pirart,1978),butacomponentofgeneticsusceptibilitytocomplicationsmeansthatnotallindividualswithrelativelygooddiabeticcontrolescapeproblemsandthatsomeindi-vidualscanenduremetabolicmayhemoverdecadeswithoutapparentproblems.Inaddition,butunrelatedtodegreeofglycaemiccontrol,arterial-diseaseismanifestedascoronaryheartdiseaseandperipheralvasculardisease.1988634

ThebiochemistryofdiabetesBasementmembranethickeningThickeningofbasementmembranesisauniversalfindinginlongstandingdiabetes.After5yearsofclinicaldiabetes,basementmembranesare25-30othickerthaninnormalsubjects(Osterbyetal.,1986).Thebasementmembranematrix,composedoftypeIVcollagenandlaminin,ismorepermeableindiabetes,andthickeningmayrepresentacompensatorychange(Rohrbachetal.,1982).Theroleofcollagenglycosylationinthepatho-genesisofthebasementmembraneabnormalityremainstobeelucidated(Cohenetal.,1980),butitisclearthatbasementmembranethickeningdoesnotantedatemetabolicdisturbance(Osterby,1975).Tightmetaboliccontrolcanpartiallyreversebasementmembranethickening(Raskinetal.,1983).Non-enzymicglycosylationEnzymicglycosylationisahighlyregulatedpost-translationalprocessresponsibleforconferringspecificstructuralandfunctionalchangesonproteins(Uy&Wold,1977).Incontrast,non-enzymicglycosylationisgovernedsolelybyprevailingglucoseconcentration.Lysineandvalineresiduesundergorapidaldimine(Schiffbase)andsubsequentlyketoamineformation.Advancedglycosylationendproductsultimatelyresult.Ifaffectedaminoacidsareclosetotheactivesitesoftheirmolecule,orifstereochemicalconfigurationisdisturbed,thenfunctionwillbealtered.Thusglycosylatedalbumininhibitshepaticuptakeofglycoproteins(Summerfieldetal.,1982).Glycosylatedfibrinislesssusceptibletofibrindigestion(Brownleeetal.,1983),thusmakinganythrombusmorelikelytoresultinpermanentvascularocclusion.GlycosylationofapoproteinBcausesareductionofaffinityforthelowdensitylipoproteinreceptor(Kesaniemietal.,1983).Glycosylatedcollagendisplaysincreasedintramolecularcross-linkings(Kohn&Schnider,1982)andthismayunderlythedecreasedsmalljointmobilityoflongstandingdiabetes.Thelatterhasbeenclaimedtobeanindicatorforthedevelopmentofmicrovascularcomplications(Rosenbloometal.,1983).Asredbloodcellshavearelativelyconstanthalf-life,estimationofthepercentageofhaemoglobinwhichhasbeenglycosylatedgivesareliableindexofaverageglycaemiccontroloverthepreceding2months(Bunn,1981).Thisindexisinvaluableforclinicalandresearchpurposes.RelevanceofthesorbitolpathwayIntheocularlensparticularly,sorbitolconcentrationsaregrosslyelevatedindiabeticrats,andthismayberelatedtoformationofcataracts,atleastoftheacutetype(Gabbay,1973).Glucose,sorbitolandfructoseconcentrationsareelevatedinthenervesofdiabeticanimalsandman(Wardetal.,1972;Greeneetal.,1975;Greene&Mackway,1986;Dycketal.,1980).Althoughinitiallyitwaspostulatedthattheosmoticeffectofthesechangescouldcausecellularoedema,Schwanncellsfromdiabeticratshaveadecreasedvolume(Jacobsen,1978)andcalculatedosmolarchangesareverysmall.Bothtreatmentwithaldosereductaseinhibitorsanddietarymyo-inositolsupplementationreversesneuraldepletionofmyo-inositolandcorrectsabnormalitiesinNa+/K+-ATPaseandaxonaltransport(Greene&Lattimer,1984;Tomlinson&Mayer,1984).Treatmentofhumandiabeticneuropathywithmyo-inositoloraldosereductaseinhibitorshasnotyieldedclearcutanswers.Clinicalandelectrophysiologicalimprovementshavebeendocumentedaftermyo-inositoltherapyinsome(Greeneetal.,1981;Salwayetal.,1978;Clementsetal.,1979)butnotall(Gregersenetal.,1978,1983;Greeneetal.,1981)studies.Aldosereductaseinhibitortherapybroughtaboutsmallbutsignificantimprove-mentsinmotor,sensoryandautonomicnervefunctioninthemajorityofstudies(Judzewitschetal.,1983;Fagiusetal.,1985;Jaspanetal.,1985).Otherstudiesfailedtodemonstrateanybenefit(Handlesman&Turtle,1981).Adegreeofsymptomaticimprovementinpainfulneuropathyfollowsaldosereductaseinhibition(Youngetal.,1983;Koglinetal.,1985).Asglucosecompeteswithmyo-inositolforactivetransportintonerves,hyperglycaemiaperseresultsinmyo-inositoldepletion.Maintenanceofnearnormoglycaemiafor4-8monthsresultsinsomeimprovementinsymptomaticandobjectivemeasuresofnervefunction(Boultonetal.,1982;Serviceetal.,1985).Thechronicneuropathyoflongstandingdiabetesisatleastinpartsecondarytoirreversiblemicrovasculardisease,andendoneurialoxygentensionislow(Lowetal.,1985).Insuchcircumstancesmetabolicmanipulationisobviouslytoolate.Glucoseuptakebytheretinaisinsulin-independent,andtheretinadependsforitsenergysupplyuponanaerobicglycolysis.Aldosereductaseinhibitorspreventlossofretinalcapillarypericytesandbasementmembranethickening,whicharethoughttobeassociatedwithpolyolpathwayactivation(Robisonetal.,1983,1985).Retinalpericytescontainaldosereductase(Akagietal.,1983).Lossofretinalpericytescouldinducesomeoftheretinalcapillarychangesobservedindiabetes.AtherogenesisDiabetesisamajorriskfactorforatherogenesisandarterialdisease.Elevatedlowdensitylipoproteincholes-terolmayresultfromglycosylationofthelysylresiduesofapoproteinB,decreasedaffinityforthelowdensitylipoproteinreceptorandhencedecreasedmetabolism(Kesaniemietal.,1983).Itremainstobeestablishedwhetherelevationofplasmalipidsisanecessarypathogenicstateormerelyamarkerforatherogenesis.Lipidsynthesisinsituinthearterialwallmayoccur,andincreasedactivityofglucose-6-phosphatedehydrogenasehasbeendemonstratedinmuscleandaortasofhyper-insulinaemicpigsandmuscleofNIDDMsubjects(Stout,1979;Falholtetal.,1985a,1987).TheperipheralhyperinsulinaemiaofNIDDMandofinsulin-treatedsubjectswouldstimulatelipogenesisinsituandinthiscontexttheepidemiologicalassociationbetweenraisedseruminsulinlevelsandcardiovasculardiseaseisofinterest.CONCLUSIONMorequestionsaboutthebiochemicalbasisofdiabetesremainthanhavebeenansweredtodate.Inparticular,hormoneinsensitivity,thereversalofsuchinsensitivity,metabolicinteractionsbetweentissuesandthepatho-genesisofchroniccomplicationsareareasofveryuncertainknowledge.Currentresearchonthesedifficultquestionswillprovideabasisforadvancesbothinunderstandingandtherapy.Vol.250635

636R.TaylorandL.AgiusWearegratefultoGeorgeAlbertiforcriticalcomments,PeterSelby,IanJones,andPierroPiattiforpermittingmentionofunpublisheddata,andAnnPottsforexpertword-processing.REFERENCESAccili,D.,Perrotti,N.,Rees-Jones,R.&Taylor,S.I.(1986)Endocrinology(Baltimore)119,1274-1280Agius,L,Chowdhury,M.H.&Alberti,K.G.M.M.(1986a)Biochem.J.239,593-601Agius,L.,Chowdhury,M.H.,Davis,S.N.&Alberti,K.G.M.M.(1986b)Diabetes35,1286-1293Akagi,Y.,Kador,P.F.,Kuwabara,T.&Kinoshita,J.J.(1983)Invest.Ophthalmol.Vis.Sci.24,1516-1519Alberti,K.G.M.M.,Dornhorst,A.&Rowe,A.S.(1975)Isr.J.Med.Sci.2,571-580Altan,N.,Altan,V.M.,Mikolay,L.,Lamer,J.&Schwartz,C.F.W.(1985)Diabetes34,281-286Andrews,W.J.,Vasquez,B.,Nagulesparan,M.,Klimes,I.,Foley,J.&Reaven,G.M.(1984)Diabetes33,634-642Argiles,J.M.(1986)TrendsBiochem.Sci.11,61-63Arner,P.,Einarsson,K.,Ewerth,S.&Livingston,J.(1986)J.Clin.Invest.77,1716-1718Ashcroft,S.J.H.(1981)inTheIsletsofLangerhans(Cooper-stein,S.J.&Watkins,D.,eds.),pp.117-148,AcademicPress,NewYorkAssan,R.,Feutren,G.,Debray-Sachs,M.,Quiniou-Dibric,M.C.,Laboric,C.,Thomas,G.,Chatenoud,L.&Bach,J.F.(1985)Lanceti,67-71Bagdade,J.D.,Porte,D.&Bierman,E.L.(1968)Diabetes17,127-132Bailey,C.J.&Puah,J.A.(1986)DiabeteMetab.12,212-218Bajorunas,D.R.,Dreslen,C.M.,Horowitz,G.D.,McDermott,K.,Jeevanandam,M.,Fortnen,J.D.&Brennam,M.F.(1986)Diabetes35,556-562Bantle,J.P.,Laine,D.C.&Castle,J.W.(1983)N.Engl.J.Med.309,7-12Barnes,A.J.,Johnston,D.G.,Kohner,E.M.,Alberti,K.G.M.M.,Bloom,S.R.&Smythe,P.(1978)Lanceti,1171-1174Beck-Nielsen,H.,Hother-Nielsen,O.,Andersen,P.H.,Pedersen,0.&Schmitz,0.(1986)Diabetologia29,515ABell,P.M.,Firth,R.G.&Rizza,R.A.(1986)J.Clin.Invest.78,1479-1486Benson,J.W.,Johnson,D.G.,Palmer,J.P.,Werner,P.L.&Ensinck,J.W.(1977)J.Clin.Endocrinol.Metab.44,459-464Beuers,U.,Beckh,K.&Jungermann,K.(1986)Eur.J.Biochem.158,19-24Boden,G.,Ray,R.K.,Smith,R.H.&Owen,0.E.(1983)Diabetes32,962-987Bogardus,C.,Lillioja,S.,Howard,B.V.,Reaven,G.&Mott,D.(1984)J.Clin.Invest.74,1238-1246Bolinder,J.,Ostman,J.&Arner,P.(1982)Diabetes31,911-916Bolli,G.,DeFeo,P.,Compagnucci,P.,Cartechini,M.G.,Angeletti,G.,Santeusanie,F.,Brunetti,P.&Gerich,J.E.(1983)Diabetes32,134-141Bolli,G.B.,Tsolikian,E.,Haymond,M.W.,Cryer,P.E.&Gerich,P.E.(1984)J.Clin.Invest.73,1532-1541Bornstein,J.,Ng,F.M.,Heng,D.&Wong,K.P.(1983)ActaEndocrinol.103,479-486Boshell,B.R.,Zahnd,E.R.&Renold,A.E.(1960)Diabetes8,21-29Bottazzo,G.G.(1986)Diabet.Med.3,119-130Boulton,A.J.M.,Drury,J.,Clarke,B.&Ward,J.D.(1982)DiabetesCare5,386-390Bratusch-Marrain,P.,Bjorkman,0.,Hagenfeldt,L.,Waldhausl,W.&Wahren,J.(1979)Diabetes28,126-131Bratusch-Marrain,P.R.,Smith,D.&DeFronzo,R.A.(1982)J.Clin.Endocrinol.Metab.5,973-982Bratusch-Marrain,P.R.,Sobodan,G.,Walhausl,K.&Kowotony,P.(1984)Diabetes33,19-25Brooks,J.R.(1979)Semin.Oncol.6,357-367Brownlee,M.,Vlarsara,H.&Cerami,A.(1983)Diabetes32,680-684Brunzell,J.D.,Robertson,R.P.,Lerner,R.L.,Hazzard,M.R.,Ensinck,J.W.,Bierman,E.L.&Porte,D.,Jr.(1976)J.Clin.Endocrinol.Metab.42,222-229Bunn,H.F.(1981)Diabetes30,613-617Burant,C.F.,Treutelaar,K.&Buse,M.G.(1986)J.Clin.Invest.77,260-270Butterfield,J.,Fry,I.K.&Whickelow,M.(1961)LancetH",563-567Capaldo,B.,Home,P.D.,Massi-Benedetti,M.,Worth,R.,Cook,D.B.,Heaton,A.&Alberti,K.G.M.M.(1984)DiabetesRes.1,187-193Caren,R.&Corbo,L.(1959)J.Clin.Invest.36,1546-1550Caro,J.F.,Ittoop,O.,Pories,W.J.,Meelheim,D.,Flickinger,E.G.,Thomas,F.,Jenquin,M.,Silverman,J.F.,Khazanie,P.G.&Sinha,M.K.(1986)J.Clin.Invest.78,249-258Caro,J.S.,Sinha,M.K.,Raju,S.M.,Ittoop,O.,Pories,W.J.,Flickinger,E.G.Meelheim,D.&Dohm,G.L.(1987)J.Clin.Invest.79,1330-1337Cassava,J.P.,Felves,M.E.&Veech,R.L.(1984)J.Biol.Chem.259,231-236Chou,C.K.,Dull,T.J.,Russell,D.S.,Gherzi,R.,Lebwohl,D.,Ullrich,A.&Rosen,0.M.(1986)J.Biol.Chem.262,1842-1847Christensen,N.J.(1974)Diabetes23,1-8Clements,R.S.,Jr.,Vourganti,B.&Kuba,T.(1979)Metabolism28(Suppl.1),477-483Cohen,M.P.,Urdanivia,E.,Surma,M.&Wu,V.Y.(1980)Biochem.Biophys.Res.Commun.95,765-769Coulston,A.M.,Hollenbeck,C.B.,Donner,C.C.,Williams,R.,Chiou,Y.A.M.&Reaven,G.M.(1985)Metabolism34,962-966Cushman,S.W.&Wardzala,L.J.(1980)J.Biol.Chem.255,4758-4762Das,B.&Srivastava,S.K.(1985a)Arch.Biochem.Biophys.238,670-679Das,B.&Srivastava,S.K.(1985b)Diabetes34,1145-1151Davidson,M.B.(1987)Endocr.Rev.8,115-131Davis,S.,Butler,P.C.,Brown,M.D.,Hanning,I.,Hales,C.N.,Home,P.D.&Alberti,K.G.M.M.(1986)Diabetes35,28ADeFronzo,R.A.&Ferrannini,E.(1982)Medicine61,125-140DeFronzo,R.A.,Simonson,D.&Ferrannini,E.(1982a)Diabetologia23,313-319DeFronzo,R.A.,Hendler,R.&Simonson,D.(1982b)Diabetes31,795-801DeFronzo,R.A.,Gunnarsson,R.,Bjorkman,O.,Olsson,M.&Wahren,J.(1985)J.Clin.Invest.76,149-155Denton,R.M.,Brownsey,R.W.&Belsham,G.J.(1981)Diabetologia21,347-362Dohm,G.L.,Tapscott,E.B.,Pories,W.J.,Dabbs,D.J.,Flickinger,E.G.,Meelheim,D.,Fushiki,T.,Atkinson,S.M.&Caro,J.F.(1987)Diabetes36(Suppl.1),50ADonner,C.C.,Fraze,E.,Chen,Y.-D.I.&Reaven,G.M.(1985)Diabetes34,831-835Duckworth,W.C.,Solomon,S.&Kitabchi,A.E.(1972)J.Clin.Endocrinol.Metab.35,585-591Dunn,F.L.,Raskin,P.,Bilheimer,D.W.&Grundy,S.M.(1984)Metabolism33,117-123Dunn,F.L.,Carroll,P.B.&Beltz,W.F.(1987)Diabetes36,661-666Dupre,J.,Ross,S.A.,Watson,D.&Brown,J.C.(1973)J.Clin.Endocrinol.Metab.37,826-8281988

Thebiochemistryofdiabetes637Durrington,P.N.,Newton,R.S.&Weinstein,D.B.(1982)J.Clin.Invest.70,63-73Dyck,P.J.,Sherman,W.R.,Hallcher,L.M.,Service,F.J.,O'Brien,P.C.,Grina,L.A.,Palumbo,P.J.&Swanson,C.J.(1980)Ann.Neurol.8,590-596Eistetter,K.&Wolf,H.P.O.(1982)J.Med.Chem.25,109-113Ellis,L.,Clauser,E.,Morgan,D.O.,Edery,M.,Roth,R.A.&Rutter,W.J.(1986)Cell45,721-732Fagius,J.,Brattherg,A.,Berne,C.&Jameson,S.(1985)Diabetologia28,323-329Falholt,K.,Alberti,K.G.M.M.&Heding,L.G.(1985a)Diabetologia28,32-37Falholt,K.,Calfield,R.,Heding,L.G.&Mintz,D.(1985b)Metabolism34,1146-1149Falholt,K.,Jensen,M.D.,Jensen,L.,Mortensen,H.,Volund,A.,Heding,L.G.&Falholt,M.D.(1988)DiabeticMed.,inthepressFantus,I.G.&Brosseau,R.(1986)J.Clin.Endocrinol.Metab.63,898-905Ferner,R.E.,Ashworth,L.,Tronier,B.&Alberti,K.G.M.M.(1986)Am.J.Physiol.250,E655-E661Fery,F.&Balasse,E.0.(1985)Diabetes34,326-337Fineberg,S.E.&Merimee,T.J.(1974)Diabetes23,499-504Firth,R.G.,Bell,P.M.,Marsh,H.M.,Hansen,L.&Rizza,R.A.(1986a)J.Clin.Invest.77,1525-1532Firth,R.G.,Bell,P.M.&Rizza,R.A.(1986b)N.Engl.J.Med.314,1280-1286Fix,J.A.&Moore,W.V.(1981)Endocrinology(Baltimore)108,239-246Floyd,J.C.,Fafans,S.S.,Conn,J.W.,Knopf,R.F.&Rull,J.(1966)J.Clin.Invest.45,1487-1502Fleig,W.E.,Noether-Fleig,G.,Fussgaenger,R.&Ditschuneit,H.(1984)Diabetes33,285-290Forsayeth,J.R.,Caro,J.F.,Sinha,M.K.,Maddux,B.A.&Goldfine,I.D.(1987)Proc.Natl.Acad.Sci.U.S.A.84,3448-3451Frayn,K.N.&Adnitt,P.I.(1972)Diabetes21,3153-3162Fraze,E.,Donner,C.C.,Swislocki,A.L.M.,Chiou,Y.-A.M.,Chen,Y.-D.I.&Reaven,G.M.(1985)J.Clin.Endocrinol.Metab.61,807-811Freidenberg,G.R.,Henry,R.R.,Klein,H.H.,Reichart,D.R.&Olefsky,J.M.(1987)J.Clin.Invest.79,240-250Gabbay,K.H.(1973)N.Engl.J.Med.288,831-836Gamble,S.A.&Cook,G.A.(1985)J.Biol.Chem.260,9516-9519Garvey,W.T.,Olefsky,J.M.,Griffin,J.,Hamman,R.F.&Kolterman,0.G.(1985)Diabetes34,222-234Gepts,W.&Lecompte,P.M.(1981)Am.J.Med.70,105-114Gerich,J.E.(1984)N.Engl.J.Med.310,848-850Gerich,J.E.,Langlois,M.,Noacca,C.,Karam,J.H.&Forsham,P.H.(1973)Science182,171-173Gerich,J.,Lorenzi,M.,Bier,D.,Schneider,V.,Salikian,E.,Karam,J.&Forsham,P.(1975)N.Engl.J.Med.292,985-989Gerich,J.E.,Langlois,M.,Noacca,C.,Lorenzi,M.,Karam,J.H.&Forsham,P.H.(1976a)J.Clin.Invest.58,320-325Gerich,J.,Lorenzi,M.,Tsalikian,E.,Bohennan,N.,Schneider,V.,Karam,J.&Forsham,P.(1976b)Diabetes25,955-960Gerich,J.E.,Lorenzi,M.,Bies,D.M.,Tsalikian,E.,Schneider,V.,Karam,H.J.&Forsham,P.H.(1976c)J.Clin.Invest.57,875-884Gibbons,G.F.(1986)Clin.Sci.71,477-486Gin,H.,Messerschmitt,C.,Borttier,E.&Aubertin,J.(1985)Metabolism34,923-925Gonzalez,A.M.,Sochor,M.&McLean,P.(1983)Diabetes32,482-485Gonzalez,R.G.,Barnett,P.,Aguayo,J.,Cheng,H.-M.&Chylack,L.T.(1984)Diabetes33,196-199Gonzalez,A.M.,Sochor,M.,Hothersall,J.S.&McLean,P.(1986)Diabetes38,1200-1205Goldfine,I.D.,Iwamoto,Y.,Ezino,V.,Trischitta,V.,Proello,F.&Vigneri,R.(1984)DiabetesCare7(Suppl.1),54-58Gormley,M.J.J.,Hadden,D.R.,Woods,R.,Sheridan,B.&Andrews,W.J.(1986)Metabolism35,1029-1036Gottschalk,W.K.&Jarett,L.(1985)DiabetesMetab.Rev.1,229-269Grant,M.,Russell,B.,Fitzgerald,C.&Merimee,T.J.(1986)Diabetes39,416-420Greene,D.A.&Lattimer,S.S.(1984)Diabetes33,712-716Greene,D.A.&Mackway,A.M.(1986)Diabetes35,1106-1108Greene,D.A.,DeJesus,P.V.&Winegrad,A.I.(1975)J.Clin.Invest.55,1326-1336Greene,D.A.,Brown,M.J.,Braunstein,S.N.,Schwartz,S.S.,Asbury,A.K.&Winegrad,A.I.(1981)Diabetes30,139-147Greenfield,M.,Kolterman,O.,Olefsky,J.&Reaven,G.M.(1980)Diabetologia18,441-446Gregersen,G.,Borsting,H.,Theil,P.&Servo,C.(1978)ActaNeurol.Scand.58,241-248Gregersen,G.,Bertelsen,B.&Harbo,H.(1983)ActaNeurol.Scand.67,164-172Grigorescu,F.,Flier,J.S.&Kahn,C.R.(1987)J.Clin.Endocrinol.Metab.64,549-554Grunberger,G.,Ryan,J.&Gorden,P.(1982)Diabetes31,890-896Grunberger,G.,Zick,Y.&Gordon,P.(1984)Science223,932-934Guy,A.J.,Alderson,D.,Griffin,S.M.&Farndon,J.(1987)TransplantationProc.,inthepressHaeckel,R.&Haeckel,H.(1982)Diabetologia7,117-124Hall,S.,Braaten,J.,McKendry,J.,Bolton,T.,Foster,D.&Berman,M.(1979)Diabetes28,737-745Halter,J.B.,Graf,R.J.&Porte,D.(1979)J.Clin.Endocrinol.Metab.48,946-954Handelsman,D.J.&Turtle,J.R.(1981)Diabetes30,459-464Hansen,I.,Firth,R.,Haymond,M.,Cryer,P.&Rizza,R.(1986)Diabetes35,186-191Harano,Y.,Kashiwaga,A.,Kojima,H.,Suzuki,M.,Hashi-moto,T.&Shigeta,Y.(1985)FEBSLett.188,267-271Heaton,D.A.,Millward,B.A.,Gray,P.,Tun,Y.,Hales,C.N.,Pyke,D.A.&Leslie,R.D.G.(1987)Br.Med.J.294,145-146Hellman,B.(1986)DiabetesMetab.Rev.2,215-241Henry,R.R.,Wallace,P.&Olefskey,J.M.(1986)Diabetes35,990-998Herington,A.C.,Corneli,H.J.&Kuffer,A.D.(1983)Int.J.Biochem.15,1201-1210Hers,H.G.&Hue,L.(1983)Annu.Rev.Biochem.52,617-653Hidaka,H.,Nagulesparan,

Biochemistry Documents PDF, PPT , Doc

[PDF] biochemistry notes mbbs

  1. Science

  2. Biology

  3. Biochemistry

[PDF] biochemistry notes pdf

[PDF] biochemistry notes pdf for mbbs 1st year

[PDF] biochemistry notes pdf free download

[PDF] biochemistry notre dame

[PDF] biochemistry nutrition

[PDF] biochemistry nyu

[PDF] biochemistry of alzheimer's disease

[PDF] biochemistry of butachlor

[PDF] biochemistry of covid 19

Politique de confidentialité -Privacy policy