[PDF] The Sea as a Biological Environment





Loading...








[PDF] MARINE BIOLOGY, ECOLOGY AND BIODIVERSITY

Marine biologists work to understand, protect and encourage sustainable use of the marine environment They can now make predictions about how marine ecosystems 




[PDF] protecting and conserving the marine environment

The strategy will also help safeguard productive populations of commercial fish species, thus safeguarding the industries and populations that depend on them

[PDF] The Benefits of Marine Protected Areas

Marine protected areas help protect important habitats and representative samples of marine life and can assist in restoring the productivity of the oceans 

[PDF] Marine Biology Careers - AUT

People with knowledge in marine biology and ecology are required to help build and maintain this inventory This database (known as the New Zealand Catalogue 

[PDF] The Marine Biologist Issue 14pdf - CHM CBD

14 avr 2020 · 2 3) It appears that seaweed and shellfish aquaculture systems can help address a host of global environmental challenges and societal issues 




[PDF] The Effectiveness of a Marine Environmental Education Program in

is a key way to develop environmentally aware individuals that can mitigate environmental issues and assist sustainable development A four-month marine 

[PDF] Thinking about a career in marine science?

Marine Education Outreach: Educators and storytellers help translate and share marine research with the world This can be in both a formal classroom setting 

[PDF] Coast Notes - University of the Virgin Islands

Marine biologists study the factors that affect these results of such studies can be used to formulate assess environmental damage caused by

[PDF] MARINE BIOLOGY AND AQUACULTURE

aquatic environments to protect them by testing for contaminants and pollution, which in turn can negatively affect human health You will be able to help 




[PDF] The Science We Need for the Ocean We Want - Ocean Decade

to ensure that ocean science can fully support Convention on Biological Diversity and the Sendai can help us to address impacts from climate change,

[PDF] Introduction to Marine Biology - Seamester

directly observe and sample marine life; remote sampling can be done with nets, bottles 2 2 Environmental Factors that Affect the Distribution of Marine

[PDF] MARINE BIOLOGY - AUT

and the surrounding marine environment Any Marine professionals can work in offices and laboratories, marine biology and ecology are required to help

[PDF] The Sea as a Biological Environment

marine environment-namely, (1) the sea water itself, and (2) the ocean floors abundant supply of carbon can be available in the form of carbon dioxide for the use of On the whole, the circulation of water is of direct benefit, yet instances

PDF document for free
  1. PDF document for free
[PDF] The Sea as a Biological Environment 41119_7kt167nb66r_ch08.pdf

CHAPTERW

TheSeaasaBiologicalEnvironment

.*..*..m.m.m*...ma......m.m.............sm..*...*.......`...m..*.*.mm."*....*.*m.m...m*...*."*m**...m."*..

Intheforegoingchaptersanaccounthasbeengivenofthechemical andphysicalaspeetsoftheelementsthattogetherconstitutetheinorganic marineenvironment-namely,(1)theseawateritself,and(2)theocean floors.Thechemicalconstituentsandthephysicalpropertiesofthe seawater,togetherwiththeirdistribution,concentrations,andcyclic changes,themovementofthewater,andthenatureoftheoceanfloors aredecisivefactorsinthehwtoryandfateofaperplexingarrayofliving things.Hereinareheldmanysecreteofracialdevelopment,andherein mustbesoughttheunderstandingofthedelicatelybalancedmaintenance oflifeandofthepotentialitiesoffuturedevelopment. Marineorganismsaretobeconsideredapartoftheseaasitexists today. Justasseawaterincludesthevarioussalts,bothconservative andnonconservative(biologicallychanged),soalsoitincludesthe multitudeoforganismswhichareboundtotheseafortheirexistence andwhich,byorigin,areapartoftheseabothraciallyandindividually. Theorganisms,likethesalts,aresubjecttothenaturallawsofthesea andare apartoftheperpetualcycleofinorganicandorganicsubstances soimportantinmanyaspectsofoceanography.Thechangesthatare apparentinconcentrationrepresentonlypatternsthatareinherentin thephasesofthecycleorthatresultfromothercauses,suchMcurrents andprocessesofmixing. Theaquaticenvironmentoffersthegreatestintimacybetweenitself andtheorganismswhichitbathesbothoverthebodysurfacearidwithin openorpartiallyclosedcavitiesas,forexample,theinternalsystemsof coelenterat+echinoderms,andtunicates.Becauseofthestabilityof thephysicalcharacteristicsoftheseawaterandofthecompositionand concentrationofthedissolvedsaltstheorganisms,ingeneral,havenot developedhighlyspecializedintegumentsandregulatorysystemsto protectthemselvesagainstsuddenandintenseenvironmentalchanges, sshavemostlandanimals.Itfollowsthatsmallchangesintheaquatic mediumarepromptlybroughttoplayuponitapopulation.Itshould beborneinmind,also,thattheorganismsthemselves,beingapartofthe dynamicenvironment,modifyparticularlyitschemicalcharacterby withdrawingoraddingsubstancesassociatedwiththeactivitiesoflife. 267

268THESEAASABIOLOGICALENVIRONMENT

Insubsequentchaptersweshalldiscusstherelationofsomeof themeasurableenvironmentalfactorstosuchphenomenaasdistribution, propagation,survival,andspecialadaptations,butfirstsomefactsof generalapplicationmustbeconsidered. PhysicalandChemicalCharacteristicsoftheMarineEnvironment Waterisessentialtothemaintenanceofalllife.Itconstitutes

80percentormorebyweightofactiveprotoplasm.Itisthemost

e$icientofallsolventsandcarriesinsolutionthenecessarygases,oxygen andcarbondioxide,aswellasthemineralsubstancesnecessarytothe growthofplantsandanimals,anditisitselfoneoftheessenfialraw materialsinthemanufactureoffoodsbyplants. Organismslivingintheterrestrialenvironmenthavedevisedmeans, suchasimperviousinteguments,toconservewater,andthelandplants haverootsandspecialvascularsystemsfortransportofwatertoall growingparts.Inthemarineenvironmentthereisjreedomfromdessica- kion,exceptathigh-tidelevels,andthereforenoKlghlyspecializedmeans areprovidedforconservationofwaterorforitstransportinplants. Alsoofbiologicalimportancearethehighheatcapacityofwaterand itshighlatentheatofevaporation,bothofwhichobviatethedangerthat mightresultfromrapidchangeoftemperatureintheenvironmental medium.Owingtothehighdegreeoftransparencyofwateritispossible fortheseatosustainplantlifethroughoutarelativelydeeplayer,and inanimalsthedevelopmentoforgansofvisionandoforientationhas progressedtoamarkeddegree. Seawaterisabq$eredsolution;thatis,changesfromacidtoalkaline condition,orviceversa,areresisted(p.195).Thispropertyisofvital importancetothe-marineorganisms,mainlyfortworeasons:(1)an abundantsupplyofcarboncanbeavailableintheformofcarbondioxide fortheuseofplantsinthesynthesisofcarbohydrateswithoutdk- turbancetotheanimallifethatmaybesensitivetosmallchangesin pH,and(2)intheslightlyalkalinehabitatthemanyorganismsthat constructshellsofcalciumcarbonate(orothercalciumsalts)cancarry onthisfunctionmuchmoreefficientlythaninaneutralsolution. Thesupportofferedtothebodiesofmarineorganismsbythespecific gravityofthesurroundingmediumobviatestheneedofspecialsupporting skeletalstructureinmanyforms.Strikhgexamplesofthesearethe jellyfishes,unarmoredmolluscs,unarmoreddinoflagellates,andeven thelargemarinemammalswiththeirheavyskeletons,whichcouldnot surviveintheirpresentbulkystateexceptinanaquatichabitat.The hardshellsofcrabs,clams,snails,andsoon,doubtlessserveassupport, especiallyinsomeburrowingandintertidalforms,butthesehardparts maybelookeduponalsoasprotectiveandasaframeworkforattach- mentofmusclesusedindigging,creeping,orswimming.

THESEAASAB1OLC3GICALENVIRONMENT269

SEAWATERANDTHEBODY

FLUIDS.Seawaterisamostappropriate

environmentforlivingcells,sinceitcontainsallofthechemicalelements essentialtothegrowthandmaintenanceofplantandanimalprotoplasm. Ithaebeenshownthatseawaterisasolutionofalargenumberofsalts, anditisimportantheretoconsiderhowitisrelatedasanexternalfluid mediumtothe'finternalmedium'' - namely,thebodyfluids(blood,* coelomicfluid,andsoon)oftheorganisms.Theratiosofthemajor saltstoeachother,andusuallytheirtotalconcentrationalso,arestrik- inglysimilarinseawaterandinthebodyfluidsofmarineinvertebrates. Thesimilarityofcompositionisnotconfinedtomarineanimals,however, butisalsoinevidenceinmodifiedforminbothterrestrialandfresh- wateranimals,includingthelowerandhighervertebrates,asisshown intable55,whichisfromdatacompiledbyPantin(1931)andexpanded by

Dakin(1935).

OSMOTICRELATIONSHIPS.Itiswellknownthatwhensolutionsof differentosmoticpressureareseparatedbyasemipermeablemembrane thatallowsthepassageofwaterbutnotofthesolutes,thereisamove- mentofthewaterthroughthemembraneintothemoreconcentrated solution.Thecellmembranesoforganismsarejustsuchsemipermeable membranesthroughwhichamovementoffluidsoccursinwardorout- ward,dependinguponwhethertheosmoticpressureoftheexternal medhmisless(hypokmic)orgreater(hypertonic)thantheinternal medium.Theinternalandexternalmediaareisotonicwhentheyareof equalosmoticpressure. Theosmoticpressureofasolutioncanbecomputedfromthefree~ing- pointdepression(p.67).Thiscomputationispossiblebecausethe saltsthatincreasetheosmoticpressureofasolutionalsodepressits freezingpoint.Thefreezing-pointdepressionbelowO"Chasbeendesig- natedbyA@f(p.67),butwillherebeabbreviatedtoA.Seawaterhav- ingasahityof35.oo'/00freezesat-1.91°,owingtodepressionbythe substancesinsolution.Inotherwords,thevalueforAis1.91°.Simi- larly,weobtainaAof0.56forhumanbloodwithafreezingpointof -0.56°C. OnthebasisofAvalues,theosmoticrelationsofthebodyfluids ofmarineandfresh-wateranimalstotheirexternalenvironmental mediumarecomparedintable56,fromdatacompiledbyDakin(1935), towhosereviewthereaderisdirectedformuchgreaterdetniland historicaltreatment. Fromthefewexamplesinthetableitisevidentthatthebodyfluids ofmarineinvertebratesareisotonicornearlysowiththeirfluidenviron- ment,whereasinthefresh-waterformathebodyfluidsarehypertonic tothediluteexternalmedium.Forthisreasonthemarineenviron- mentinitsosmoticrelationsfailstoexactofitsinhabitantsasgreatan expenditureofenergyinmaintainingtheproperconcentrationofbody

270THESG4ASABIOLOGICALENVIRONMENT

E4 o 8 El E M .. . ...,.... .. ... ........,...,.. . .. . .,. ..,... . ,,.,,,, ., ,. .,, ,.. .

THESEAASABIOLOGICALENVIRONMENT271

fluidsmdamthefresh-waterenvironment.Theexaetimeohardsm wherebythefresh-wateranimalsareindependentoftheexternalmedium andareabletomaintainahonzoiiowwticcondition(thatis,steadyvalue forA)inthepresenceofthehypotonicwaterisnotknown(seeAforthe eelAn@laanguillainfreshandsaltwater,table56).Theirexistence undertheseconditions,however,requiresaconstantexpenditureof energyineliminating,throughthekidneysandotherexcretoryorgans, theexcesswatertakeninbyosmosis.Marineinvertebratesarepoihil- osmotic(Achangingwiththat'oftheexternalmedium)onlywithin rathernarrowlimits(Dakin,1935);hence,they,too,musthavesome regul&tingmechanism.Exceptinestuarineconditions,however,the rangeofsalinityinmostpartsoftheseaisperhapswithinthelimitsof poikilosmoticityoftheinvertebrateslivingthere.Forexample,the lugworm,Areniicotamarina,inHelgolandwaterswithaA1.72hasan internalmediumAl.7,butintheBalticSeawithawaterofAO.77the samespecieshasaAvalueof0.75fortheinternalmedium. Itshouldbementionedherethattheteleost(bony)fishesinmarine watersaredefinitelyhypotonicand,therefore,inordertokeeptheir bodyfluidsdowntotherequiredosmoticpressureforthespecies,they secretechloridethroughthe"chloridecells"ofthegills(Keys,1933). Thisfunctionisaregulationtowardalowosmoticpressureoftheblood, asopposedtoregulationtowardahighoneasperformedbythekidneys ofanimalsinfresh-waterenvironments.Thatthisgroupofaquatic animalshasachievedamarkeddegreeofindependenceoftheosmotic pressureoftheexternalmediumisevidencedespeciallybysuchforms asthesalmonandeel,bothofwhich,thoughpracticallyhomoiosmotic, spendtheirlivespartlyinhypotonicandpartlyinhypertonicenviron- ments. Theelasmobranchs-namely,thesharksandrays - areisotonic withseawater,butinthesethehighosmoticpressureofthebloodis duenotonlytothepresenceofsuchsaltsasoccurinseawater,butalso tohighureacontent.Forfurtherdiscussionofsalinityt-isanenviron- mentalfactor,seealsop.839.

OtherCharacteristicsoftheEnvironment

Inadditiontothechemicalandphysicalpropertiesofseawater, certainotherbiologicallyimportantcharacteristicsareinherentinthe marineenvironmentasawhole.Theseresultfromthemagnitudeof theoceanitself,itsgreatdepth,anditsexpanse. Inconsideringtheoceaninitsentiretyasanenvironment,weare atfirstimpressedbythewiderangesoflivingconditions,thesalinities varyingfromthoseofdiluteestuarianwaterstoconcentrationsof370/00 ormoreintheopensea,temperaturesfrom30*Ctofreezingpoint, lightintensitiesfrombrilliantsunlightatthesurfacetoabsoluteand perpetusddarknessinthedeeperlayers,andpressuresfromasingle

THESEAASABIOLOGICALENVIRONMENT

..................................................................................................................................

m..a)::::..

Zl::::;

c+t-t-l-.. +0 ........ ...................#................. .' .. .. .. .. .. .. .. .. .. .. .. .... ... .. .. .. .. .. .. .. ...

THESEAASABIOLOGICALENVIRONMENT273

atmosphereatthesurfacetoabout1000atmospheresinthegreatest oceanicdeeps. Impressiveastheserangesmaybe,neverthelessveryuniformcondi- tionsdoprevailoverextensiveareasofthe.environment,andmany organismsmay,byreasonofthemonotonyoftheseextensiveareas,be verydelicatelyattunedtotheprevailingunvaryingconditions.Hence, itfollowsthatfaunaIareascharacterizedbyspecificformscanberecog- nized.Ontheotherhand,awide'rangeofconditionsmaybeencountered inmorerestrictedareas,especiallyincozstalregions.Theseconditions maybeduetothephysiographiccharacterofthecoastline,depthto bottom,topographyandnatureofthebottom,inflowoflanddrainage, meteorologicalconditions,andsoforth.SpeciaIlyadaptedandtolerant formsoccurhereinprofusion,for,aswillbeshowninlaterchapters,the shallowdepthsandvaryingconditionsarefrequentlyfavorableto abundantproductionofprimaryfood. Itmustnotbeoverlookedthatthegradientsofsalinity,light,and temperaturethatexistintheseaarefavorabletoanumberofsensitive animalsthatpossesstheability,throughswimmingorotherwise,to adjustthemselvestooptimumconditions. DEPTHANDLIGHT.Inherentintheverticalrangeordepthofthe open-seahabitatareanumberofimportantfeaturesoffar-reaching biologicaleffect.Ofprimeimportanceistherelativelygreatvertical rangeoftheeuphoticzoneavailableforproductionoffloatingmicroscopic plants.Butthegradientoflight,bothastoquantityandquality, resultingfromdepthofwateralsoallowsadjustmentofmanyanimals totheoptimumconditionwithrespecttothisfactorand,indeed,is associatedwithdiurnalmigrationsofmanyformstolighterordarker situations. PRESSURE.Pressureinitselfdoesnotexcludelifefromtheabyssal regionsofthesea,forwaterisbutlittlecompressedandequilibrium existsbetweentheinnerandouterpressureaffectingthebodytissues. However,pressuremaylimittheverticalrangeofmotileforms,although someeurybathicanimalsapparentlyarenotseriouslyaffectedandare knowntomakedailyverticalwanderingsofupto400m,corresponding topressurevariationsupto40atmospheres.Harpoonedwhalesare saidto"sound"toadepthof800m,andthespermwhalesmustdescend normallytogreatdepths,sincethelargesquidsuponwhichtheyfeed inhabitverydeepwater.

WATERMOVEMENTS,Theseamustbeviewedasanenvironment

thatforthemostpartisinconstantmotionwithbothregularandirregu- larpatternaofflow.Theprincipalbiologicalbenefitsderivedfromthe circulationare(1)oxygenationofsubsurfacewater,(2)dhpersalof wastesresultingfromprocessesofmetabolism,(3)dispersalofplant nutrientsandothervariableelementsessentialtoplantandanimal

274THESEAASABIOLOGICALENVIRONMENT

growth,and(4)d~persalofspores,eggs,larvae,andalsomanyadults. Onthewhole,thecirculationofwaterisofdirectbenefit,yetinstances maybenotedwheresomeadverseconditionsresulteitherasincidental oraspermanentfeatures.Incidentaldisturbancesmaybedueto unseasonableshiftsintheregularcurrentsystem,suchasgiverisetothe appearanceof"ElNifio"offthewestcoastofSouthAmerica(p.

704).Inthisinstance,warmwateroftheEquatorialCountercurrent

iscarriedsouthwardalongthecoaetsofEcuadorandPeru,whichare normallybathedbycoldcurrents.Theresultisawholesaledestruction ofanimallifealongthecoast,includingmanyguanobirdsthatdepend upontheseaforfood.Permanentorsemipermanentfeaturesofcurrent systemsthattakearegulartolloflifearefoundwherethemovingwater carriestheinhabitantsintoareasoflessfavorablelivingconditions. Forexample,GulfStreaminhabitantsultimatelyperishastheyare sweptnorthwardintoregionswherethetemperatureofthewateris loweredbyadmixtureofcoldwaterorbycoolinginhigherlatitudes. Larvaeofneriticformsarefrequentlydispersedtooffshoreorother locationsuninhabitabletotheadultanimals.Surfacecurrentssometimes strewtheshoreswithdefunctbodiesofnormallyoceanicoroffshore formssuchasthecoelenterateVelte2aorthepelagicsnailJanthina.

EXTENTOFTHEMARINEENVIRONMENT.Thatpartoftheearth

whichiscapableofsustaininglife,bothplantandanimal,isknownas theMosphere.Thebiosphereissubdividedintothreeprincipaldivisions orhabitatsknownasMocyctes.Thesearetheterrestrial,themarine, andthefresh-waterbiocycles.Eachhasitscharacteristictypesof ecologicalfeaturesandassociationsofplantsandanimals.Afew animalspeciesmayattimesmigratefreelyfromonetoanother,asis witnessedespeciallybythesalmonortheeel. Theoceanscoversome71percentoftheearth'ssurface.Thus, theareaoftheoceansisabouttwoandonehalftimestheareaofthe land,but,whenconsideringthespaceinwhichlifemightconceivably exist,accounthastobetakenoftherelativeverticalrangeprovided bythetwomainenvironments,theterrestrialandthemarine.Onthis basisitisestimated(Hesse,Allee,andSchmidt,1937)thatthemarine environmentactuallyprovidesaboutthreehundredtimestheinhabitable spaceprovidedbytheterrestrialandthefresh-waterbiocyclestogether; for,whereastheterrestrialenvironmentprovidesspaceonlyinashallow zonemainlyattheimmediatesurfaceandtoadepthofafewfeetatthe most,themarinehabitatprovideslivablespaceforatleastsomeformof lifefromthesurfaceeventotheabyssaldepthofseveralmiles.The fresh-waterbiocycleconstitutesonlyasmallfractionoftheothertwo. Theaerialportionoftheglobeisnotproperlyconsideredaseparate biocycle,sinceentrancesintoitbybirds,insects,andsoforthmaybe consideredmainlyastemporaryjourneys.

THESEAASABOIQGKJAL

OwingtotheWieultiesattendanton

marineblocycleistheIeaetknownofall.

ENVIRONMENT275

thestudyoftheoceans,the

ClassificationoftheMarineEnvironment

Inordertofacilitateastudyofthemarineenvironmentandits irihabltante,theformermay}econvenientlydividedbroadlyintoprimary andsecondarybioticdkisionsbaseduponphysical-chemicalattributesor uponthenatureoftheblots.Theboundariesbetweenthesebiotic

Fig.67.Themaindivisionsofthemarineenvironment.

diviions,whicharediagrammaticallyshowninfig.67,areinsome instanceswelldefined,butmorefrequentlythereisagooddealofover- lapping.Thus,althoughtheprimarydivisionsaredefinitelysetoff fromeachotheronphysicalbases,andthetypicalsubdivisionsofthese habitatscanbeclearlyrecognizedbothblotieallyandabioticdly,yet therearenowell-definedboundariesbetweenthem.

Thetwoprimarydivisionsoftheseaarethe

bertthicandthepek@. Theformerincludesalloftheoceanfloor,whilethelatterincludesthe wholemassofwater. THEBENTHICBIOTICENVIRONMENTANDITSSUBDIVISIONS.This divhionincludesallofthebottomtei?minfromthewave-washedshore lineatflood-tideleveltothegreatestdeeps.Itsupportsacharacteristic typeoflifethatnotonlylivesuponbutcontributestoandmarkedly modifiesthecharacterofthebottom.Ekman(1935)discussesthe boundariesoftheverticalzonesfromazoogeographicstandpoint,and wefollowmainlytheschemeemployedinhistext.

276THESEAASABIOLOGICALENVIRONMENT

Thebenthicdivisionmaybesubdividedintotwomainsystems - namely,thelittoralandthedeep-seas@ems.Thedividinglinebetween thesehasbeensetatadepthofabout200monthearbitrarysupposition thatthisrepresentstheapproximatedepthofwaterattheouteredge ofthecontinentalshelf(p,20),and,roughly,alsothedepthseparating thelightedfromthedarkportionofthesea.Thelittoralsystemis subcWdedintotheeulittoralandthewblittoratzones.Thedeep-sea systemisdividedintoanupper(archibenthic)andalower(abyssal- benthic)zone.Thelimitsofthebenthicsubdivisionsarehardtodefine, andarevariouslyplacedbydifferentauthorsbecauseuniformboundaries thatwillfitallrequirementscannotbedrawn.Forgeneralbiologiad studies,thedifferentboundariesmustbebasedonthepeculiaritiesofthe endemicplantandanimaldistributionandshouldfollowtheregionof mostdistinctfaunalandfloralchange.Thebioticzonesthusdelineated willbecharacterizedbyamoreorlessclearlydefinedrangeofexternal ecologicalfactorswhichhavegivencharactertothepopulation. Theeulittoralzoneextendsfromthehigh-tideleveltoadepthof about40to60m.Thelowerborderissetroughlyatthelowestlimit atwhichthemoreabundantattachedplantscangrow.Thesublittoral zoneextendsfromthisleveltoadepthofabout200m,ortheedgeofthe continentalshelf.Thedividinglinebetweenthesesubdivisionsvaries greatlybetweenextremes,sinceitisdeterminedbypenetrationoflight sufficientforphotosynthesis.Itwillberelativelyshallowinthehigher latitudesanddeepinthelowerlatitudes.Intheupperpartofthe eulittoralzonearelativelywell-definedtidalorintertidalzonethatis boundedbythehigh-andlow-waterextremesofthetideisrecognized. ~Someauthorsconfinetheeulittoralzonetothisnarrowsectionand considerthesublittoraltobeginatthelow-tidelevel(cf.Gislen,1930). Theverticalrangeoftheintertidalzone,thoughratherwelldefinedfor anygivenarea,variesgreatlyincWferentsectionsoftheworld,foritis determinedbythetidalrange(seechapterXIV).Intheupperreachesof theBayofFundythezonemayhaveaverticalrangeofover15m, whileintheGulfofMexicoitislessthan0.7m,andinareaslikethe MediterraneanalongthesouthwestcoastofItalytherangeisyetsmaller, only10to30cm.Onexposedcoastssubjectedtodirectoceanwaves andswellstheupperrangeissomewhatextendedtoincludearather well-definedsupratidalsprayzonewithasparsepopulationofespecially resistantformsamongwhichafewanimals,suchastheisopodLig~da, appeartobeintheprocessofbecomingterrestrialinhabit.Many speciesofanimalsarefoundonlyinthetidalzoneandmaybelimited verticallyinmaximumdistributioneventocertainlevelswithinthe zone-forexample,LigpdaandthegaetropodsLdtorinascutalata,L. planaxis,Acrnaeadigitalis,andothersfoundatMontereyBayonly abovethe0.76-mtidallevel(Hewatt,1937).Thus,inthetidalzone

THESEAASABIOLOGICALENVIRONMENT277

inwhichtherangeinexternalfactorsisgreatestwefindamorerestricted verticalrangeofspecificanimals.thanisobviousanywhereelseinthe benthicregionofthesea.Manymotileanimals,forexamplecrustaceans andfishes,moveregularlyintotheintertidalzonetofeedduringhigh tide,andthesmaIlpelagicfishknownasgrunionmigrateintothezone duringcertainhighspringtidestodeposittheireggsinthesand. Theeulittoralzonegivesrisetomanybiotopes,foritisgreatlyvaried astotypeofsubstratum - forexample,rocky,sandy,ormuddy - and alsoastocharacterofshorelineanddegreeofexposure.Theoverlying watermaybeslightlyorgreatlyreducedinsalinity.Thesevariations aredirect,decisivefeaturescontrollingthetypeandabundanceof sessilelittoralforms(cf.Shelfordetal,1935).Theplentifulprimaryfood inthiszoneisderivedfrombothpelagicandattachedplants. AttemptstoestabliihsuchzonesasFucuszone,Laminarianzone, andsoon,basedonthedepthsatwhichtheseplantsarecharacteristically attached,hasthedisadvantagethattheplantsareveryfrequently absentalongvtwtstretchesofthecoast,owingtounfavorablesubstratum orotherecologicalfactors;nevertheless,suchclassificationmaybeof usefullocalapplication. Thoughtheboundarybetweenthesublittoralandthedeep-sea systemsissetatadepthof200m,Ekman'scompilationsbasedonthe faunaindicatethatinmostregionstheboundarymaybelocatedbetween

200and400m.Lightandtemperatureareimportantfactors,andin

highlatitudesthesefactorsoperatetogethertoshifttheboundaryinto shallowerwater. Theupperdivisionofthedeep-seasystemiscalledthearchibnthic,. awordintroducedbyAlexanderAgassi~,butthetermisunfortunatein thatitimpliesthebeginningofthebenthosfromthisregion.Thezone isalsocalledthecoru%w%ldeep-seazone,butthisgivesrisetogreater confusion,sincetheterm"continentalfauna"sometimesusedmust inoludealsothelittoralfaunaunlessspecificallycalledcontinenW-&lope ordeep-seafauna.Theurchibenthiczoneextendsfromthesublittoralto adepthbetween800and1100m. Theaby=ssal-benthiczonecomprisesallofthedeep-seabenthicsystem belowthearchibenthiczone.Itisaregionofrelativelyuniformcondi- tions.Temperaturesareuniformlylow,from5°to-1°C,andsolar lightiswanting.Therearenosezsons,andhencetheseasonalbiological phenomenaassociatedwiththelittoralzonearesuppressed.Stagnant conditionsdonotprevailintheopenocean,however,forthereisample circulationtosupplywell-aeratedwaterresultingfromdeepvertimd movementsinthehighlatitudes(p.138).Noplantsareproduced,and theextenttowhichautotrophlcbacteriaplayapartinthemanufacture offoodisnotknown.Theanimalsarecarnivorous,feedingmainly uponorganicdetrituswhichinitsinitialorganicstatemusthaveorigi-

278THESEAASABIOLOGICALENVIRONMENT

natedintheplantsofthesurfacewaters.Theabyssalzone,though notsharplymarkedoffatiteupperlimitsfromthearchibenthiczone, hasitsowncharacteristicpopulation,aswillbebroughtoutinafollowing chapter. TheberAhkenvironmentfromshoreseawardtoabyssaldepthsis covered,toagreaterorlessdegree,bysedimentarydepositsthatmaybe classifiedasterrigenousdeposits,organicorpelagicoozes,andredclay. AdetaileddiscussionofthedepositswillbefoundinchapterXX,and thenatureofthedistributionisshowninfig.253.Asfarasthebiology ofbenthicanimalsisconcerned,themostimportantfeaturesofthese oozesaretheirphysicalconsistenciesandtheamountofdigestibleorganic materialtheycontain.Mostdeep-seabenthicformsaredetritus eatersandmainlydependent,therefore,upontherainofpelagicorganisms thatfallstothebottom.Theproductionofpelagicfoodusuallydecreases markedlywithincreasingdistancefromthecoast,andtheamountreach- ingthebottominareasofverydeepwaterisfurtherreducedbyits disintegrationwhilesinking.Hence,thelittoralmudsaremostrichin food,andtheredclayatgreatdepthsandfarfromshoreisthepoorest. Thisdifferenceisreflectedinthenumberofanimalsactuallycollected fromdifferentareas(&f.p.806). THEPELAGICENVIRONMENTANDITSSUBDIVISIONS.Thepelagic divisionincludesalloftheoceanwaterscoveringthebenthicdivision. Horizontally,thepelagicdivisionissubdividedintoanopen-sea(oceanic) province,andaninshore(neritic)province. Vertically,theoceanicprovincehasanupperlightedzoneanda lowerdarkzonewithnowell-markedboundarybetweenthetwo,For conveniencetheboundaryisarbitrarilysetat200m,sincethiswould correspondwiththearbitrarilysetdepthfortheedgeofthecontinental shelfandatthesametimeplacethelittoralsystemandtheneritic provinceinareasdefinitelywithinthelightedportion.Actually,light changesgraduallyinbothquantityandqualityfromtheverysurface downwardtodepthswhereitisnolongerdetectable(p.82),andthis "depthvarieswithlatitude,season,amountofsuspendedmaterial,living ordead,andthereforealsowithdistancefromshore.Thesevariables ofthepelagicenvironmentareofprofoundimport~ncetothepopulation ofthesea,aswillbepointedoutlater. Theoutstandingfeaturesoftheoceanicprovincearethebroad spatialexpansesandthegreatrangesofdepth.Asdistinguished fromtheneriticprovincethewatersareasaruleverytransparent,with littleornodetritusofterrestrialorigin.Thesewatersarepredominantly blueincolorandsupportthebluesurfacefaunatobediscussedmore fullyinchapterXVII.Althoughsolarlightpenetratesrelativelydeeper thanininshorewaters,thegreatdepthofthewaterincludedinthis provinceresultsincompleteeliminationofsolarlightbthedeeperportion

THESEAASABIOLOGICALE?WRONMENT279

oftheprovince,andasaresultonlycarnivoresanddetritusfeedersoan existintheverydeeplayers. Thechemicalcompositionoftheoffshorewaterisrelativelystable. SaEnityisuniformlyhigh,withonlysmallfluctuationsinspaceandtime (p,123),andplantnutrientsarefrequentlyrelativelylowintheupper layerandonlyslowlyreplaced. Theverticalborderseparatingtheneriticprovincefromtheoceanic issetattheedgeofthecontinentalshelf;henceallwaterofUepths shallowerthan200mwouldfallwithintheneriticprovince,which accordinglymayextendfarseawardininstanceswherethecontinental shelfisbroad,asofftheeastcoastoftheUnitedStates,orbeverynarrow, asoffthewestcoastofSouthAmerica. Althoughbiologicallyandchemicallytheborderbetweentheoceanic andtheneriticprovincesisnotstrictlydefinable,yetasweapproach thecoasttheplantandanimallifetakesoncharacteristicsnotfound inthetypicallyoceanicprovincewhere"blue-sea"formsprevail.The chemicalconstituentsoftheseawaterintheneriticprovincearemore variablethanintheoceanic.Salinitiesareusuallylower,sometimes markedly,andundergoseasonalorsporadicfluctuationssuchthatmany oftheinhabitantsaremoreorlesseuryhdineinnature-thatis,ableto endurewiderangesofsalinity.Riverwatermaybringinnutrients andmayAlsoexertastabilizinginfluenceontheturbulentmotion,being attimes,therefore,instrumentalininitiatingplantgrowthintheupper layers(p.789).Plantnutrients,nitrates,phosphorus,andsoonaremore readilyavailableintheshallowerinshorewaterbecauseofthegreater possibilityofreturnbyverticalcurrentsaftertheyhavebeenregenerated fromthedishtegratingorganismsonthebottomorinthedeeperwater (chapterVII).Thisfactorisoftheutmostimportancetoproductionof diatoms,foremostoftheprimaryfoodofthesea.Therefore,perunit arewofthesea,theneriticprovinceisfarmoreproductivethanthe oceanicprovirweandiseohaequentlytheregionofgreatestimportanceto marinelifeingeneral.Herefishofgreateeteconomicimportanceare taken,notonlybecauseofgreateravailability,butalsobecauseitis theirnaturalhabitat. OTHERBIOTICUNITS.Theaboveclassificationofthemarine environmentsisbaeedmainlyonbroadgeographical,physical,chemical, andbiologicalcharacteristicsthatcircumscribemoreorlessclearly theseparatezones.Withineachoftheseextensivezonesweobserve manyandvariedsetsofecologicalconditionsresultingfromdifferencesin substratum,proximitytoshore,depthandchemical-physicalconditionof thewater,andsoforth. Theprimary"topographic"unitusedinecologicalclassification oftheenvironmentisthebiotope,orniche,whichisdefinedas"anareaof whichtheprincipalhabitatconditionsandthelivingformswhichare

280THESEAASABIOLOGICALENVIRONMENT

adaptedtothemareuniform"(Hesse,Allee,andSchmidt,1937).Since inanygiventypeofbiotopethehabitatconditionsmakespecificdemands ontheinhabitants,itfollowsthatananalogousdevelopmentofthe inhabitantsisfrequentlyreflectedinthepopulation,andthosenotfitted forthehabitatareeliminatedfromit.Obviously,someorganismsare notsonarrowlyboundtothebiotopeasareothersofmorespecialized nature.

Thus,withinabiotopemaybefoundsomegeneralizedforms

suchascertaincephalopodsandfishesthatwandermoreorlessfreely fromonetypeofbiotopetoanother.Themorespecializedabiotope becomeswithrespecttolivingconditions,themoreuniformwillthe inhabitantsbecome,sothatonlyafewspecieswithlargenumbersof individualsmayexist.Thesmallerhabitatanomaliesfoundwithin thebiotopearecalledjacies.Thenumberoforganismsthatcanlive inanygivenbiotopemayinspecialcasesbedeterminedbyavailable suitablespace,butmorefrequentlyitwilldependuponthefoodsupply thatmaybeproducedwithinthebiotopeorbecarriedtoitfromoutside bycurrents.Thecommunityofformsinabiotopeiscalledabiocoenosis, Biotopeshavingcertaincharacteristicsincommon - forexample,. proximitytothecoastorestuarinelocality - areunitedintolarger divisionsknownasMochores. GeneralCharacterofPopulationsofthePrimaryBioticDivisions Underthepreviousheadingswehavedealtwiththeclassification ofthemarineenvironment.Forpurposesoffuturediscussionitisdesir- ableatthispointtooutlinebrieflyabroad,highlypracticalclassification ofthemarinepopulationinhabitingtheaboveprimarybioticdivisions, aclassificationbasednotonnaturalphylogeneticortaxonomicrelation- ships,asgivenonp.282,butratheronanartificialbasis,grouping heterogeneousassortmentsoforganismsdependinguponcommonhabits oflocomotionandmodeoflifeanduponcommonecologicaldistribution. Onthesegroundsthepopulationoftheseamaybedividedintothree largegroups - namely,thebenthos,nekton,andplankton,thefirst belongingtothebenthicregionandtheothertwotothepelagicregion. Inthebenthos(Gr.,deepordeep-sea)areincludedthesessile,creeping, andburrowingorganismsfoundonthebottomofthesea.Representa- tivesofthegroupextendfromthehigh-tideleveldownintotheabyssal depths.Thebenthoscomprises(1)sessileanimals,suchasthesponges, barnacles,mussels,oysters,crinoids,corals,hydroids,bryozoa,some oftheworms,alloftheseaweedsandeelgrasses,andmanyofthediatoms, (2)creepingforms,suchascrabs,lobsters,certaincopepods,amphipods, andmanyothercrustacea,manyprotozoa,snails,andsomebivalves andfishes,and(3)burrowingforms,includingmostoftheclamsand worms,somecrustacea,andechinoderms.

THESEAASABIOLOGICALENVIRONMENT281

Thenekton(Gr.,ewinwnhg)iscomposedofswimsnhganimalsfound inthepelagicdivision.Inthisgroupareincludedmostoftheadult squids,fishes,andwhales-namely,allofthemarineanimalsthatare abletomigratefreelyoverconsiderabledistances.Obviously,thereare noplantsinthisgeneralgroup. Inthepkwddon(Gr.,wanderer)isincludedallofthefloatingor driftinglifeofthepelagic.divisionofthesea,Theorganisms,both plantandanimal,ofthisdivisionareusuallymicroscopicorrelatively small;theyfloatmoreorlesspassivelywiththecurrentsandaretherefore atthemereyofprevailingwatermovements.Manyoftheanimalsare abletomakesomeprogressinswimming,althoughtheirorgansof locomotionarerelativelyweakandineffective.Theplanktonisdivided intotwomaindkisions,thephytoptinktonandthezooplankton.The formercomprisesallofthefloatingplants,suchasdiatoms,dinoflagellatesj coccolithophores,andsargassumweeds.Inthezooplanktonareincluded (1)myriadsofanimalsthatlivepermanentlyinafloatingstate,and (2)countlessnumbersofhelplesslarvaeandeggsoftheanimalbenthos andnekton.Sincetheplanktonandnektonoccupythesamebiotic realmandarepartofthesamecomrnunity,itisnecessaryalwaysto rememberthatthedistinctionisonebasedprimarilyonrelativesizeand speedofswimming,anddoesnotsignifyadivergenceofecological relationship. Eachofthesethreeecologicalgroupswillbemorefullydiscussedin laterchapters.

DevelopmentoflifeintheSea

Letusreviewbrieflytheobservationsthatindicatetherelative antiquityofthemarineenvironmentasabiologicalrealm.Itisnot possibletoknowwhenlifearoseinthesea,buttheclosesimilarityofthe chemicalcompositionofbodyfluidsandseawaterhasledtothesup- positionthattheseawasalreadysalineatthatearlytimeandthat, becauseoftheintimacyofprimitiveorganismswiththefluidenviron- ment,theelementspresententeredintothefmdamentalcomposition andmodeofmetabolismoftheprimitiveorganismsandaremaintained inpresent-dayformswithcertainmodific@ionsintheproportionsofthe primipalions,especiallymagnesium(table55).Theseinteresting relationshipshaveledtomuchspeculationrelativetothedevelopmentof organismsandthechemicalcompositionofprimitiveseas,butwecannot enterfurtheruponthatphaseoftheactionoftheenvironment.Peame (1936)hasgivensomereviewsandlistedliteraturepertainingtothese questionsandtothetheoryofmigrationofanimalsfromseatoland. Thepartplayedbytheseainthedistributionandmaintenanceof present-daylifeuponourglobeisavitalone.Theseaitselfisabundantly populated,andnolifecouldexistonlandwereitnotfortheperpetual

282THESEAASABIOLOGICALENVIRONMENT

watercycleofevaporation,precipitation,anddrainagebetweenseaand land.Onlyintheseawoulditbepossibletoapproachanydegreeof self-sufficiencyasabiologicalrealm,andhistoricallytheseahasacteda principalroleinthedevelopmentofanimallife. Thattheseaistheoriginalenvironmentofanimallifeisstrongly indicatedbycertainfactsthatpointtothegreaterageofmarinelife ascomparedtoterrestrialandfresh-waterfaunastowhichithasseem- inglygivenrise.Evidencepointingtoagreaterageofmarinefauna overtheterrestrialandfresh-waterfaunasismainlyalongfourlines: (1)generalcompositionofpresent-dayfaunas,(2)similarityinthe chemicalcompositionofbodyfluidsandseawater,(3)lifehistories, and(4)paleontologicalrelationships. (1)Thewholeanimalkingdomisdividedintoanumberofprimary divisions,eachknownasaph@.m.Eachphylumiscomposedofanimals havingcertainfundamentalmorphologicalsimilaritiesnotpossessedby anyanimalsofotherphyla.Thus,anatural,asopposedtoartificial, relationshipisindicated.Eachphylumisthendividedintonatural butmorerestrictedgroupsknownasclasses,andtheseinturnarefollowed byotheryetlowerdivisionsinthefollowingmanner:

Phylum

class Order

Family

Genus

Species

Speciesareformedofindividuals,andthemorphologicalfeatures bywhicheachspeciesischaracterizedarelessfundamentalandpresum- ablyofmorerecentoriginthanthosecharacterizingthegenera.Simi- larly,thegenericstructuresarelessfundamentalthanthoseoffamilies, andsoontothehighestdivision,whichisbasedonstructuresofgreat antiquity. Areviewofallthehigherormajordivisions - namely,thephyla andclassesofanimallife-revealsthestrikingpreponderanceofmarine groups.Alloftheseventeenphyla(usingthetaxonomicrankingofH.S. Pratt,1935,inManualojInvertebrateAnimals)arerepresentedinthe sea,andmost,ifnotall,arebelievedtohaveoriginatedthere.The followingfiveareexclusivelymarine:Ctenophora,.Echinodermatu, Phoronidea,Brachiopoda,C'haetogaatha.Someauthorsrecognizefewer thanseventeenphyla,butthishasonlytheeffectofincreasingthepre- ponderanceofpurelymarineclasses. Oftheforty-sevenclasses(whereonlysubphylaweregivenunder phyla,theyarehereratedasclasses)ofinvertebratesasgivenbyPratt, twenty-one,or43.7percent,areexclusivelymarine,andonlythree,or

THESEAASABIOLOGICALENVIRONMENT283

6.2percerit,areexclusivelynonmarine.OfthesubphylumVertebrate,

mdymembersoftheclassAmphibiaarenonmarine,whiletheotherfour classessharemembersinbothmarineandnonmarineenvironments. Thefishesarepredominantlymarine,whilethereptiles,birds,and mammalsarepredominantlyterrestrial.Theamphibiansrepresent thehighestnonmarinegroup. Theeedivisionsdemonstratetheastonishingvarietyofmarine animals,asfarasthemajorphylogeneticgroupsareconcerned.How- eve~theterrestrialenvironmentharborsthegreatestnumberofspecies, mainlyowingtothelargenumberofspeciesofonerestrictedgroup, theinsects,whicharealmosttotallyabsentfromthesea.Thepresence intheseaofsomanymajorgroups,manyofwhicharerestrictedtothe sea,indicatesthegreattendencyonthepartofthemarineenvironment topreservethegroupsthathaveoncebecomeevolved. Itshouldbenotedalsothat,inadditiontotheremarkablediversity ofmarinelifeintheocean,thereisaconspicuousprimitiveelement, asjudgedbysimplicityofstructure,inthegroupsrepresented.In theseathereisamorecompletedevelopmentalseriesofanimallifethan existsanywhereelse,becauseofwhich,andalsobecauseofthenatural andiritimaterelationshipsoftheorganismstothesea-watermed~um,the studiesissuingfromthemarinebiologicallaboratorieshavecontributed vastlytoinformationonbiologicalproblemsdealingwithdevelopment andmaintenanceoflife. Therelativeuniformityofthemarineenvironmenthasbeeninstru- mentalnotonlyinpreservingthediversityofformsbutalsoinretaining agenerallymoreprimitivecharacterascomparedwithterrestrialand fresh-wateranimals.Itistruethatintheseawedofindassociated withthelowerformsanumberofhighlydevelopedanimalsthatmustbe consideredmarinebecauseoftheirdependenceonthesea.Theseare theseals,whales,certainreptiles,fishes,andbirds.Allofthesegroups, however,havehadalargepartoftheirracialdevelopmentintheterres- trialandfresh-waterhabitat.Theyhavemorerecentlyrevertedtothe seaandhaveonlysecondarilybecomeadaptedtoit.Theteleostfishes, whicharebelievedtohaveevolvedtotheirpresentstatusinfreshwater, wereoriginallyderivedfrommarinestock. (2)Therelationofbodyfluidstoseawaterhasalreadybeendie. cussed(p.269). (3)Astudyofthelifehistoriesofinvertebratessuggeststheantiquity ofmarineliie.Duringtheearlyhistoryoftheindividualsofsome animalgroupsthelarvalstagesaremarkedlydifferentinstructureand habitfromthematurephase.Thelarvalstages,whichsometimes resemblethematurestagesofothergroupsoroniythelarvaeofother groups,arethoughttoreflectastructuralsimilaritytoancestralstock. Whetherornotthkisarealrecapitulationofracialhistoryoronlyan

284THESEAASABIOLOGICALENVIRONMENT'

expressionofindividuallarvaladaptationtoacommonenvironmentis importantinseekinganunderstandingofthesimilarity.Whatever thetruthmaybe,itiswellknownthatmostmarineinvertebratespass throughanearlystageduringwhichthelarvaeinnowaystructurally suggesttheirparentage,butmayevenhavestrikingfundamental similaritytoexistinglarvaeofothergroups.Fromthisithasbeen possibletoestablishtypesoflarvae-forexample,thetmchophoreof theAnnelidaandMollusca,andthenuupliusofthecrustaceangroups (fig.80,p.321). Thereisatendencyforsomeaggressiveanimalgroupstodesert theseaforfresh-waterorlandhabitats.Thwisshownbythecrusta- ceans,amongwhichthereareformssuchastheprawn,Zh-iocheir,which entersfreshwateratayoungstagebutwhenmaturereturnstothesea tospawn.Thelandcrabs,Cardisoma,Gecarciwa,andsoforth,also gothroughafree-swimminglarvalstageinseawater. (4)Itiswellknownthatanimalfossilsoccurringintheoldestknown fossiliferousrocksoftheearth'scrustaremainlymarineforms. MarineanimalswereabundantandbecamefossilizedintheCambrian period(500millionyearsago),whencertainportionsofthelandhow abovesealevelformedapartoftheseabottomalongthecoastsofancient seas.Severalinvertebratephylawerealreadydeveloped,andsuch formsastrilobitesandbrachlopodswereparticularlyabundant. Thechiefrolesofthemarineandterrestrialenvironmentsinthe developmentoflifemaybesummarizedbysayingthatthegreatpart playedbytheformerischieflyinthedevelopmentandmaintenanceofa widediversityoflowerforms,whileinthelattertheinfluenceofthemore rigoroushabitatshasproducedlessdiversityofformbutahighertype ofcomplexity. Theareawherethesetwogreatenvironmentsmeet,theintertidal zone,isinanintermediatepositionandsubjecttorapidandmarked vicissitudes,anditisfromherethatmuchofthemigrationtolandis supposedtohavetakenplace.

Bibliography

Bethe,A.1929.

IonendurchlassigkeitderKorperflachevonwirbellosen

ThierendesMeeresalsUrsachederGiftigkeitvonSeewasserabnormer

Zusammensetzung.PflugersArch.,221,p.344-362,1929.

Dakin,W.J.1935,Theaquaticanimalanditsenvironment.LinneanSot. NewSouthWales,Proc.,v.60,pts.1,2,p.viii-xxtil,1935. Ekman,Sven.1935.TiergeographiedesMeeres.Akad.Verlagsgesellsch.,

IApzig.542pp.,1935.

Gklen,T.1930.EpibiosisofGullrnarFjord.II.KristinebergsZOOLSta.

1877to1927,No.4,p.1-380,1930.

Hesse,Richard,W.C.&lee,andK,P.Schmidt.1937.Ecologicalanimal geography.Anauthorized,rewritteneditionbasedon"Tiergeographle aufoekologischerGrundlage,"byRichardHesse.JohnWiley&Sons.NewYork.597pp.,1937,

THESEAASABIOLOGICALENVIRONMENT285

Hewatt,WillisG.1937.Ecologicalstudiesonselectedmarineintertidal communitiesofMontereyBay,California.Amer.Midland

Naturalist,

V.18,p.161-206,1937.

Keys,Ancel.1933.Themechanismofadaptationtovaryingsalinityinthe commoneelandthegeneralproblemofosmoticregulationinfishes.Roy.

Sot.,Proc.,B,v.112,p.184-199,1933.London.

Macallum,A.B.1926.Paleochemistryofbodyfluidsandtissues.Physiol.

Rev.,v.6,p.316-357,1926.

Pantin,C.F.A.1931.Origin'ofthebodyfluidsinanimals.BioLReviews, v.6,p.459-482,1931.Cambridge,England. Pearse,A.S.1936.Themigrationsofanimalsfromseatoland.Durham,

N.C.,DukeUniv.Press,176pp.,1936.

Pratt,HenryS.1935.Amanualofthecommoninvertebrateanimalsexclusive ofinsects.Revised.Philadelphia,Blakiston,854pp.,1935. Shdford,V.E.,etal.1935.SomemarinebioticcommunitiesofthePacific CoastofNorthAmerica.Pt.1.Generalsurveyofthecommunities.

Eool.Monographs,v.5,p.250-332,1935.


Marine Biology Documents PDF, PPT , Doc

[PDF] bs marine biology subjects

  1. Science

  2. Environmental Science

  3. Marine Biology

[PDF] bsc marine biology subjects

[PDF] can marine biology help the environment

[PDF] can you be a marine biologist without a degree

[PDF] can you become a marine biologist without a degree

[PDF] do marine biologists travel the world

[PDF] free marine biology classes online

[PDF] free marine biology lessons

[PDF] free printable marine biology worksheets

[PDF] how does marine biology help society

Politique de confidentialité -Privacy policy