[PDF] Comprehensive Inorganic Chemistry





Loading...








Inorganic and nuclear chemistry

information in inorganic chemistry (including organometallic chemistry) have produced Comprehensive Organometallic Chemistry (Pergamon.




Comprehensive Inorganic Chemistry

The Chemistry of. OXYGEN. E. A. V. Ebsworth J. A. Connor and J. J. Turner. Chapter 22 of. Comprehensive Inorganic Chemistry. PERGAMON PRESS.

COMPREHENSIVE INORGANIC CHEMISTRY

COMPREHENSIVE. INORGANIC CHEMISTRY. EDITORIAL BOARD. J. ? BAILAR JR. Urbana. H. J. EMELEUS

Predictability of warfarin dose requirements: Theoretical

(30) J. C. Bailar “Comprehensive Inorganic Chemistry

The Literature of Inorganic Chemistry The following list includes

Chemistry of the Elements N. N. Greenwoo and A. Earnshaw; Pergamon Microscale Inorganic Chemistry




Wet milling of alumina and preparation of slurries for monolithic

A. F. Comprehensive Inorganic Chemistry; Pergamon: New. York 1973; Vol. 2

Introduction

Comprehensive inorganic chemistry. Pergamon Oxford. 30. Sneed MC

Monitoring the Electrochemical potential noise produced by coated

[3] J. C. Bailar: Comprehensive Inorganic Chemistry Pergamon. Press 1973. chemical potential noise measurements

Models for nicotinamide coenzymes. Isotope effect discrepancies in

Journal of the American Chemical Society j 102:9 / April 23 1980 (19) MacKay




The Chemistry of the Actinide and Transactinide Elements

Dec 19 1997 (1973) Comprehensive Inorganic Chemistry

[PDF] Comprehensive Inorganic Chemistry

The Chemistry of OXYGEN E A V Ebsworth, J A Connor and J J Turner Chapter 22 of Comprehensive Inorganic Chemistry PERGAMON PRESS

[PDF] 11 Introduction 12 Reference Books - Thieme Connect - Georg

Inorganic chemistry experienced a renaissance in the early 1940's, initiated by the so-called ture is given, which, while not being comprehensive, covers the more important ganic Chemistry, 5 volumes, Pergamon Press, Oxford, 1973

[PDF] The Literature of Inorganic Chemistry The following list includes

Three volumes, plus many supplements 3 Comprehensive Organometallic Chemistry, G Wilkinson, F G A Stone and E W Abel, editors; Pergamon Press, 1982

PDF document for free
  1. PDF document for free
[PDF] Comprehensive Inorganic Chemistry 58723_7chemistry_of_oxygen_1973.pdf

Comprehensive Inorganic Chemistry

EDITORIA

L BOAR D J . C . BAILA R JR. , Urbana H . J . EMELÉUS , F.R.S. , Cambridge tSI R RONAL D NYHOLM , F.R.S. , London A . F . TROTMAN-DICKENSON , Cardiff {Executive Editor)

The Chemistry of

OXYGE N E . A. V. Ebsworth, J. A. Connor and J. J. Turner

Chapte

r 2 2 o f

Comprehensiv

e Inorgani c Chemistr y

PERGAMO

N PRES S OXFOR D . NE W YOR K . TORONT O SYDNE Y . PARI S . BRAUNSCHWEI G

Pergamon Press Offices:

U.K . U.S.A . CANAD A

AUSTRALI

A FRANC E WES T GERMAN Y Pergamon Press Ltd., Headington Hill Hall, Oxford, OX3 OBW,

Englan

d

Pergamo

n Pres s Inc. , Maxwel l House , Fairvie w Park , Elmsford, New York 10523, U.S.A.

Pergamo

n o f Canad a Ltd. , 20 7 Queen' s Qua y West , Toronto 1, Canada

Pergamo

n Pres s (Aust. ) Pty . Ltd. , 19 a Boundar y Street , Rushcutters Bay, N.S.W. 2011, Australia

Pergamo

n Pres s SARL , 2 4 ru e de s Ecoles , 75240 Paris, Cedex 05, France

Pergamo

n Pres s GmbH , D-330 0 Braunschweig , Postfac h 2923
, Burgplatz 1, West Germany

Copyrigh

t © Pergamo n Pres s 197
3 All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the publishers Firs t editio n 197
3

Reprinted

, wit h corrections , fro m Comprehensiv e Inorgani c Chemistry , 197
5

Librar

y o f Congres s Catalo g Car d No . 77-18973
6

Printed

in Great Britain by A, Wheaton & Co, Exeter ISB N 0 0 8 01885
8 3 (har d cover ) ISBN 0 08 018857 5 (Flexicover)

PREFACE

Th e excellen t receptio n tha t ha s bee n accorde d t o Compre- /tensive Inorganic Chemistry sinc e th e simultaneou s publicatio n o f th e five volume s o f th e complet e wor k ha s bee n accompanie d b y th e ple a tha t section s shoul d b e mad e availabl e i n a for m tha t woul d enabl e specialist s t o purchas e copie s fo r thei r ow n use . T o mee t thi s deman d th e publisher s hav e decide d t o issu e selecte d chapter s an d group s o f chapter s a s separat e editions . Thes e chapter s will , apar t fro m th e correction s o f misprint s an d th e additio n o f prefator y materia l an d individua l indices , appea r jus t a s the y di d i n th e mai n work . Extensiv e revisio n woul d dela y publicatio n an d greatl y rais e th e cost , s o limitin g th e circulatio n o f thes e definitiv e reviews . A . F . TROTMAN-DICKENSO N

Executive

Editor vi i

22. OXYGEN

E . A . V . EBSWORT H

University of Edinburgh

J . A . CONNO R The University of Manchester an d J . J . TURNE R

The University, Newcastle-upon-Tyne

1 . OXYGEN 1.1 . DISCOVER Y O F OXYGEN * B y th e middl e o f the seventeenth century it was appreciated that air containe d a compo nen t associate d wit h breathin g an d burning . I n th e first theory of burning to become widely accepted , thi s componen t wa s calle d phlogiston . Whe n somethin g burned , i t wa s believe d t o releas e phlogisto n t o th e ai r aroun d it . I f th e burnin g too k plac e i n a seale d system , i t stoppe d afte r a tim e becaus e th e ai r i n th e syste m becam e saturate d wit h phlogiston . Ther e wer e seriou s difficultie s abou t thi s interpretation . Fo r instance , metal s suc h a s ti n gai n i n weigh t whe n the y burn . However , th e theor y wa s widel y accepte d unti l th e en d o f th e eighteent h century . Bot h th e experimentalist s generall y credite d wit h th e discover y o f oxygen , Josep h

Priestl

y an d Car l Wilhel m Scheele , wer e believer s i n th e phlogisto n theory . Indeed , Scheel e calle d hi s experiment s ".. . proof s tha t Hea t o r Warmt h consist s o f Phlogisto n an d Fir e Air" . Scheel e obtaine d oxygen , whic h h e calle d fire air , b y heatin g nitrates , mercuri c oxide , o r manganes e dioxid e i n retort s t o th e end s o f whic h bladder s ha d bee n fixed; Priestl y heate d mercuri c oxid e wit h a magnifyin g glas s an d collecte d th e ga s ove r water . Bot h foun d tha t th e ga s the y ha d obtaine d woul d suppor t combustio n bette r tha n doe s commo n air ; an d afte r som e experiment s wit h mic e Priestl y venture d t o breat h som e o f i t himself , wit h ver y pleasan t results . Priestl y isolate d wha t h e calle d "dephlogisticate d air " o n 1 Augus t 1774; after further experiments he wrote about his results to Sir John Pringle, the President o f th e Roya l Society , i n Marc h 1775
, an d hi s lette r wa s rea d befor e th e Societ y o n 2 3 March , whil e a detaile d accoun t o f hi s experiment s wa s publishe d i n th e sam e yea r i n th e secon d volum e o f his book Experiments and Observations on Different Kinds of Air. Scheele worke d a t abou t th e sam e time , bu t h e ha d difficultie s wit h hi s publisher s (a s other s hav e 1 M . E . Weeks , The Discovery of the Elements, 6th edn., published by the Journal of Chemical Education, Ne w Yor k (1956) ; D . McKie

, Antoine Lavoisier, Gollancz, London (1935); J. G. Gillam, The Crucible, Robert Hale, London (1954); The

Collected Papers of C. W. Scheele (translated by L. Dobbin), Bell, Edinburgh (1931). 68
5

686 OXYGEN: E. A. V. EBSWORTH, J. A. CONNOR AND J. J. TURNER

ha d sinc e then) , an d hi s book , Chemische Abhandlung von der Luft und dem Feuer, did not appea r unti l 1777
.

Neithe

r Priestl y no r Scheele , however , seem s full y t o hav e understoo d th e signifi canc e o f thei r discoveries . Whe n Priestl y wa s i n Pari s i n Octobe r 1774
, h e mentione d som e o f hi s result s t o th e distinguishe d Frenc h Academician , Antoin e Lavoisier , wh o wa s intereste d i n combustion . Lavoisie r wa s als o i n touc h wit h Scheele . H e repeate d an d extende d Priestly' s experiments , an d bega n t o conside r hi s result s i n th e ligh t o f th e deficiencie s o f th e phlogisto n theory . H e burne d ti n i n a seale d vessel , an d showe d tha t afte r combustio n th e weigh t o f th e vesse l wa s effectivel y unchange d a s lon g a s th e sea l wa s no t broke n ; thus the increase in weight of the tin on combustion could not be derived from outsid e th e vessel . I f th e ti n ha d los t phlogiston , the n th e phlogisto n mus t hav e negativ e mass . From these and other experiments he concluded that when the metal burned what reall y happene d wa s tha t i t combine d wit h somethin g i n th e air ; tha t "something " wa s th e ga s discovere d b y Priestl y an d Scheele , whic h Lavoisie r calle d "princip e oxygine" . Hi s vie w wa s no t absolutel y correct . H e though t h e wa s talkin g o f a principl e o f acidity , fo r "oxygine " come s fro m th e Gree k wor d oxus, meanin g sharp , an d henc e acid . Bu t i t wa s Lavoisier' s penetratio n o f mind , couple d wit h th e experiment s o f himself , of Priestly, an d o f Scheele , tha t le d t o th e collaps e o f th e phlogisto n theor y an d t o th e developmen t o f moder n chemistry . 1.2 . GENERA L Oxyge n i s th e eight h elemen t i n th e Periodi c Table . Th e electroni c structur e ca n b e represente d i n term s o f one-electro n wav e function s a s ls 2 2s 2 2p 4 ; th e groun d stat e an d som e o f th e lowe r excite d stat e term s ar e give n i n Tabl e 1 , wit h thei r energie s abov e th e groun d state , and some other important properties of oxygen are given in Table 2. Detailed calcula tion s o f th e wav e functio n fo r th e oxyge n ato m hav e bee n mad e usin g SC F an d othe r methods 2 . Oxyge n form s compound s wit h al l th e element s o f th e Periodi c Tabl e excep t fo r th e lightes t rar e gases . Thes e compound s coul d i n principl e b e forme d i f oxyge n wer e t o los e electron s (formin g cations) , t o gai n electron s (formin g anions ) o r t o shar e electron s (formin g bonds) . Th e first fou r ionizatio n potential s an d th e first tw o electro n affinitie s ar e give n i n Tabl e 2 . Thes e value s sho w tha t th e los s o f electron s fro m oxyge n i s a proces s requirin g muc h energy . Compound s ar e know n i n whic h oxyge n i s formall y cationic , suc h a s O/PtF^ , bu t i n al l know n case s th e cation s ar e polyatomic , an d i n genera l th e chemistr y o f oxyge n i s no t cationic . Th e doubl y charge d anio n O - 2 i s a commo n species , eve n thoug h it s formatio n fro m th e gaseou s ato m involve s substantia l absorptio n o f energ y ; i n ioni c oxide s th e lattic e energie s ar e ver y hig h an d mor e tha n compensat e fo r th e energ y o f formatio n o f O -2 . Thi s mus t als o explai n wh y th e singl y charge d 0 ~ i s onl y know n a s a n unstabl e specie s i n irradiate d solid s an d i n th e ga s phase ; i n oxide s i t i s unstabl e wit h respec t t o disproportionatio n t o O 2 an d O -2 . Th e coordinatio n number s o f 0~ 2 ions i n oxide s ar e se t ou t i n Tabl e 2 , an d ar e considere d i n mor e detai l i n sectio n 3.3 . Oxyge n ca n for m tw o additiona l bond s eithe r b y formin g tw o σ-bond s wit h othe r atom s o r groups , a s i n (ΟΗβ^Ο , o r b y formin g a σ-bon d an d a π-bon d wit h th e sam e othe r ato m 2 A . L . Mert s an d M . D . Torrey , / . Chem. Phys. 3 9 (1963 ) 694
; C . C . J . Roothaa n an d P . S . Kelly , Phys. Rev. 13 1 (1963 ) 1177
; E . Clementi , / . Chem. Phys. 4 0 (1964 ) 1944
.

GENERAL

TABL

E 1. ATOMIC ENERGY LEVELS OF OXYGEN

68
7

Electro

n configuratio n

2J22/>

4

2522/?3(450)35

2522/73(450)35

2522/73(450)3

^

2*22/73(450)3

^

2522/>3(450)4

y

2*22/73(450)4

5

2522/73(450)3ί

/

Ionization

:

2522/7

3 Stat e * "2/7 4 3 p 2/? 4 I D 2/7 4 1 5 3 5 55
0 3 5 35
0 3/ 7 5 p 3/ 7 3 p 4 5 55
0 4 5 35
0 3d 5£> 0 2/7 3 45
Ο / 2 1 0 2 0 2 1 1 2 3 2 1 0 2 1 4 3, 2 2,1, 0 3/

2 Energy above

groun d stat e (cm -1 ) 0. 0 158.
5 226.
5 1 5 867.
7 3 3 792.
4 7 3 767.8
1 7 6 794.6
9 8 6 625.3
5 8 6 627.3
7 8 6 631.0
4 8 8 630.8
4 8 8 630.3
0 8 8 631.0
0 9 5 476.4
3 9 6 225.
5 9 7 420.2
4 9 7 420.3
7 9 7 420.5
0 10 9 836.
7 Dat a fro m C . E . Moore , Atomic Energy Levels, NB S Circula r 46
7 (1949) . TABL

E 2. SOME PHYSICAL PROPERTIES OF THE OXYGEN ATOM

Ionizatio

n potentials a (eV )

Electro

n affinitie s (eV ) Atomi c weigh t (O 2 scale) d Atomi c radius e Ioni c radiu s d Va n de r Waal s radiu s r

Electronegativity

e 1st , 13.614 ; 2nd , 35.146
; 3rd , 54.934
; 4th , 77.39
4 1st , 1.478±0.00 2 b ; 2nd , (O , - > 0," 2 ) , -7.8±0. 3

15.999

4 0.7 3 A 1.3 9 ±0.00 4 A -1.5 0 A 3.4 6

Coordinatio

n number s a t oxygen: β (i ) I n ioni c o r near-ioni c compound s 2 (e.g . S1O2) , 3 (e.g . rutile) , 4 (e.g . ZnO) , 6 (e.g . MgO) , 8 (e.g . Na 2 0 ) (ii ) I n molecula r compound s 1 (e.g . CO) , 2 (e.g . H 2 0) , 3 (e.g . Me 2 OBF 3 ) , 4 (e.g . Be 4 OAc ) • C . E . Moore , Atomic Energy Levels, NB S Circula r 467
, 1949
. b R . S . Berry , J . C . Mackie , R . L . Taylo r an d R . Lynch , / . Chem. Phys. 4 3 (1965 ) 3067
. c Fro m thermochemica l cycles : M . F . C . Lad d an d W . H . Lee , Acta Cryst. 1 3 (1960 ) 959
. d A . E . Camero n an d E . Wickers , / . Am. Chem. Soc. 8 4 (1962 ) 4175
. e R . T . Sanderson , Chemical Periodicity, Reinhol d (1960) . ' A . Bondi , / . Phys. Chem. 6 8 (1964 ) 441
. Th e valu e i s abou t th e sam e fo r -O - an d fo r =0 . • Se e sectio n 3 . C.I.C . VOL II - Y

688 OXYGEN: E. A. V. EBSWORTH, J. A. CONNOR AND J. J. TURNER

o r group , a s i n )C=0 . Specie s i n whic h oxyge n form s jus t on e σ-bon d wit h anothe r grou p (e.g . OH ) hav e bee n detecte d spectroscopically , bu t the y ar e fre e radical s an d ar e no t normall y stabl e unde r chemica l conditions . Fo r once , al l scale s o f electronegativit y agre e tha t oxyge n i s a ver y electronegativ e element . Th e electronegativit y depend s o n th e orbital s an d th e electro n configuration ; calculation s hav e bee n mad e o f th e parameter s associate d wit h th e valenc e stat e o f oxygen , base d o n spectroscopi c measurements 3 . A s expected , th e doubl e bond s ar e shorte r tha n th e singl e bonds , an d the y hav e highe r energie s an d stretchin g frequencies . Bond s o f intermediat e orde r ar e foun d i n man y compounds , includin g oxyanion s suc h a s RCO^ , COj 2 , NOj, or SO4 2 ; relationship s betwee n bon d length , bon d orde r an d stretchin g forc e constant s hav e bee n describe d fo r B O 4 , C O 5 , N O <* , SiO 7 , P O 7 , S O 8 an d CI O 7 bonds . Lik e fluorine, oxyge n i s a ligan d whic h tend s t o promot e oxidatio n o f othe r element s t o whic h i t i s boun d (cf . Os VIII 04) . Bond s fro m 2-coordinate d oxyge n ar e usuall y considere d a s forme d fro m (roughly ) sp* hybrid orbitals, leading to bond angles at oxygen near the tetrahedral value. This leave s tw o lon e pairs , whic h ar e als o regarde d a s bein g i n roughl y sp*-orbita\s. Thu s i n eac h o f th e compounds H2O, Μβ2θ and F 2 0 , th e angle s ar e nea r 109
° (Tabl e 3) . However , oxyge n ca n als o us e it s lon e pair s t o for m eithe r intermolecula r σ-bond s o r intramolecula r

π-bond

s additiona l t o th e norma l σ-bonds .

Additional

σ-bonds. Despit e it s hig h electronegativity , oxyge n i s a lon e pai r donor .

Compound

s lik e Μβ 2 0 for m complexe s wit h acceptor s suc h a s BF3 , an d value s fo r th e energie s o f som e donor-accepto r bond s involvin g oxyge n ar e give n i n Tabl e 4 , wit h som e value s fo r othe r element s fo r comparison . Wate r i s a well-know n dono r ligan d i n transitio n meta l chemistry ; oxyge n i s als o a hydroge n bon d acceptor , a s i n carboxyli c aci d dimer s an d i n ice . Al l thes e interaction s involv e th e lon e pairs . I n ic e an d i n basi c berylliu m acetate , th e angle s a t th e 4-coordinate d oxyge n atom s ar e roughl y tetrahedral , whic h als o implie s tha t th e lon e pair s ar e i n approximatel y spi-orbitals; similarly , i n HaO + , whic h i s isoelec - troni c wit h NH3 , th e angl e i s nea r 109°
. I n compounds , wher e i t form s tw o σ-bond s (e.g . Me20) , oxyge n i s a har d (clas s A ) base , thoug h i n compound s lik e Me2C= 0 i t ha s som e "soft " character . Wate r come s nea r th e "smal l Δ " en d o f th e spectrochemica l series ; wate r an d OH ~ hav e smal l trans-eïïects, an d i n th e nephelauxiti c serie s wate r an d OH ~ com e clos e t o F ~ a s ligand s wit h th e smalles t effect . Internal π-bonding. If an attached atom or group Q has empty orbitals of π-symmetry relativ e t o th e Q- 0 σ-bond , thes e wil l overla p th e lon e pai r orbital s a t oxygen , an d th e overla p ma y lea d t o th e formatio n o f a dono r π-bond . Thu s i n carbo n monoxid e th e C O bon d i s o f highe r orde r tha n 2 , an d th e strengt h o f th e bon d ca n b e attribute d a t leas t partl y t o a n interactio n o f th e for m (0 + = C - ) . I n compound s i n whic h oxyge n i s formin g tw o o r mor e σ-bonds , dono r π-bondin g lik e thi s wil l affec t bon d angle s a t oxygen . Th e dono r π-overla p wil l b e greates t whe n th e lon e pair s ar e i n pur e /?-orbitals . If one lone pair i s i n a pur e /^-orbital , th e tw o σ-bond s an d th e othe r lon e pai r mus t b e buil t fro m on e s~ and two /7-orbitals. This would lead (if all three σ-orbitals are equivalent) to an angle of

120°

. If both lone pairs are in pure /7-orbitals, the σ-bonds must be built from 5/7-orbitals, 3 G . Pilcher and H. A. Skinner, /. Inorg. Nucl. Chem. 24 (1962) 937. 4 J . Krogh-Moe , Acta Chem. Scand. 17 (1963) 843. 5 J . P . Fackle r and D. Coucouvanis, Inorg. Chem. 7 (1968) 181. * Yu . Ya . Kharitonov , Izv. Akad. Nauk SSSR, Otdel Khim. Nauk 1962, 1953. 7 E . A . Robinson , Can. J. Chem. 41 (1963) 3021. * P . Haake , W. B. Miller and D. A. Tyssee, /. Am. Chem. Soc. 86 (1964) 3577.

GENERAL

TABL E 3 . ANGLE S A T OXYGE N I n specie s QO

Z Angle

1 . Neither Z nor Q π-acceptors: H 2 0 F 2 0 (CH 3 ) 2 0 CH3O H RbO H 2 . Q, π-acceptor; Z, not:

S1H3OCH

3 3 . Q and Z both π-acceptors : C1 2 0 CI2O 7 SiH 3 OC 6 H 5 (SiH 3 ) 2 0 SiOS i i n silicate s (GeH 3 ) 2 0 [0 3 POP0 3 ]- 4 [0 3 SOS0 3 ]- 2 [0 3

CrOCr0

3 ]" 2 [CI5MOMCI5]- 4 ( M = Ru , Re ) 4 . Q 3 0+ : H 3 0 + (ClHg) 3 0 +

104.52

° 103.
1 ±0.05 °

111.5±1.5

° 109
° ±3 ° 180
° 120.
6 ±0.9 °

110.8±1

°

118.6±0.7

° 12

1 ±1°

144.
1 ±0.9 °

140-180

° 126.
5 ±0.3 ° 133.5
° 124
° 115
° 180
° 112
° 120

° How

measure d vib . ? wav e E D E D ? wav e E D E D E D E D E D X-ra y E D X-ra y X-ra y X-ra y X-ra y X-ra y X-ra y Phase vap . vap . vap . vap . vap . vap . vap . vap . vap . vap . soli d vap . soli d soli d soli d soli d soli d soli d Reference a b c c d e f g h i j k 1 m n 0 P q a W . S . Benedict , N . Gaila r an d E . K . Plyler , / . Chem. Phys. 2 4 (1956 ) 1139
. b Y . Morin o an d S . Saito , / . Mol. Spectrosc. 1 9 (1966 ) 435
. c K . Kimur a an d M . Kubo , / . Chem. Phys. 3 0 (1959 ) 151
. d C . Matsum a an d D . R . Lide , / . Chem. Phys. 5 0 (1969 ) 71
. e C . Glidewell , D . W . H . Rankin , A . G . Robiett e an d G . M . Sheldric k (t o b e published) . f J . D . Dunit z an d K . Hedberg , / . Am. Chem. Soc. 7 2 (1950 ) 3108
. 8 B . Beagley , Trans. Faraday Soc. 6 1 (1965 ) 1821
. h C . Glidewell , D . W . H . Rankin , A . G . Robiette , G . M . Sheldrick , B . Beagle y an d J . M . Freeman , Trans. Faraday Soc. 6 5 (1969 ) 2621
. 1 A . Almenningen , O . Bastiansen , V . Ewing , K . Hedber g an d M . Traetteberg , Acta Chem. Scand. 17 (1963) 2455. J D . W . J . Cruickshank , / . Chem. Soc. 1961
, 5486
; D . W . J . Cruickshank , H . Lynto n an d G . A . Barclay , Acta Cryst. 1 5 (1962 ) 493
. k C . Glidewell , D . W . H . Rankin , A . G . Robiette , G . M . Sheldrick , B . Beagle y an d S . Cradock , / . Chem. Soc. (A) , 1970
, 315
. 1 D . M . Macarthu r an d C . A . Beevers , Acta Cryst. 1 0 (1957 ) 428
. m H . Lynto n an d M . R . Truter , / . Chem. Soc. 1960
, 5112
. n C . A . Brystro m an d K . A . Wilhelmi , Acta Chem. Scand. 5 (1951) 1003. 0 A . M . Mathieson , D . P . Mello r an d N . C . Stephenson , Acta Cryst. 5 (1952 ) 185
; J . C . Morrow , Acta Cryst. 1 5 (1962 ) 851
. p C . E . Nordman , Acta Cryst. 1 5 (1962 ) 18 . q S . Séavniëa r an d D . Grdenié , Acta Cryst. 8 (1955 ) 275
.

690 OXYGEN: E. A. V. EBSWORTH, J. A. CONNOR AND J. J. TURNER

TABL

E 4. GAS-PHASE DISSOCIATION ENTHALPIES FOR SOME

MOLECULA

R COMPLEXES (kcal mol

-1 )

Comple

x Me 2 OBF 3 Et 2 OBF 3 THFBF 3 Me 2 OBMe 3 Me 2 OAlMe 3 Me 2 OGaMe 3 Me 2 OBH 3 AH 13. 3 10. 9 13. 4 a b 9. 5 a Complex Me 2 SGaMe 3 Me 2 SBH 3 Me 3 NBF 3 Me 3 NAlMe 3 Me 3 NGaMe 3 Me 3 PBF 3 AH ~ 8 5. 2 b b 2 1 18. 9 Dat a from F. G. A. Stone, Chem. Rev. 58 (1958) 101. a To o unstable to study. b To o stable to determine. c Fo r dissociation into Me 2

S and B

2 HÔ . an d th e angl e at oxygen will be 180°. These possibilities, which are represented below in valence-bon d terms , ar e extreme s : intermediate angles might be expected, deriving from a balanc e betwee n π-bondin g (widenin g th e angle , an d removin g electron s fro m oxygen ) an d charg e distributio n (whic h wil l ten d t o kee p electron s o n th e oxyge n atom ) :

Interna

l π-bondin g wil l lea d t o shorte r an d stronge r bonds , an d shoul d weake n th e dono r propertie s o f the oxygen atom; the shortness and strength of bonds between oxygen and borono , silicon ™ o r transitio n elements 1 1 hav e bee n accounte d fo r i n term s o f thi s typ e of interaction . Severa l compound s are known in which oxygen is bound to one or two

π-acceptor

s an d in which the angle at oxygen is unusually wide (see Table 3). A similar argumen t coul d b e use d t o explain why angles in ChO + migh t b e neare r 120
° tha n 109°
;

π-interaction

s betwee n silico n an d Q woul d b e greates t i f the lone pair at Q were in a pure /7-orbital . However , thi s argumen t shoul d b e use d wit h som e caution ; th e angl e a t oxyge n i n RbO H i s 180°, yet there is unlikely to be significant π-bonding between rubidium and oxygen . Oxyge n i s known in a variety of formal oxidation states, from +2 to - 2. Of these, th e positiv e state s ar e (b y definition ) onl y foun d whe n oxyge n i s bound to a more electro negativ e element - whic h mus t b e fluorine - or forms part of a cation such as 0}. In other oxidatio n state s greate r tha n - 2 the oxygen atom concerned must either be bound to at leas t on e othe r oxyge n ato m o r for m par t o f a catio n o r fre e radical . A potential diagram fo r th e redo x chemistr y o f oxyge n i n aqueou s solutio n i s give n i n Tabl e 5 . » C. A. Coulson and T. W. Dingle, Acta Cryst. B24 (1968) 153. ! 0 D . W. J. Cruickshank, /. Chem. Soc. 1961, 5486. 1 1 F . A . Cotton and R. M. Wing, Inorg. Chem. 4 (1965) 867.

ISOTOPES OF OXYGEN

TABL E 5 . REDUCTIO N POTENTIAL S O F OXYGE N 69
1 (a)E ° I L , + 06 7 ^-HO2- +1-

5 +1-77

1 1 +Π·72 . ττ π πτ τ \ vt π +2-82 1 9

H Π

_ J +1-22 9 (b ) Ε · ο 2 -°' 5 6 o r +· 0 ' 4 1 ΗΟ

Γ =^- 0H+OH--ÌM20H-

-00 8 +0-8 7 Dat a fro m W . L . Latimer , The Oxidation States of the

Elements

and their Potentials in Aqueous Solution, 2n d edn. , Prentice-Hal l (1952) . 1.3 . ISOTOPE S O F OXYGE N

Unstabl

e Isotope s Th e know n radioactiv e isotope s o f oxyge n ar e al l artificial ; the y ar e liste d i n Tabl e 6 wit h representativ e nuclea r reaction s b y whic h they hav e bee n made . Th e half-live s ar e al l s o shor t tha t th e isotope s ar e unsatisfactor y fo r trace r work , thoug h som e trace r studies 1 2 hav e bee n mad e wit h O 15 . TABL E 6 . RADIOACTIV E ISOTOPE S O F OXYGE N

Isotop

e 01 3 O H OI S Öl * O2

0 Formation

Oi*(He3

, He*)Oi3

Ci2(He3

, /i)0"

Oi*(He3

, a)Oi5

Oi8(/i

, γ)0™ Oi8(/ , />)O2

0 ti, sec

7 3 12 2 29.
4 1

4 Decay

ß +

ß+

ß~ ß~

Referenc

e a b b b b • G . W . Butler , U S Atomi c Energ y Comm . UCRL-17783 , CFSTI , 1967.
CA 6 8 (1968) 64756η
. b R . L . Heath , i n Handbook of Chemistry and Physics, Chemica l Rubbe r Co. , Ne w Yor k (1967) . Stabl e Isotope s B y fa r th e mos t abundan t isotop e o f oxyge n i s O 16 , bu t natura l oxyge n (bot h elemen t an d compounds ) contain s smal l amount s o f O 1 7 an d O 1 8 (Tabl e 7) . Th e proportion s o f 1 2 C . T . Doller y an d J . B . West , Nature 18 7 (1960 ) 1121
.

692 OXYGEN: E. A. V. EBSWORTH, J. A. CONNOR AND J. J. TURNER

thes e isotope s depen d t o a significan t exten t upo n th e sourc e o f oxygen . Natura l processe s suc h a s th e evaporatio n o f wate r lea d t o som e fractionatio n becaus e o f th e influenc e o f molecula r weigh t upo n physica l properties ; ther e ar e smal l difference s i n th e proportio n o f O 1 8 i n wate r fro m differen t natura l sources , an d indee d th e proportio n o f O 1 8 i n ocea n wate r varie s wit h th e depth 13 . Ther e i s als o som e isotopi e fractionatio n i n chemica l cycle s i n natur e tha t involv e oxygen . Th e variation s i n apparen t atomi c weigh t o f natura l oxyge n ma y b e a s great 1 4 a s ±0.0003 . TABL E 7 . STABL E ISOTOPE S O F OXYGE N

Isotop

e 01 6 OH " 01 8 Mass " (Ci 2 = 12.00 0 00 0 0 ) 15.99 4 91
5 16.99 9 13 4 17.99 9 16

0 Natural abundance

a

99.758

7 0.037 4 0.203 9 a W . H . Johnso n an d A . O . Nier , Handbook of Physics, McGraw - Hill , 2n d edn. , 1967
, pp . 9-63 . b Nuclea r spi n = 5/2 ; nuclea r magneti c momen t = 1.8930 nuclear magnetons ; nuclea r quadrupol e momen t = - 4ex 10~ 27
cm 2 . (Fro m J . A . Pople , W . G . Schneide r an d H . J . Bernstein , Nuclear Magnetic

Resonance,

McGraw-Hill , 1959.
) Man y differen t processe s hav e bee n describe d fo r producin g molecula r oxyge n o r oxyge n compound s enriche d i n O 1 7 o r O 18 ; som e mak e us e o f th e slightl y differen t equilibriu m constant s fo r compound s o f O 1 6 an d O 1 7 o r O 18 , bu t mos t depen d o n som e physica l propert y o f O 2 o r oxyge n compound s suc h a s H2 O o r N2O . I n practic e th e mos t importan t processe s ar e th e fractiona l distillatio n o f wate r an d (fo r hig h enrichments ) th e therma l diffusio n o f oxyge n gas ; th e ga s fe d int o th e colum n fo r separatio n b y therma l diffusio n ma y b e obtaine d b y th e electrolysi s o f wate r tha t ha s alread y bee n enriche d i n O 1 8 b y fractiona l distillation . Heav y wate r o f enrichmen t u p t o 9 8 atom- % O 1 8 an d 2 0 atom- % O 1 7 i s commerciall y available, a s i s oxyge n ga s 99
% i n O 1 8 o r 90-95
% i n O 17 . Thes e ar e th e mos t commonl y use d startin g material s ; of course it is possible to produce enriched O2 b y th e electrolysi s o f enriche d water . Sample s o f oxyge n an d it s compound s ar e usuall y analyse d fo r isotopi e compositio n b y mas s spectrometr y ; if compounds are involatile, thei r oxyge n mus t b e converte d int o som e volatil e specie s first. O 18 . Oxygen-1 8 ha s bee n extensivel y use d t o stud y mechanism s o f reactions , an d i n particula r o f hydrolysis . Th e exchang e rate s o f man y commo n oxyacid s an d oxyanion s hav e bee n studie d quantitativel y o r semi-quantitatively 15 ; th e structure s o f simpl e molecule s containin g oxyge n hav e bee n determine d b y microwav e spectroscopy 1 6 wit h th e hel p o f sample s enriche d i n O 18 , an d vibration s involvin g th e movemen t o f oxyge n atom s hav e bee n identifie d b y th e exten t t o whic h the y shif t i n sample s enriche d i n O 18 . I n th e infrare d 1 3 M . Dole , J. Gen. Physiol. 4 9 (1965 ) 5 . 1 " A . E . Camero n an d E . Wickers , / . Am. Chem. Soc. 8 4 (1962 ) 4175
. 1 5 D . Samuel , i n Oxygenases (ed . O . Hayashi) , Academi c Press , Ne w Yor k (1962) . 1 6 M . C . L . Gerry , J . C . Thompso n an d T . M . Sugden , Nature 21
1 (1966 ) 846
.

ISOTOPES OF OXYGEN 693

spectr a o f adduct s o f molecula r oxyge n wit h compound s o f transitio n metals , there is a band nea r 800-90
0 cm" 1 tha t i s assigne d t o th e (O-O ) stretchin g mode . I n (tbuNC) 2 Ni(0 2 ) an d (tbuNC)2Pd(02 ) thi s ban d split s int o thre e whe n th e comple x i s prepare d fro m 0 2 con tainin g 2 5 atom- % O 18 : th e thre e component s ar e du e t o stretchin g mode s i n L 2 M(02 6 ) , L 2 M(0 16 0 18 ) an d L 2 M(02 8 ) ; th e relativ e intensitie s an d th e difference s i n frequenc y betwee n th e band s confir m thi s assignment 17 . A simila r approac h ha s le d t o th e identifica tio n i n matrice s a t lo w temperature s o f activ e specie s containin g mor e tha n on e oxyge n atom . Th e preparatio n o f O 1 8 i n naturall y occurrin g system s ha s bee n muc h studie d i n con nectio n wit h climatolog y an d palaeoclimatology . Th e variatio n i n O 1 8 conten t o f arcti c sno w ove r th e yea r help s t o establis h th e origi n o f th e wate r fro m whic h th e sno w wa s formed 18 . I n palaeoclimatolog y i t i s th e oxyge n isotopi e compositio n o f carbonat e i n fossil s tha t i s measured 19 » 20 . Th e variatio n wit h temperatur e o f th e equilibriu m constan t fo r th e reactio n H 2

Oi8+l/3(C0

16 )~ 2 ^H 2

Oi6+l/3(COj

8 )- 2 ha s bee n determine d accurately . Certai n fossi l shell-fis h contai n carbonat e rock . Th e temperatur e a t whic h thi s carbonat e wa s precipitate d ca n b e determine d fro m th e isotopi e distributio n o f th e carbonat e i n th e shell , usin g th e equatio n / = 16.5-4.3^+0.14<5 2 wher e t i s th e temperatur e i n ° C an d δ i s a measur e o f th e differenc e betwee n th e O 1 8 conten t o f th e sampl e an d o f th e standar d workin g gas . Thi s us e o f th e O 1 8 conten t o f carbonat e i s sometime s referre d t o a s th e carbonat e thermometer . I n practice , matter s ar e no t s o simple 19 . Fo r th e informatio n obtaine d t o hav e an y meaning , certai n condition s mus t b e fulfilled . Th e carbonat e mus t hav e bee n precipitate d i n isotopi e equilibriu m wit h th e surroundin g water ; th e isotopi e compositio n oftha t wate r mus t b e known ; an d ther e mus t hav e bee n n o subsequen t exchange . Thoug h som e shell fish (e.g . coral ) precipitat e carbonat e tha t i s no t i n equilibriu m wit h th e surroundin g water , i n mollusc s th e equilibriu m i s maintained . Fo r shell s fro m ope n ocean s i t i s usuall y assume d tha t th e O 1 8 conten t o f th e surroundin g wate r wa s no t ver y differen t fro m tha t o f ocea n wate r nowadays ; fo r isolate d ocean s thi s ma y wel l no t b e s o becaus e o f suc h thing s a s evaporation , an d allowanc e mus t b e mad e fo r thi s (perhap s b y usin g th e O 1 8 conten t o f th e phosphat e o f th e shell) . Bu t i t i s wit h th e thir d conditio n tha t th e mos t seriou s diffi cultie s arise . I t i s har d enoug h t o mak e sur e tha t th e oxyge n fro m th e carbonat e i n th e shel l i s extracte d an d analyse d withou t exchange ; i t i s eve n harde r t o mak e sur e tha t nothin g untowar d ha s happene d t o th e sampl e betwee n fossilizatio n an d analysis . Fortunatel y ther e ar e som e interna l test s tha t ca n b e applied . Fo r example , i n most , bu t no t all , fossi l shell s studie d th e rati o o f (0 18 :0 16 ) t o Sr+ 2 i s th e sam e a s i t i s i n ocean s a t present ; therefor e shell s i n whic h thi s rati o i s ver y differen t ma y b e suppose d t o hav e undergon e "diagehetic " change s (i n othe r word s the y ar e useles s fo r isotopi e analysis) . However , ther e i s alway s th e naggin g possibilit y tha t a particula r sampl e ma y b e atypical - som e molluscs , fo r instance , d o no t deposi t carbonat e uniforml y throughou t th e year - an d i t i s rar e tha t 1 7 K . Hirota , M . Yamamoto , S . Otsuka , A . Nakamur a an d Y . Tatsuno , Chem. Communs. 1968
, 533
. i s L . Alda z an d S . Deutsch , Earth Planet Sci. Letters 3 (1967 ) 267
. w H . A . Lowenstam , i n Problems in Palaeoclimatology (ed . A . E . M . Nairn) , Wile y (1964) , p . 227
. 2 0 R . Bowen , Palaeotemperature Analysis, Elsevier , Amsterda m (1966) .

694 OXYGEN: E. A. V. EBSWORTH, J. A. CONNOR AND J. J. TURNER

enoug h goo d sample s fro m a particula r are a ar e availabl e fo r a prope r statistica l analysis . Som e claim s abou t palaeotemperatur e ma y hav e bee n base d o n ver y slende r evidenc e derive d fro m th e carbonat e thermometer ; bu t whe n al l i s sai d an d don e th e remarkabl e thin g i s tha t suc h a n extrapolatio n t o th e temperature s o f pas t age s i s eve n possible . O 17 . Th e isotop e O 1 7 i s importan t despit e it s smal l natura l abundanc e becaus e i t i s th e onl y stabl e isotop e o f oxyge n wit h nuclea r spin , an d s o i s th e onl y on e tha t ca n b e use d t o stud y oxyge n n.m.r . o r oxyge n hyperfin e interaction s i n electro n resonanc e spectroscopy 21
.

Unfortunately

, however , th e spi n o f 5/ 2 i s associate d wit h a larg e quadrupol e moment , leadin g t o broa d n.m.r . line s becaus e o f th e relativel y rapi d relaxatio n o f th e oxyge n nuclei .

Chemica

l shift s ar e difficul t t o determine , an d couplin g i s ofte n no t observe d a t all . How ever , broadenin g du e t o quadrupola r relaxatio n ha s itsel f bee n use d t o giv e informatio n abou t th e field gradien t a t th e oxyge n nucleus ; line s ar e sharpe r whe n oxyge n i s boun d t o a n electropositiv e element , eve n i n a hig h oxidatio n state , becaus e the n th e oxyge n ato m approximate s t o th e io n O^ 2 i n whic h th e field gradien t a t th e nucleu s i s zero . Som e value s fo r O 1 7 chemica l shift s ar e give n i n Tabl e 8 ; the y wer e measure d relativ e t o H2O 1 7 (usuall y a s externa l standard) , an d som e o f th e uncertaintie s ar e substantial . I t i s clea r fro m thes e an d othe r value s tha t oxyge n formin g tw o σ-bond s give s resonanc e i n th e rang e -25 0 t o 0 pp m fro m H 2 0 1 7 ( +ve to high field), but that oxygen forming a double bon d give s resonanc e i n th e rang e - 140
0 t o - 25

0 ppm. The dichromate ion

22
, fo r instance , give s tw o resonances , th e on e (stronge r an d sharper ) a t - 112 9 pp m du e t o th e terminal , an d th e othe r (weake r an d broader ) a t - 34 5 pp m du e t o th e bridgin g "oxyge n atoms .

Similarly

23
, aqueou s aceton e give s a singl e O 1 7 resonanc e i n th e )C= 0 region , a t - 52

3 ppm, indicating that the molecule dissolves unchanged ; formaldehyde gives a

resonanc e a t - 5 1 ppm , i n th e "single-bond " region , s o i t i s conclude d tha t th e specie s presen t i s th e hydrate d for m H 2 C(OH) 2 . Acetaldehyd e give s tw o peaks , th e on e a t - 55

0 ppm associated with the unchanged molecule CH3CHO, and the other at -67 ppm

associate d wit h th e hydrate d for m CH3CH(OH) 2 . Exchang e betwee n thes e tw o specie s an d th e solven t i s slo w o n th e n.m.r . timescale . Fo r doubly-boun d oxyge n ther e i s a correlatio n betwee n th e chemica l shif t an d th e frequenc y o f th e first ultraviolet/visibl e absorptio n band 24
. Furthermore , a correlatio n ha s bee n reporte d betwee n bon d length , bon d orde r an d O 1 7 chemica l shift s i n som e Cr(VI)- 0 species 2 ^ . Th e ful l rang e o f validit y o f th e latte r correlatio n ha s stil l t o b e established . Io n hydratio n ha s bee n extensivel y studie d b y O 1 7 n.m.r . spectroscopy . Fo r certai n paramagneti c ion s ther e ar e "contac t shifts " whic h wit h C0+ 2 an d Ni + 2 lea d t o th e observa tio n o f separat e resonance s du e t o wate r i n th e hydratio n shel l o f th e catio n an d t o th e solven t itself . For certain diamagnetic ions which exchange their hydration water slowly wit h th e solvent , separat e O 1 7 resonance s fo r solven t an d fo r solvatin g wate r hav e bee n observe d (Tabl e 9) . Ther e ar e othe r case s wher e exchang e o n othe r ground s i s know n t o b e slow , bu t where , non e th e less , th e onl y O 1 7 resonanc e observe d i s tha t du e t o th e solvent . Th e additio n o f Co+ 2 o r Dy+ 3 ion s t o th e solutio n cause s th e solven t resonanc e t o shif t t o lo w field throug h th e "contac t shift " mechanism , an d s o ca n expos e th e resonanc e du e t o th e hydrate d diamagneti c cation ; thi s devic e ha s als o bee n use d t o separat e th e 2 1 B . L . Silver and Z. Luz, Quart. Rev. 21 (1967) 458. 2 2 B . N . Figgis , R . G . Kid d and R. S. Nyholm, Can. J. Chem. 43 (1965) 145. 2 3 P . Greenzaid , Z . Lu z an d D . Samuel , J. Am. Chem. Soc. 89 (1967) 749. 2 4 B . N . Figgis , R . G . Kid d and R. S. Nyholm, Proc. Roy. Soc. A, 269 (1962) 469. 2 5 R . G . Kidd , Can. J. Chem. 4 5 (1967 ) 605.

TABLE 8. CHEMICAL SHIFTS FOR O

17 , RELATIV E T O H 2 0 1 7 (ppm )

Transitio

n elemen t system s Na 3 V0 4 ' Na 2 Cr0 4 a

K2M0O4

a Na 2 W0 4 a NaMn0 4 a NaTc0 4 a NaRe0 4 a Ru0 4a Os0 4a Cr0 2 Cl 2 (1 ) d Na 2 Cr 2 0 7 d UO J aq. r

Fe(CO)

5e (

D Ni(CO)

4e (l ) -571±4 -83 5 + 5 -540± 2 -420± 2 -1219+ 8 -749± 7 -569± 4 -1119+1 0 -796± 3 -146 0 ± 8 -112 9 (term. ) -34 5 (br. ) -1115± 2 -38 8 + 8 -362±

8 Main group systems

H2O 2 (30 % aq. ) K2CO 3 ( 7 M b ) HNO 3 (100% ) POCI 3 (1 ) H3PO 4 (1 ) SOCI 2 (1 ) SO2CI 2 (1 ) H2SO 4 (cone. ) Na 2 Se0 4 (3 M b ) H 6 Te0 6 (aq. ) NaC10 3 (2. 4 M b ) HClO 4 (60%aq. )

NaC104

(2. 4 M b ) NaBr0 3 (2. 4 M b ) XeOF 4

Xe(OH)

2 h (aq. ) a a a a c a a c a g a c a a h i -187±5 -192± 4 -414± 3 -216± 2 -8 0 -292± 2 -304± 3 -14 0 -204±1 2 -12 0 -28 7 + 3 -28 8 -288± 5 -297± 5 -31 3 + 2 -27 8 + 2 Carbon-oxygen systems c MeO H EtO H tBuO H Fura n CH3CH O Aceti c aci d

CH3COOCH

3 (CH 3 CO) 2 0 di-tBu 2 0 2 MeONH 2 tBuON

O + 37

- 6 -7 0 -24 1 -59 5 -25 4 f-355(C=0 ) \-137(OMe ) f-393(C=0 ) < I- 259
CO ) -26 9 -3 5 -83 8 (N=0 ) -51 3 CO ) a Dat a fo r aqueou s solutions , unles s otherwis e stated , fro m B . N . Figgis , R . G . Kid d an d R . S . Nyholm , Proc. Roy. Soc. A , 26
9 (1962 ) 469
. b 0. 1 N aqueou s alkali . c Dat a fo r pur e liquid s fro m H . A . Christ , P . Diehl , H . R . Schneide r an d H . Dahn , Helv. Chim. Acta 4 4 (1961) 865
. d B . N . Figgis , R . G . Kid d an d R . S . Nyholm , Canad. J. Chem. 4 3 (1965 ) 145
. e R . Bramley , B . N . Figgi s an d R . S . Nyholm , Trans. Faraday Soc. 5 8 (1962) 1893
; R . G . Kidd , Canad. J. Chem. 4 5 (1967) , 605
. f S . W . Rabideau , / . Phys. Chem. 7 1 (1967 ) 2747
. " Z . Lu z an d I . Pecht , / . Am. Chem. Soc, 8 8 (1966) , 1152
. h J . Shamir , H . Selig , D . Samue l an d J . Reubin , / . Am. Chem. Soc. 8 7 (1965) 2359
. 1 J . Reuben , D . Samuel , H . Seli g an d J . Shamir , Proc. Chem. Soc. 1963
, 270
. i*h

696 OXYGEN: E. A. V. EBSWORTH, J. A. CONNOR AND J. J. TURNER

resonance s o f wate r an d o f phosphori c acid 26
. Th e hydratio n o f ion s o r complexe s o f Be+ 2 , Al+3 , Ga+3, VO+2, Tl+3, Co+ 2 , Ni+ 2 an d Cu+ 2 ha s bee n studie d usin g thes e an d simila r techniques . Finally , O 1 7 n.m.r . afford s informatio n abou t H bondin g an d th e structur e o f aqueou s solutions ; O 1 7 resonances , lik e proto n resonances , ar e shifte d t o lo w field b y hydroge n bonding 27
. Th e e.s.r . spectr a o f organi c compound s containin g O 1 7 hav e bee n importan t i n relatio n t o calculation s o f th e electroni c structure s o f thes e compounds , an d particularl y o f heterocycli c compounds . Th e hyperfin e interactio n constant s i n 0 17 -labelle d Mn(acac) 3 ha s bee n used 2 8 a s th e basi s fo r a n estimat e o f th e covalen t characte r o f th e metal-oxyge n bonds . Th e e.s.r . spectru m o f a sampl e o f CF3OOCF 3 tha t ha d bee n photolyse d i n th e TABL E 9 . COUPLIN G CONSTANT S)

Specie

s CIO 4 XeOF 4 H2 O (MeO) 3P CI3P O M11O 4 Me

2CO Coupling nuclei

C135-01

7

Xei29_o

n Hl-01 7

P31-01

7

Ρ31-Ο

Π

Mn55-Oi

7

C13-01

7

Couplin

g constant s

85.5±0.

5 69
2 ±1 0

79±

2 16 0 22
5 3 0 2

2 Reference

a b c d d e e 1 M . Alei , / . Chem. Phys. 4 3 (1965 ) 2904
. b J . Shamir , H . Selig , D . Samue l an d J . Reuben , / . Am. Chem. Soc. 8 7 (1967 ) 2359
. c A . E . Flori n an d M . Alei , / . Chem. Phys. 4 7 (1967 ) 4268
. d H . A . Christ , P . Diehl , H . R . Schneide r an d H . Dahn , Helv. Chim. Acta 4 4 (1961 ) 865
. e M . Broz e an d Z . Luz , / . Phys. Chem. 7 3 (1969 ) 1600
. presenc e o f smal l amount s o f 0 2 enriche d (~30% ) i n O 1 7 showe d tha t a fre e radica l ha d bee n forme d wit h thre e differen t set s o f O 1 7 hyperfin e splittin g constants , an d i t wa s con cluded 2 9 tha t th e radica l wa s th e trioxid e specie s CF3COOO . Hyperfin e structur e i n th e e.s.r . spectru m o f [(H 3 N) 5

Co(02)Co(NH3)5]

+ 5 du e t o O 1 7 i n th e peroxy-bridg e provide d th e first direc t evidenc e tha t th e unpaire d electro n i s associate d wit h th e bridg e a s wel l a s wit h th e cobal t nuclei 30
. 1.4 . OCCURRENC E AN D EXTRACTIO N Oxyge n i s th e mos t abundan t elemental . I n combine d for m i t make s u p 46.60
% b y weigh t o f th e rock s o f th e earth' s crust , an d (a s th e element ) 20.94

6 + 0.002% by volume of

2 6 J . A . Jackso n an d H . Taube , / . Phys. Chem. 6 9 (1965 ) 1844
. 2 7 Z . Lu z an d G . Yagil , / . Phys. Chem. 7 0 (1966 ) 554
. 2 8 Z . Luz , B . L . Silve r an d D . Fiat , / . Chem. Phys. 4 6 (1967 ) 469
. 2 9 R . W . Fessenden , / . Chem. Phys. 4 8 (1968 ) 3725
. 3 0 J . A . Wei l an d J . K . Kinnaird , / . Phys. Chem., 7 1 (1967 ) 3341
. 3 1 The Production of Oxygen, Nitrogen and the Inert Gases, Britis h Oxyge n Co . (1967) .

OCCURRENCE AND EXTRACTION 697

dr y ai r a t se a level . Nowaday s th e atmospher e i s th e primar y sourc e o f oxyge n fo r large - scal e commercia l productio n o f th e ga s o r liquid , bu t chemica l processe s hav e bee n devise d an d extensivel y use d i n th e past . Mos t ar e base d o n substance s whic h combin e wit h oxyge n a t on e temperatur e an d releas e i t o n heating . Th e ol d Bri n proces s mad e us e o f th e reaction betwee n bariu m oxid e an d oxyge n a t 600°
: hig h pressur e

BaO+O.5O2

, Ba0 2 lo w pressur e Th e bariu m oxid e i s heate d wit h ai r tha t ha s bee n free d o f CO2 , wate r vapour , organi c matte r an d dust ; th e pressur e i s lowered , an d pur e oxyge n i s evolved . A modificatio n o f th e proces s ha s recentl y bee n devised ^ i n whic h us e i s mad e o f th e fac t tha t th e meltin g poin t o f BaC> 2 (450° ) i s muc h lowe r tha n tha t o f Ba O (1923°) . Severa l simila r processe s hav e bee n propose d fo r makin g pur e oxygen , whic h ha s als o bee n mad e electrolytically , bu t almos t al l oxyge n i s no w produce d b y th e liquefactio n an d fractiona l distillatio n o f air .

Method

s fo r doin g thi s diffe r i n detail . Th e Lind e doubl e colum n consist s o f on e fractionat in g colum n operatin g a t abou t atmospheri c pressure , an d anothe r operatin g a t 5- 6 atm . A t th e highe r pressur e nitroge n boil s a t - 170° , an d s o ma y b e condense d usin g liqui d oxyge n fro m th e colum n a t lowe r pressur e a s refrigerant . Afte r initia l compressio n an d coolin g b y water , th e ai r i s furthe r coole d b y hea t exchang e wit h gase s leavin g th e columns ; th e coolin g b y expansio n tha t follow s ma y tak e plac e unde r Joule-Thompso n conditions , b y doin g externa l work , o r b y a combinatio n o f th e two . I n th e productio n o f oxyge n gas , th e us e o f hea t exchanger s calle d regenerator s i s o f considerabl e importance 33
.

Alternativ

e source s o f oxyge n fo r enclose d system s hav e becom e o f increasin g im portanc e i n th e pas t fe w year s wit h th e developmen t o f spac e craf t an d nuclea r submarines .

Scheme

s hav e bee n devise d fo r producin g oxyge n fro m CO

2 by means of algae, or by catalytic

hydrogénatio n followe d b y electrolysi s o f th e wate r formed 34
. Oxyge n "candles " hav e bee n propose d fo r carryin g oxygen ; thes e consis t o f salt s o f oxy-anion s whic h ar e bot h thermall y unstabl e an d ric h i n oxygen , suc h a s L1CIO4 , NaC10 3 o r KO2 . A lithiu m perchlorat e candl e ha s bee n describe d consistin g o f 84.82
% b y weigh t o f L1CIO4 , 10.94 % M n an d 4.24 % o f LÌ2O2 ; th e soli d i s compresse d t o a densit y o f 2.3 2 g/cc , an d th e oxyge n availabl e o n heatin g i s equivalent , volum e fo r volume , t o tha t fro m liqui d oxygen 3 ^ . I n th e laboratory 36
, oxyge n ma y b e mad e b y heatin g potassiu m permanganat e o r othe r salt s thermall y unstabl e an d ric h i n oxygen , bu t commercia l oxyge n ca n b e purifie d b y successiv e treatmen t wit h ΚΜηθ4 , wit h KOH , an d wit h concentrate d H2SO4 . Th e bes t metho d o f makin g pur e oxyge n i n th e laborator y i s t o catalys e th e decompositio n o f 30
% H2O 2 wit h thi n nicke l shee t suspende d b y a platinu m wire ; electrolysi s ma y als o b e used . 3

2 S. A. Guerrieri, US pat. 3,310,381, 1966 (Chem. Abstr. 66 (1967) 106659z).

3 3 R . L . Shower and L. C. Matsch, Adv. PetroKlhem. Refining 9 (1964) 1. 3

4 p. J. Hannan, R. L. Shuler and C. Patouillet, NASA Ace. No. N63-14930, 1962 (Chem. Abstr. 62

(1965 ) 2006a)
; NAS A Ace . No. N64-10551,1963 (Report No. AD 420927) (Chem. Abstr. 61 (1964) 16488d). 3 5 C . S . Coe , Chem. Engng. Progress, Symp. Ser. 60 (1964) 161. 3

6 G. Brauer (ed.), Handbook of Preparative inorganic Chemistry, 2nd edn., Academic Press, New York

(1963) , p. 334.

698 OXYGEN : E. A. V. EBSWORTH, J. A. CONNOR AND J. J. TURNER

1.5 . STRUCTURA L PROPERTIE S

Electroni

c Structur e Th e electroni c structur e o f th e oxygen molecule can be represented very simply as 0=0 . This representation indicates that the O-O bond should be short and strong (as it is - se e Tabl e 10) but offers no explanation for the paramagnetism of the molecule. To accoun t for this property in terms of simple valence-bond theory, it is necessary to invoke TABL E 10. SOME MOLECULAR PROPERTIES OF O2 IN ITS GROUND STATE Bon d dissociatio n energ y Bon d lengt h Bon d stretching-forc e constan t

Ionizatio

n potentia l (adiabatic )

Electro

n affinities : 1s t 'Double '

Polarizabilit

y : Spin-orbi t couplin g constan t λ Z) = 5.114±0.002eV = 1.20 7 39
8 Â (fro m u.v . spectrum ) = 1.20 7 4 1 ±0.00 0 0 2 A (fro m th e e.s.r . spectrum ) k = 11.40 9 x 10- 5 dyn e cm~ i = 12.07 5 ±0.0 1 e V = 0.4 3 ± 0.0 1 e V = -6.7±0.6e V (fo r 0

2(g)->02-2(g)

= 1.2x10-2 4 = 2.4x10-2 4 = 1.6x10-2 4 = 1.985cm- i Reference a b c b d e f g h β P . Brix and G. Herzberg, Can. J. Phys. 32 (1954) 110. b G . Herzberg, Spectra of Diatomic Molecules, 2nd edn., van Nostrand (1950). c M . Tinkham and M. W. P. Strandberg, Phys. Rev. 97 (1955) 951. d K . Watanabe, J. Chem. Phys. 26 (1957) 542. e J . L . Pack and A. V. Phelps, /. Chem. Phys. 44 (1966) 1870. f L . A . D'Orazio and R. H. Wood, /. Chem Phys. 69 (1965) 2558. 8 Landolt-Börnstein , Zahlenwerte und Functionen aus Physik-Chemie-Astronomie-Geophysik und Technik,

Sechst

e Auflage , 1 Band, 3 Teil, p. 510. h K . Kayama and J. L. Baird, /. Chem. Phys. 46 (1967) 2604. three-electro n bonds 3 7 o r t o us e th e "double quartet" approach 3 » . In simple molecular orbita l terms , th e paramagnetism is explained by the two unpaired electrons in the anti- bondin g π^-orbital 39
. The configuration is

(σίΐ5)2(συ1ί)2(σί25)2(σΜ25)2(σ,2ρ)2(πΜ2ρ)4(πί2/7)2.

Althoug

h in B 2 , C

2 and N2 the (a

g 2p) leve l is above the (n u 2p) leve l becaus e of interaction wit h (a g 2s) 9 i n O2 the order is as shown. More detailed calculations using the LCAO SCF metho d wit h configurationa l interaction 4 0 give s goo d agreemen t wit h the observed value fo r th e total energy, but the agreement between the observed and the calculated values for th e dissociatio n energ y is less satisfactory. Th e photo-electro n spectru m o f molecula r oxyge n excite d usin g He l radiatio n (21.2 3 eV ) give s a t least four and possibly five bands, all with vibrational progressions. The adiabatic ionizatio n potential s an d observed vibration frequencies are given in Table 11 A. 3 7 L . Pauling, The Nature of the Chemical Bond, 3rd edn., Cornell University Press, Ithaca, NY. 3 8 J . W . Linnett, The Electronic Structure of Molecules, Methuen, London (1964). 3

9 J. N. Murrell, S. F. A. Kettle and J. M. Tedder, Valence Theory, Wiley, New York (1965).

4 0 K . Ohno, in Middle U.V.: Its Science and Technology (ed. A. E. S. Green), Wiley, New York (1966).

STRUCTURAL PROPERTIES 699

Th e ban d a t lowes t I.P . correspond s t o remova l o f a n anti-bondin g n g electron producin g O J i n it s electroni c ground-stat e 2 U g ; a s woul d hav e bee n expected , th e vibratio n frequenc y i s greate r tha n i n O2 . Th e nex t band , wit h a lon g vibrationa l progression , correspond s t o remova l o f a π-bondin g electron givin g 0+( 4 Iï w ) ; peak s associate d wit h th e productio n o f 0+( 2 Π Μ ) ma y als o occu r i n thi s region . Th e nex t ban d correspond s t o remova l o f a σ-bondin g electron givin g 0+( 4 Σ 9 ), an d th e fifth ban d ma y correspon d t o th e formatio n o f 0 2H ( 4 Σ J o r 0+( 2

Σ;")

. In each case the electron removed is bonding, as shown by the drop in vibration frequenc y o n ionization 4 ° a . TABL E 1 1 A . PARAMETER S FRO M TH E PHOTO-ELECTRO N SPECTRU M O F 02

Adiabati

c I.P. , e V 12.0 7 16.1 2 a 18. 7 20.2

9 Vibration frequency

excite d (0-1) , cm T l 178
0 101
0 288
7 109
0 113

0 State of O2 formed

2 n , 4 n u 2 n u 4 Σ , 4 Σ Μ o r 2Σ 7 a Th e (0-0 ) transitio n o f thi s serie s was no t identified . Dat a fro m D . W . Turne r et ah, Molecular Spectroscopy, Wiley , Ne w York , 1970
.

Molecula

r an d Crysta l Structur e Th e O- O distanc e i n gaseou s 0 2 ha s bee n determine d ver y accuratel y b y analysi s o f th e

Schumann-Rung

e band s i n th e u.v . an d als o b y microwav e spectroscop y (se e Tabl e 10) . Th e O- O distance s i n liqui d an d soli d oxyge n hav e no t bee n accuratel y determined , bu t th e diffractio n measurement s fo r th e thre e soli d form s ar e consisten t wit h (O-O ) bonde d distance s clos e t o thos e fo r fre e O2 , a s i s th e smal l chang e i n (O-O ) stretchin g frequenc y wit h chang e i n phase . TABL E 11B . SOLI D (^-STRUCTURE S For m a ß y Clas s

Monoclini

c

Rhombohedra

l Cubi c Space group

C2lm(Cl")

RlmW h )

PmMOl) Unit cell

dimension s a = 5.40 3 ±0.00 5 b = 3.42 9 ±0.00 3 c = 5.08 6 ±0.00 5 a = 4.21 0 ±0.0 7 a = 46
° 16'±9 ' a = 6.8 3 ±0.0

5 Molecules in

uni t cel l 2 3

8 Reference

a b c a C . S . Barrett , L . Meye r an d J . Wassermann , / . Chem. Phys. 4 7 (1967 ) 592
. b R . A . Alikhanov , Soviet Physics JETP 18 (1964 ) 556
; E . M . Hörl , Acta Cryst. 1 5 (1962 ) 845
. c T . A . Jordan , W . E . Streib , H . W . Smit h an d W . N . Lipscomb , Acta Cryst. 1 7 (1964 ) 777
. 4<> a D . W . Turner , C . Baker , A . D . Bake r an d C . R . Brundle , Molecular Spectroscopy, Wiley , Ne w York , 1970
.

700 OXYGEN: E. A. V. EBSWORTH, J. A. CONNOR AND J. J. TURNER

Th e structur e o f crystallin e y-oxyge n (th e highes t temperatur e form) 4 1 i s ver y lik e tha t o f a-F 2 . Ther e ar e eigh t molecule s i n th e uni t cel l : two are roughly spherically disordered, o n m3(T h ) sites , an d si x ar e cylindricall y disordere d o n 42m(D
2d ) sites , wit h th e 4 (5 4 ) axi s perpendicula r t o th e molecula r axis . Thi s phas e i s sof t an d transparent , an d les s dens e tha n th e others ; it s structur e i s regarde d a s mor e lik e tha t o f liqui d oxyge n tha n lik e tha t o f th e 3-74 8 FIG . 1. The structure of a-oxygen; monoclinic C2/m. Atom centres and intermolecular distances ar e indicate d ; molecules are centred at 000 and Ü0, with O-O bonds approximately normal to the (O-O ) plane . (Reproduce d wit h permissio n fro m C . S . Barrett , L . Meye r an d J . Wasserman , / . Chem. Phys. 4 7 (1967 ) 592.
) E (volts ) (6loX ) 2 0 (72 3 (76 3 (100 0 1 0 - r? r lonizatio n limits OE •M M < 2 > i Jil l 'ι' Ι I-U r Mi ! ly-U f i=l-279 X re=l 409X °2*> Eg Γ

β=Ι·38ΪΧΟ$Α

2 Π" " Fourth -Thir d oVri u Secon d _,.e=H227 X - + Γ~^Γ ~ rirst 1 ο;χ·π , r. = l-604X (4 ) (5 ) (6 ) (7 ) (10)(8)(9 ) J 02B ? 2U (3 ) r c- I-207X

02Χ

3

Σς

FIG . 2. Energy level diagram of the O2 molecule. (Reproduced with permission from G. L.

Weissle

r an d P o Lee , / . Opt. Soc. Am. 4 2 (1952 ) 200.
) 4 1 T . A . Jordan , W . E . Streib , H . W . Smit h an d W . N . Lipscomb , Acta Cryst. 1 7 (1964 ) 777
.

SPECTROSCOPIC PROPERTIES 701

/?-form . Thi s i s consisten t wit h th e relativel y smal l hea t an d volum e change s o n meltin g (smalle r tha n th e correspondin g change s associate d wit h th e transitio n o f ß t o a - se e Tabl e 15c) 42
» 43
, an d wit h th e closel y simila r vibrationa l spectr a o f γ-Οζ an d liqui d O2 .

The/?-for

m i s rhombohedral 42
· 4 3 an d th e a-for m i s monoclini c (Tabl e 11B) . Th e structur e o f th e α-for m i s give n i n Fig . 1 ; the O2 molecules lie parallel to one another, and with their molecula r axe s perpendicula r t o th e O- O planes 43
. FIG

. 3. Potential energy as a function of internuclear distance for states of the O2 molecule. The dotted lines show results of different calculations for the %" state. (Reproduced

wit h permission from D. H. Volman, Advances in Photochemistry 1 (1963) 46.) 1.6 . SPECTROSCOPI C PROPERTIE S

Electroni

c Spectr a The spectrum of isolated 0 2 . Th e groun d state 4 4 o f 0 2 i s 3 Zj . Th e state s i A g an d ι

Σ+

ar e derive d fro m th e sam e electro n configuration ; transition s t o eac h o f thes e state s fro m th e groun d stat e ar e formall y forbidden , bu t ar e observe d a s ver y wea k band s i n th e absorp tio n o f O 2 a t -800 0 cm- i 0Δ , < - Vj) an d ~ 13,20 0 cm- i pl + * - 3 Ij) . Transition s t o th e nex t state s involv e excitatio n o f a π^-electro n t o a π^-orbital . Fragment s o f a ver y wea k ban d serie s du e t o th e transitio n 3 Δ ω < - 3 Σ ^ wer e detecte d b y Herzberg 4 * clos e t o th e wea k ban d serie s fo r th e transitio n 3 Σ + < - 3 Σ " nea r 36,00
0 cm~ i (th e Herzber g bands ) an d th e eve n weake r series 4 6 associate d wit h th e transitio n *Σ ~ < - 3 Σ ^ nea r 37,00
0 cm -1 . Al l thre e o f thes e transition s ar e forbidden . Th e stron g Schumann-Rung e band s nea r 50,00
0 cm - 1 ar e 4

2 R. A. Alikhanov, Soviet Physics JETP 18 (1964) 556.

4

3 C. S. Barrett, L. Meyer and J. Wassermann, /. Chem. Phys. 47 (1967) 592.

4

4 G. Herzberg, The Spectra of Diatomic Molecules, 2nd edn., Van Nostrand, New York (1950).

4 5 G . Herzberg, Can. J. Phys. 31 (1953) 657. 4

6 p. Brix and G. Herzberg, Can. J. Phys. 32 (1954) 110.

TABLE 12. PARAMETERS FROM THE ELECTRONIC SPECTRA OF O2. STATES ARE FOR O2 UNLESS OTHERWISE STATED

Electroni

c stat e 2

Π,(0$

) 3 Σ " 'Σ ; 'Σΐ 'Δ, 'Σ? /^-electro n configuratio n σ2 Α π Ι

σ]π\π) °

2

Α*\

σ\π\π\ °

2

Α*\

° 2 Α* 2

°\<Α

Te (Â ) 1.122

7 Ι.6Ο4

1.59 7 [1.42 ] 1.22 7 65

ο 1.2155 1/207 39

8 T e (cm-i ) 4 9 357.
6 3 6 678.9
ι 3 6 09 6 1 3 195.222
ι 7918.
1 0 COe (cm-i ) 1876.
4 700.3

6 650.4

9 819.
0

1432.687

4 1509.
3

1580.361

3 CO e Xe (cm-i ) 16.5 3 8.OO2 3 17.03 6 22.5
ο

13.9500

8 12. 9

12.073

0 (o e y e (cm-i ) -0.3753 s 0.105 e -0.0107 5

0.0546 Reference

a , b c a a a a r e = equilibriu m internuclea r distance ; T e = electroni c energ y abov e th e groun d state ; co e = harmoni c fundamenta l vibrationa l frequency ; co e x e = vibrationa l constan t fo r second-orde r anharmoni c term ; oe e y e = vibrationa l constan t fo r third-orde r anharmoni c term . • G . Herzberg , The Spectra of Diatomic Molecules 2n d edn. , va n Nostrand , Ne w Yor k (1950) . b P . Bri x an d G . Herzberg , Canoa*. J. Phys. 3 2 (1954 ) 110
. c G . Herzberg , Canad. J. Phys. 3 1 (1953 ) 657
.

O X o X o o z z > •z Ό

H G PI

SPECTROSCOPIC PROPERTIES 703

derive d fro m th e allowed transition 3 Σ " < - 3

Σ~;

they converg e to a limit at 57,128 cm - 1 an d a continuum to about 70,000 cm -1 . At higher energies the spectrum becomes complex, an d fragment s o f several Rydberg series have been detected 4 7 (Fig . 2). Ban d system s associate d wit h al l thes e transition s excep t 3 Δ Μ < - 3 Σ ^ hav e bee n analysed , an d th e derived molecular constants are given in Table 12; promotion of an electron fro m n u t o n g lead s to a lengthening of the O-O bond and a decrease in the vibration frequency , a s simpl e theor y predicts . O n th e othe r hand , ionizatio n strengthen s th e bon d b y removin g a n antibonding electron. In the spectrum of solid a-oxygen at 4°K, the structure o f th e band s indicat e tha t th e molecula r constant s fo r the gas and for 0C-O2 are very similar bu t no t exactly the same 48
. In y-02 and ß-Q>2 the bands are broader than in the liquid or i n 0Î-O 2 49
. Ther e are further splittings of the vibrational bands in the spectrum of the crystal 4 " » 4 * .

Potentia

l energ y curve s hav e bee n calculate d for all the bound states, and for some of th e repulsiv e one s (Fig . 3). Th e lowe r state s dissociat e to two 3

P oxygen atoms, but the

3 Σ ~ stat e give s on e 3 P an d on e l D atom. There is clear evidence for predissociation in the Schumann-Runge systemSO; th e relevan t repulsiv e state s seem s t o b e 3 Tl g9 bu t the details of the process are not clear. Bands involving intermolecular interactions. I n th e spectra of condensed or compressed oxyge n ther e ar e bands that are not due to transitions of isolated O2 molecules 51
; som e of thes e feature s lie under the banded spectra of the O2 transitions 52
. The y are attributed to transition s in molecular complexes (perhaps short-lived collision complexes), but there mus t b e more than one type of intermolecular process involved, for in compressed oxygen th e intensitie s o f different bands vary in different ways as the pressure is changed or as foreig n gase s are added. The band near 15,800 cm - 1 i s attributed to the (0-0) transition associate d wit h simultaneou s excitatio n o f two 3 Σ ^ oxygen molecules to the 1 A g state 53
.

System

s o f x A g molecule s sho w emissio

Inorganic Chemistry Documents PDF, PPT , Doc

[PDF] comprehensive inorganic chemistry pergamon

  1. Science

  2. Chemistry

  3. Inorganic Chemistry

[PDF] define organic and inorganic chemistry quizlet

[PDF] descriptive inorganic chemistry answers

[PDF] descriptive inorganic chemistry canham

[PDF] descriptive inorganic chemistry rayner-canham

[PDF] examples of inorganic chemistry classes

[PDF] how to do inorganic chemistry

[PDF] how to learn inorganic chemistry

[PDF] how to study inorganic chemistry easily

[PDF] huheey inorganic chemistry solutions pdf download

Politique de confidentialité -Privacy policy