[PDF] Forced Convection





Loading...








Convective heat transfer coefficients for exterior building

The convective heat exchange at an exterior building surface, due to air flow along the surface, is usually modelled by convective heat transfer coefficients (CHTCs) which relate the convective heat flux normal to the wall q c,w (W/m²) to the difference between the surface temperature at the wall T w (°C) and a




Evaluation of Convective Heat Transfer Coefficient of Air

heat transfer (the higher the velocity , higher the heat transfer rate) The rate of convection heat transfer is expressed by Newton?s law of cooling: Q = hA(T S-T a) Equation (1) Where, Q= rate of heat transfer in watts h= heat transfer coefficient in w/m2co T = Surface Temperature in co T a =ambient temperature in c o

Convection Heat Transfer - University of Waterloo

Convection Heat Transfer Reading Problems 19-1 ? 19-8 19-15, 19-24, 19-35, 19-47, 19-53, 19-69, 19-77 20-1 ? 20-6 20-21, 20-28, 20-44, 20-57, 20-79 Introduction • in convective heat transfer, the bulk ?uid motion of the ?uid plays a major role in the over-all energy transfer process Therefore, knowledge of the velocity distribution

Searches related to convective heat transfer coefficient outside pipe filetype:pdf

Methodology to solve problems involving convection heat transfer: A suggested methodology to solve problems requiring calculations of convective heat transfer coefficient using empirical correlations is as follows: 1 Identify flow geometry Is it a pipe, sphere, rectangular duct, plate? Is the fluid flowing inside or outside the pipe 2

[PDF] Convection Heat Transfer Coefficient Estimating

the convection heat transfer coefficient for laminar pipe flow for flow of water at 85oF through a circular annulus (wall temperature = 120oF) with an outside

[PDF] 22 Calculation of internal convective heat transfer coefficient

For arialysitig temperature in circular pipes or tubes with flowing liquid or gaseous fluids and extension of the coinputer code TASEF lias been developed

[PDF] Natural convection heat transfer estimation from a longitudinally

Second, the convection heat transfer coefficients outside the pipe, ho-c, derived from the Keywords: CFD; Natural convection; Heat transfer; Vertical pipe; Fin

[PDF] Forced Convection

The convective heat transfer coefficient h strongly depends on the fluid distance from the plate beyond which the fluid velocity U∞ remains unchanged This

[PDF] 7 Forced convection in a variety of configurations - EPFL

Heat transfer - Convection 20 avril 7 2 Heat transfer to and from laminar flows in pipes flow and for Tw = constant, the convective heat transfer coefficient is : duct wall offers little thermal resistance, but convection resistance outside the

PDF document for free
  1. PDF document for free
[PDF] Forced Convection 64698_3ForcedConvection.pdf M.BahramiENSC388(F09)ForcedConvectionHeatTransfer1

ForcedConvectionHeatTransfer

Convectionisthemechanismofheattransferthroughafluidinthepresenceofbulkfluid motion.Convectionisclassifiedasnatural(orfree)andforcedconvectiondependingon howthefluidmotionisinitiated.Innaturalconvection,anyfluidmotioniscausedby naturalmeanssuchasthebuoyancyeffect,i.e.theriseofwarmerfluidandfallthecooler fluid.Whereasinforcedconvection,thefluidisforcedtoflowoverasurfaceorinatube byexternalmeanssuchasapumporfan.MechanismofForcedConvection Convectionheattransferiscomplicatedsinceitinvolvesfluidmotionaswellasheat conduction.Thefluidmotionenhancesheattransfer(thehigherthevelocitythehigher theheattransferrate). TherateofconvectionheattransferisexpressedbyNewton'slawofcooling: WTThAQmWTThq sconvsconv 2 / Theconvectiveheattransfercoefficienthstronglydependsonthefluidpropertiesand roughnessofthesolidsurface,andthetypeofthefluidflow(laminarorturbulent).

Fig.1:Forcedconvection.

Itisassumedthatthevelocityofthefluidiszeroatthewall,thisassumptioniscallednoͲ slipcondition.Asaresult,theheattransferfrom thesolidsurfacetothefluidlayer adjacenttothesurfaceisbypureconduction,sincethefluidismotionless.Thus,Solidhotsurface,T s Q conv Q cond V ь T ь

Zerovelocity

atthesurface. V ь M.BahramiENSC388(F09)ForcedConvectionHeatTransfer2 KmWTTyTk h

TThqyTkqq

sy fluid sconvyfluidcondconv ./ 20 0 Theconvectionheattransfercoefficient,ingeneral,variesalongtheflowdirection.The meanoraverageconvectionheattransfercoefficientforasurfaceisdeterminedby (properly)averagingthelocalheattransfercoefficientovertheentiresurface.

VelocityBoundaryLayer

Considertheflowofafluidoveraflatplate,thevelocityandthetemperatureofthefluid approachingtheplateisuniformatU ь andT ь .Thefluidcanbeconsideredasadjacent layersontopofeachothers. 

Fig.2:Velocityboundarylayer.

AssumingnoͲslipconditionatthewall,thevelocityofthefluidlayeratthewalliszero. Themotionlesslayerslowsdowntheparticlesoftheneighboringfluidlayersasaresultof frictionbetweenthetwoadjacentlayers.Thepresenceoftheplate isfeltuptosome distancefromtheplatebeyondwhichthefluidvelocityU ь remainsunchanged.This regioniscalledvelocityboundarylayer. Boundarylayerregionistheregionwheretheviscouseffectsandthevelocitychangesare significantandtheinviscidregionistheregioninwhichthefrictionaleffectsarenegligible andthevelocityremainsessentiallyconstant.

Thefrictionbetweentwoadjacent

layersbetweentwolayersactssimilartoadragforce (frictionforce).Thedragforceperunitareaiscalledtheshearstress: 2 0 /mNyV ys whereʅisthedynamicviscosityofthefluidkg/m.sorN.s/m 2 . Viscosityisameasureoffluidresistancetoflow,andisastrongfunctionoftemperature.

Thesurfaceshearstresscanalsobedeterminedfrom:

M.BahramiENSC388(F09)ForcedConvectionHeatTransfer3 22
/2mNUC fs whereC f isthefrictioncoefficientorthedragcoefficientwhichisdetermined experimentallyinmostcases.

Thedragforceiscalculatedfrom:

NUACF fD 2 2 Theflowinboundarylayerstartsassmoothandstreamlinedwhichiscalledlaminarflow. Atsomedistancefromtheleadingedge,theflowturnschaotic,whichiscalledturbulent anditischaracterizedbyvelocityfluctuationsandhighlydisorderedmotion.

Thetransitionfromlaminartoturbulentflowoccurs

oversomeregionwhichiscalled transitionregion. Thevelocityprofileinthelaminarregionisapproximatelyparabolic,andbecomesflatter inturbulentflow. Theturbulentregioncanbeconsideredofthreeregions:laminarsublayer(whereviscous effectsaredominant),bufferlayer(wherebothlaminarandturbulenteffectsexist),and turbulentlayer. Theintensemixingofthefluidinturbulentflowenhancesheatandmomentumtransfer betweenfluidparticles,whichinturnincreasesthefrictionforceandtheconvectionheat transfercoefficient.

NonͲdimensionalGroups

Inconvection,itisacommonpracticetononͲdimensionalizethegoverningequationsand combinethevariableswhichgrouptogetherintodimensionlessnumbers(groups).

Nusseltnumber

:nonͲdimensionalheattransfercoefficient condconv qq khNu whereɷisthecharacteristiclength,i.e.DforthetubeandLfortheflatplate.Nusselt numberrepresentstheenhancementofheattransferthroughafluidasaresultof convectionrelativetoconductionacrossthesamefluidlayer.

Reynoldsnumber

:ratioofinertiaforcestoviscousforcesinthefluid G P GUVVforces viscousforces inertiaRe AtlargeRenumbers,theinertiaforces,whichareproportionaltothedensityandthe velocityofthefluid,arelargerelativetotheviscousforces;thustheviscousforcescannot preventtherandomandrapidfluctuationsofthefluid(turbulentregime). M.BahramiENSC388(F09)ForcedConvectionHeatTransfer4 TheReynoldsnumberatwhichtheflowbecomesturbulentiscalledthecriticalReynolds number.ForflatplatethecriticalReisexperimentallydeterminedtobeapproximatelyRe critical=5x10 5 .

Prandtlnumber

:isameasureofrelativethicknessofthevelocityandthermalboundary layer kC p heat ofy diffusivitmolecular momentum ofy diffusivitmolecular Pr wherefluidpropertiesare: massdensity:ʌ,(kg/m 3 )specificheatcapacity:C p (J/kgͼK) dynamicviscosity:µ,(Nͼs/m 2 )kinematicviscosity:ʆ,µ/ʌ(m 2 /s) thermalconductivity:k,(W/mͼK)thermaldiffusivity:ɲ,k/(ʌͼC p )(m 2 /s)

ThermalBoundaryLayer

Similartovelocityboundarylayer,athermalboundarylayerdevelopswhenafluidat specifictemperatureflowsoverasurfacewhichisatdifferenttemperature. 

Fig.3:Thermalboundarylayer.

Thethicknessofthethermalboundarylayerɷ

t isdefinedasthedistanceatwhich: 99.0
 fss TTTT Therelativethicknessofthevelocityandthethermalboundarylayersisdescribedbythe

Prandtlnumber.

ForlowPrandtlnumberfluids,i.e.liquidmetals,heatdiffusesmuchfasterthan momentumflow(rememberPr=ʆ/ɲ<<1)andthevelocityboundarylayerisfully containedwithinthethermalboundarylayer.

Ontheotherhand,forhighPrandtlnumber

fluids,i.e.oils,heatdiffusesmuchslowerthanthemomentumandthethermalboundary layeriscontainedwithinthevelocityboundarylayer. M.BahramiENSC388(F09)ForcedConvectionHeatTransfer5

FlowOverFlatPlate

Thefrictionandheattransfercoefficientforaflatplatecanbedeterminedbysolvingthe conservationofmass,momentum,andenergyequations(eitherapproximatelyor numerically).Theycanalsobemeasuredexperimentally.ItisfoundthattheNusselt numbercanbeexpressedas: nm L

CkhLNuPrRe

whereC,m,andnareconstantsandListhelengthoftheflatplate.Thepropertiesofthe fluidareusuallyevaluatedatthefilmtemperaturedefinedas: 2  TTT s f

LaminarFlow

ThelocalfrictioncoefficientandtheNusseltnumberatthelocationxforlaminarflow overaflatplateare

2/1,3/12/1

Re664.06.0PrPrRe332.0

xxfxx

CkhxNu

wherexisthedistantfromtheleadingedgeoftheplateandRe x =ʌV ь x/ʅ. TheaveragedfrictioncoefficientandtheNusseltnumberovertheentireisothermalplate forlaminarregimeare:

2/13/12/1

Re328.16.0PrPrRe664.0

LfL

CkhLNu

TakingthecriticalReynoldsnumbertobe5x10

5 ,thelengthoftheplatex cr overwhichthe flowislaminarcanbedeterminedfrom cr cr xV 5 105Re

TurbulentFlow

ThelocalfrictioncoefficientandtheNusseltnumberatlocationxforturbulentflowovera flatisothermalplateare: M.BahramiENSC388(F09)ForcedConvectionHeatTransfer6 75

5/1,753/15/4

10Re105Re0592.010Re10560Pr6.0PrRe0296.0

x xxfxxx

CkhxNu

TheaveragedfrictioncoefficientandNusseltnumberovertheisothermalplatein turbulentregionare: 75

5/1753/15/4

10Re105Re074.010Re10560Pr6.0PrRe037.0

L LfLx

CkhLNu

CombinedLaminarandTurbulentFlow

Iftheplateissufficientlylongfortheflowtobecometurbulent(andnotlongenoughto disregardthelaminarflowregion),weshouldusetheaveragevaluesforfriction coefficientandtheNusseltnumber. cr crcr cr xL x

TurbulentxarLaxx

L x

TurbulentxfarLaxff

dxhdxhLhdxCdxCLC

0,,min,0

,,min,, 11 wherethecriticalReynoldsnumberisassumedtobe5x10 5 .Afterperformingtheintegrals andsimplifications,oneobtains: 75

5/1753/15/4

10Re105Re1742

Re074.010Re10560Pr6.0Pr871Re037.0

L L LfLx

CkhLNu

Theaboverelationshipshavebeenobtainedforthecaseofisothermalsurfaces ,butcould alsobeusedapproximatelyforthecaseofnonͲisothermalsurfaces.Insuchcasesassume thesurfacetemperaturebeconstantatsomeaveragevalue. Forisoflux(uniformheatflux)plates,thelocalNusseltnumberforlaminarandturbulent flowcanbefoundfrom: plate)(isoflux Turbulent PrRe0308.0plate)(isoflux Laminar PrRe453.0

3/18.03/15.0

xxxx khxNukhxNu Notetheisofluxrelationshipsgivevaluesthatare36%higherforlaminarand4%for turbulentflowsrelativetoisothermalplatecase. M.BahramiENSC388(F09)ForcedConvectionHeatTransfer7

Example1

Engineoilat60°Cflowsovera5mlongflatplatewhosetemperatureis20°Cwitha velocityof2m/s.Determinethetotaldragforceandtherateofheattransferperunit widthoftheentireplate.

WeassumethecriticalReynoldsnumberis5x10

5 .Thepropertiesoftheoilatthefilm temperatureare: smKmWkmkgC TTT s f /102422870Pr)./(144.0/87640 2 263
u  Q U

TheRenumberfortheplateis:

Re L =V ь

L/ʆ=4.13x10

4 whichislessthanthecriticalRe.Thuswehavelaminarflow.Thefrictioncoefficientand thedragforcecanbefoundfrom:

NsmmkgmVACFC

fDLf

2.572/2/8761500653.0200653.0Re328.1

23
225.0

TheNusseltnumberisdeterminedfrom:

WTThAQKmWhThenkhLNu

sL

110402.55,1918PrRe0664

23/15.0

oil T ь =60°C V ь =2m/s L=5mT s =20°C Q° M.BahramiENSC388(F09)ForcedConvectionHeatTransfer8

FlowacrossCylindersandSpheres

Thecharacteristiclengthforacirculartubeorsphereistheexternaldiameter,D,andthe

Reynoldsnumberisdefined:

DV Re

ThecriticalRefortheflowacrossspheresortubesis2x10

5 .Theapproachingfluidtothe cylinder(asphere)willbranchoutandencirclethebody,formingaboundarylayer.  Fig.4:Typicalflowpatternsoversphereandstreamlinedbodyanddragforces. AtlowRe(Re<4)numbersthefluidcompletelywrapsaroundthebody.AthigherRe numbers,thefluidistoofasttoremainattachedtothesurfaceasitapproachesthetopof the cylinder.Thus,theboundarylayerdetachesfromthesurface,formingawakebehind thebody.Thispointiscalledtheseparationpoint. Toreducethedragcoefficient,streamlinedbodiesaremoresuitable,e.g.airplanesare builttoresemblebirdsandsubmarinetoresemblefish,Fig.4.

Inflowpastcylinder

orspheres,flowseparationoccursaround80°forlaminarflowand

140°forturbulentflow.

area frontal:2 2 NNDD

ANVACF

wherefrontalareaofacylinderisA N =L×D,andforasphereisA N =ʋD 2 /4. M.BahramiENSC388(F09)ForcedConvectionHeatTransfer9 Thedragforceactingonabodyiscausedbytwoeffects:thefrictiondrag(duetothe shearstressatthesurface)andthepressuredragwhichisduetopressuredifferential betweenthefrontandrearsideofthebody.

Asaresultoftransitiontoturbulentflow,which

movestheseparationpointfurthertothe rearofthebody,alargereductioninthedragcoefficientoccurs.Asaresult,thesurfaceof golfballsisintentionallyroughenedtoinduceturbulentatalowerRenumber,seeFig.5. 

Fig.5:RoughenedgolfballreducesC

D . TheaverageheattransfercoefficientforcrossͲflowoveracylindercanbefoundfromthe correlationpresentedbyChurchillandBernstein:

5/48/5

4/13/23/12/1

000,282Re1

Pr4.01PrRe62.03.0

khDNu Cyl wherefluidpropertiesareevaluatedatthefilmtemperatureT f =(T s +T ь )/2. Forflowoverasphere,Whitakerrecommendedthefollowing:

4/14.03/22/1

/PrRe06.0Re4.02/ sSph khDNu M.BahramiENSC388(F09)ForcedConvectionHeatTransfer10 whichisvalidfor3.5Example2 Thedecorativeplasticfilmonacoppersphereof10Ͳmmdiameteriscuredinanovenat

75°C.Uponremoval

fromtheoven,thesphereissubjectedtoanairstreamat1atmand

23°Chavingavelocityof10m/s,estimatehowlongitwilltaketocoolthesphereto35°C.

Assumptions:

1. Negligiblethermalresistanceandcapacitancefortheplasticlayer.

2. Spatiallyisothermalsphere.

3.

NegligibleRadiation.

Copperat328KAirat296K

ʌ=8933kg/m

3 k=399W/m.K C p =387J/kg.K ʅ ь =181.6x10Ͳ7N.s/m 2 v=15.36x10Ͳ6m 2 /s k=0.0258W/m.K

Pr=0.709

ʅ s =197.8x10Ͳ7N.s/m 2 Thetimerequiredtocompletethecoolingprocessmaybeobtainedfromtheresultsfora lumpedcapacitance. TTTT hDC TTTT hAVCt fi p fi P ln6ln Whitakerrelationshipcanbeusedtofindhfortheflowoversphere:

4/14.03/22/1

/PrRe06.0Re4.02/ sSph khDNu whereRe=ʌVD/ʅ=6510.

Hence,

P ь =1atm.

V=10m/s

T ь =23°CCoppersphere

D=10mm

T i =75°C T f =35°C M.BahramiENSC388(F09)ForcedConvectionHeatTransfer11

KmWDkNuhkhDNu

Sph 24/1
77

4.03/22/1

/1224.47108.197106.181)709.0()6510(06.0)6510(4.02/

Therequiredtimeforcoolingisthen

sec2.6923352375ln./122601.0./387/8933 23

KmWmKkgJmkgt


Heat Transfer Documents PDF, PPT , Doc

[PDF] 3m heat transfer butterfly

  1. Engineering Technology

  2. Mechanical Engineering

  3. Heat Transfer

[PDF] advanced heat transfer courses

[PDF] anticyclone heat transfer

[PDF] antifreeze heat transfer fluid

[PDF] api heat transfer careers

[PDF] api heat transfer jobs

[PDF] best heat transfer graduate programs

[PDF] cengel heat transfer download pdf

[PDF] chapter 22 heat transfer exercises answers

[PDF] convection heat transfer depends upon

Politique de confidentialité -Privacy policy