[PDF] Diamond Monochromator for High Heat Flux Synchrotron X-ray





Loading...








[PDF] Ador Welding Ltd (AWL) conducts a Jewellery Making Workshop in

“A diamond is just a piece of charcoal that handled stress exceptionally well” Women empowerment has always been a key agenda as far as CSR activity of AWL 




[PDF] WORKING ON (NOT IN) YOUR BUSINESS - HubSpot

''The people who are exceptionally good in business aren't so because of what they know but Diamond: charcoal that handled stress extremely well

10 Essential Tips for Reducing Stress - PatientPopcom

of stress can be positive – it can force us to perform well, keep alert, “A diamond is just a piece of charcoal that handles stress exceptionally well

[PDF] DIAMOND-BASED HEAT SPREADERS FOR POWER

In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity Its 

[PDF] THE GLOBAL DIAMOND INDUSTRY Lifting the Veil of Mystery

diamonds in Sierra Leone, as well as kimberlites in Guinea's Bouro and Droujba technology and can capably handle larger and more complex stones as well




[PDF] Motivation related to Enhanced Performance - HCMRIPA

The contractor was sorry to see such a good A diamond is just a piece of coal that handled stress exceptionally well

[PDF] Diamond Monochromator for High Heat Flux Synchrotron X-ray

However, the need for suitable monochromators to handle the high heat load to be exceptionally good to maintain moderate temperatures and strains in the 

[PDF] DETERMINATION OF STRESS IN LATERALLY OVERGROWN GaN

encompasses a list of exceptional individuals too long to enumerate and too important to GaN stress (Left) and Diamond stress (Right) obtained on idealized coalesced ELO GaN diamond layers, as well as the silicon substrate, an equal temperature Handling 400 Lorentzian individual bases is difficult, so they are fit

[PDF] Diamond Education - Suncoast Gems

As you can see from the illustrations below, when a diamond is well-cut (either a fine cut or Fancy Natural Colored Diamonds and Color Treated Diamonds: fancy color, while red and green diamonds are extremely rare below ground, a few are actually a result of the harsh stress that a diamond undergoes during the

[PDF] Diamond Monochromator for High Heat Flux Synchrotron X-ray

However, the need for suitable monochromators to handle the high heat load of the next Sometimes a part of this stress may be annealed by heating 8 arc seconds, confirming that at least one of the two is an extremely good crystal

PDF document for free
  1. PDF document for free
[PDF] Diamond Monochromator for High Heat Flux Synchrotron X-ray 76140_324050441.pdf

ANL/XFD/CP - 78515

DE9 3 00679
9

Diamon

d Monochromato r fo r Hig h Hea t Flu x

Synchrotro

n X-ra y Beams. * A.M . Khounsary , R.K . Smithe r an d S . Dave yAdvanced Photon SourceArgonne National Laboratory9700 South Cass AvenueArgonne, IL 60439

December

, 199
2 Th e submitte d manuscrip t ha s bee n authore d b y a contracto r o f th e U . S . Governmen t unde r contrac t No . W-31-109-ENG-38 .

Accordingly

, th e U . S . Governmen t retain s anonexclusive, royalty-free license to publish o r reproduc e th e publishe d for m o f thi s contribution , o r allo w other s t o d o so , fo r U . S . Governmsn t purpons . c zF"3 - 3 1S93 ijTl *Thi s wor k supporte d b y th e U.S . Departmen t o f Energy , BES-Material s Sciences ,under contract no. W-31-109-ENG-38

DISCLAIME

R Thi s repor t wa s prepare d a s a n accoun t o f wor k sponsore d b y a n agenc y o f th e Unite d State sGovernment. Neither the United States Government nor any agency thereof, nor any of their employees , make s an y warranty , expres s o r implied , o r assume s an y lega l liabilit y o r responsi -bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or proces s disclosed , o r represent s tha t it s us e woul d no t infring e privatel y owne d rights . Refer - enc e herei n t o an y specifi c commercia l product , process , o r servic e b y trad e name , trademark ,manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation , o r favorin g b y th e Unite d State s Governmen t o r an y agenc y thereof . Th e view sand opinions of authors expressed herein do not necessarily state or reflect those of the Unite d State s Governmen t o r an y agenc y thereof .IER

DISTRIBUTIO

N O F THI S DOCUMEN T I S UNLIMITE D

Diamond Monochrotnator for High Heat Flux

Synchrotro

n X-ra y Beam s A.M . Khounsary , R.K . Smither , an d S . Davey ,

Advance

d Photo n Sourc e A . Purohit , Engineerin g Physic s Divisio n

Argonn

e Nationa l Laborator y

Argonne

, I L 6043
9

ABSTRAC

T Singl e crysta l silico n ha s bee n th e materia l o f choic e fo r x-ra y monochromator s fo r th e pas t severa l decades . However , th e nee d fo r suitabl e monochromator s t o handl e th e hig h hea t loa d o f th e nex t generatio n synchrotro n x-ra y beam s o n th e on e han d an d th e rapi d an d on-goin g advance s i n syntheti c diamon d technolog y o n th e othe r mak e a compellin g cas e fo r th e consideratio n o f a diamon d monochromato r system . I n thi s paper , w e conside r variou s aspects , advantage s an d disadvantages , an d promise s an d pitfall s o f suc h a syste m an d evaluat e th e comparativ e performanc e o f a diamon d monochromato r subjecte d t o th e hig h hea t loa d o f th e mos t powerfu l x-ra y bea m tha t wil l becom e availabl e i n th e nex t fe w years . Th e result s o f experiment s performe d t o evaluat e th e diffractio n propertie s o f a currentl y availabl e syntheti c singl e crysta l diamon d ar e als o presented . Fabricatio n o f a diamond-base d monochromato r i s withi n presen t technica l means . 1 . INTRODUCTIO N Th e combinatio n o f hig h powe r an d hig h powe r densit y associate d wit h th e x-ra y beam s generate d b y insertio n device s a t th e thir d generatio n synchrotro n radiatio n facilitie s ha s create d ne w challenge s i n th e desig n o f th e beamlin e component s tha t intercep t th e x-ra y beams . Th e challeng e i s nowher e greate r tha n i n th e desig n o f th e firs t optica l components , notabl y monochromator s an d mirrors , whic h mus t provid e acceptabl e performanc e unde r th e merma l loa d o f th e x-ra y beams . A resurgenc e o f researc h activitie s i n th e developmen t o f monochromator s fo r hig h hea t loa d beamliik s ha s le d t o examinatio n o f man y aspect s o f th e problem . Muc h attentio n ha s bee n concentrate d o n th e coolin g o f monochromator s wit h th e ai m t o reduc e th e temperatur e gradien t an d thu s th e therma l distortio n i n th e system . 1 Nove l monochromato r design s suc h a s th e inclined ^ o r asymmetric ^ monochromato r hav e als o bee n suggested . Th e combine d effor t ha s resulte d i n th e desig n o f monochromator s tha t ca n adequatel y handl e th e need s o f th e synchrotro n communit y fo r th e nea r future . Fo r th e x-ra y beam s tha t com e o n lin e i n th e secon d hal f o f th e decade , th e currentl y availabl e design s ma y no t b e adequate . On e are a wit h substantia l potentia l i n th e desig n o f hig h performanc e monochromator s i s th e monochromato r materia l selection . I n thi s paper , w e conside r thi s aspec t o f th e proble m an d specificall y sugges t diamon d a s a materia l o f choice . Whil e diamon d ha s previousl y bee n use d i n diffractio n work , i n thi s pape r w e conside r it s applicatio n i n hig h hea t loa d monochromator s an d provid e a preliminar y stud y o f th e design , fabrication , analysis , an d characterizatio n aspect s o f a diamon d monochromato r system . Th t submitte d manuscrip t ha s bee n authore d toy a contracto r o f th e U . S . Governmen t unde r contrac t No . W-31-109-ENG-38 .

Accordingly

, th e U . S . Governmen t retain s a nonexclusive , royalty-fre e licens e t o publis h o r reproduc e th e publishe d for m o f this - contribution , o r allo w other s t o d o so , fo r U . S . Governmen t purposes .

2. MONOCHROMATOR MATERIAL

Currently

, silico n i s almos t universall y use d i n th e desig n o f monochromalo r system s fo r hig h energ y (ove r 2- 3 keV ) x-ra y beams . Th e choic e arise s fro m th e availabilit y o f low-cost , large-size , an d extremel y hig h qualit y singl e crysta l silico n develope d primaril y fo r th e semiconducto r industry . Singl e crysta l diamond s hav e no t bee n use d fo r thi s applicatio n fo r a numbe r o f reasons . Th e tw o mai n (an d mutuall y reinforcing ) reason s hav e bee n a genera l lac k o f nee d for , an d unavailabilit y of , suitabl e singl e crysta l diamond s fo r x-ra y optic s applications . Ther e ar e no w som e compellin g reason s wh y th e subjec t o f a diamon d monochromato r shoul d b e reassessed . T o begi n with , th e x-ra y beam s produce d b y undulator s a t moder n synchrotro n facilitie s ar e s o intens e tha t the y caus e unacceptabl y hig h therma l distortio n i n th e coole d optica l element s o n whic h the y impinge . Thus , a n opticall y suitabl e singl e crysta l wit h hig h therma l conductivit y an d lo w therma l expansio n coefficien t i s highl y desirable . Singl e crysta l diamon d at room temperature fits thi s descriptio n rathe r wel l a s doe s silico n at cryogenic temperatures.^'^ A t temperature s belo w 2 0 K , singl e crysta l silico n ha s a negligibl e therma l expansio n coefficient , an d it s therma l conductivit y i s abou t 5 0 W/cm- K (i.e. , abou t 1 2 time s bette r tha n tha t o f coppe r a t roo m temperature). ^ I t ha s a negativ e therma l expansio n coefficien t belo w 12 5 K (i.e. , i t contract s upo n heating) . Th e therma l expansio n coefficien t i s zer o a t abou t 12 5 K wher e th e therma l conductivit y i s abou t 6 W/cm- K (o r 50
% bette r tha n tha t o f coppe r a t roo m temperature) . Thus , a cryogenicall y coole d silico n monochromato r system , operate d fo r exampl e a t liqui d nitroge n temperature , i s conceptuall y attractive . I n practice , however , th e desig n o f a syste m capabl e o f removin g severa l k W o f hea t wit h on-the-surfac e pea k hea t fluxe s i n exces s o f 5 0 W/mm ^ (expecte d fro m AP S Undulato r A , fo r example ) i s a rathe r formidabl e task , th e mos t obviou s complication s o f whic h ar e th e critica l hea t flux issue , th e require d larg e coolin g are a tha t necessitate s a multi-laye r hea t exchanger , an d a robus t desig n fo r maintainin g th e integrit y an d th e figur e unde r therma l cycling . I t i s mor e realisti c t o conside r a cryogenicall y coole d silico n monochromato r syste m wit h a n incline d o r asymmetri c geometr y i n whic h th e inciden t hea t flu x i s sprea d ou t ove r a muc h large r are a tha n i n a conventiona l monochromator. 2

Diamon

d a t roo m temperatur e offer s a mor e manageabl e an d ye t competitiv e alternativ e t o silico n a t cryogeni c temperatures . Singl e crysta l diamon d ca n hav e a therma l conductivit y i n exces s o f 2 1 W/cm-K . Thi s i s fiv e time s bette r tha n coppe r a t roo m temperature , an d th e rati o i s accentuate d a t lowe r temperatures , t o som e 2 5 time s a t liqui d ai r temperatur e (Typ e H a diamon d ha s a fantasti c therma l conductivit y o f abou t 10 0 W/cm- K a t abou t 100K)
. Thus , i t i s apparen t that , a t leas t fro m a therma l poin t o f view , a diamond-base d monochromato r syste m ca n provid e a n optio n fo r dealin g wit h hig h therma l loa d x-ra y beams . I n usin g diamon d fo r th e desig n o f a n x-ra y monochromato r system , however , a numbe r o f issue s mus t first b e resolved . Thes e concer n th e availability , quality , an d suitabilit y o f diamond s fo r synchrotro n applications . Thes e issue s ar e discusse d nex t 3 . SINGL E CRYSTA L DIAMOND S

Diamonds

^ a r e classifie d (base d o n thei r I R an d U V absorptions ) a s Typ e I o r I I dependin g o n whethe r nitrogen , a commo n impurity , i s presen t o r not . Eac h Typ e i s furthe r subdivide d int o a o r b , t o indicat e th e specifi c for m i n whic h impuritie s ar e presen t A majorit y o f natura l diamond s ar e Typ e I , wit h hig h concentration s o f nitrogen , whil e Typ e I I diamond s (whic h mak e u p abou t 2 % o f diamonds ) hav e little or no nitrogen. Type II diamonds contain impurities with concentrations of about 10 parts per millio n an d a s ge m stone s ar c considere d t o b e nearl y '"perfect " an d fre e fro m "defects. " Mos t o f thes e ar c Typ e Ila , havin g a hig h electrica l resistivit y (-5xlf)' < + ohm-m) , an d ar e essentiall y insulators . Typ e H b diamonds , o n th e othe r hand , ar e semiconductor s wit h a resistivit y o f 10 0 ohm- m o r less , du e t o th e presenc e o f boro n a s a n impurity . Hig h qualit y natura l diamond s ar e availabl e i n size s u p t o 1 0 x 1 0 x 1 mm ^ o r larger.10-1 1 Th e price ^ fo r a 1 0 x 1 0 x 0.2 5 mtn ^ Typ e Il a diamon d i s unde r $8000 . Large r are a diamond s ca n b e availabl e a t substantiall y highe r costs . Typ e li b crysta l price s ar e abou t twic e thos e o f Typ e H a diamonds . Typ e la diamond s ar e no t suitabl e fo r th e presen t application , whil e Typ e I b diamonds , whic h ar e availabl e i n size s u p t o 6 m m x 6 m m x 0.2 5 m m (o r thicker) , ar e price d a t abou t $200 0 o r roughl y abou t 20 % highe r tha n Typ e H a diamond s o f th e sam e size . * 0 Fo r x-ra y diffractio n applications , on e ma y ideall y wan t t o us e a perfec t diamon d crystal , tha t i s a diamon d fre e o f al l impuritie s an d lattic e defect s & dislocations . Suc h crystal s ar e rare , an d extensiv e testin g o f man y crystal s i s necessar y t o selec t a suitabl e specimen . W e note , however , tha t certai n imperfection s i n singl e crysta l diamond s ma y eve n b e desirabl e i n certai n x-ra y diffractio n applications . A hig h qualit y diamond , i n th e aestheti c sense , wit h n o "impurities " ma y stil l b e (an d ofte n is ) imperfect , i n th e diffractio n sense . Thi s i s du e t o lattic e defect s an d lattic e deformations . Th e forme r includ e missin g o r displace d atom s fro m th e point s o f thei r geometri c locatio n an d loca l elasti c deformation s whic h alte r th e inte r atomi c spacin g an d th e bon d length s Lattic e deformation s ar e du e t o th e presenc e o f a fe w o r a larg e numbe r o f elasticall y staine d region s i n th e crysta l leadin g t o a crysta l tha t i s divide d int o man y smal l region s wit h slightl y differen t lattic e orientations . Thi s i s th e mosaicit y o f th e singl e crysta l diamon d tha t broaden s th e rockin g curve .

Natura

l diamond s ar e generall y stressed . Sometime s a par t o f thi s stres s ma y b e anneale d b y heatin g th e diamon d i n vacuu m (t o preven t oxidation ) o r b y heatin g i t t o ver y hig h temperature s fo r a shor t perio d o f tim e (t o preven t graphitization. ) i n a n iner t environmen t A rathe r unexpecte d resul t o f a limite d numbe r o f studie s o n th e diffractio n propertie s o f natura l diamond s i s tha t becaus e o f a typ e o f dislocatio n commonl y foun d i n an d characteristi c o f th e mor e "perfect " Typ e Il a diamonds , Typ e I b diamond s ar e actuall y mor e suitabl e fo r x-ra y monochromators . ^ T o ou r knowledge , th e onl y reporte d confirmatio n o f thi s b y precis e rockin g curv e measurement s i s du e t o

Jackso

n 1 3 w h o obtaine d a doubl e crysta l rockin g curv e widt h (apparentl y th e ful l widt h a t hal f maximum , o r FWHM ) o f abou t 15 0 ar c second s fo r a Typ e Il a diamon d an d onl y 1 0 ar c second s fo r a Typ e I b diamond , bot h fro m (022 ) crysta l planes . Th e photo n energ y i s no t specified , bu t th e theoretica l FWH M o f th e doubl e crysta l rockin g curv e calculated ^ fo r thes e specime n range s fro m 1. 5 ar c second s fo r 2 0 ke V t o 3 2 ar c second s fo r 5 ke V photons . Jackso n 1 3 als o note s tha t th e annealin g o f th e Typ e H a crystal s t o 1000°
C faile d t o affec t th e rockin g curv e width .

Becaus

e o f th e recen t availabilit y o f syntheti c singl e crysta l diamond s an d ou r belie f tha t th e rapi d advance s i n diamon d technolog y ma y soo n resul t i n large r are a diamond s o f hig h consistenc y an d quality , w e hav e examine d Typ e I b syntheti c crystal s produce d b y Sumitom o Electric . 1 5 Thes e crystal s know n a s

Sumicrystals™

, ar e abou t 5 x 5 x 0. 3 mm ^ i n siz e an d ar e develope d primaril y a s a hea t sin k material . The y hav e a yello w color , indicativ e o f nitroge n impurity , whic h i s reporte d b y th e manufacture r t o b e o n th e orde r o f ten s o f part s pe r million . Th e crystal s ar e cut , usin g a Ya g lase r beam , fro m large r crystal s tha t ar e synthesize d i n a hig h pressur e (abou t 50,00
0 atmospheres ) an d hig h temperatur e (ove r 1300°C
) process . Th e Sumicrystals ™ hav e not , t o ou r knowledge , bee n adequatel y characterize d fo r x-ra y

applications, although there are indications that they may be better than most natural diamonds incrystalline quality and in consistency.

Th e hig h pressure-hig h temperatur e techniqu e t o produc e syntheti c diamon d crystal s (firs t announce d b y th e Genera l Electri c (GE ) researcher s i n 195
5 an d detaile d later , 16 ) ha s bee n modifie d an d refine d t o produc e large r an d highe r qualit y singl e crysta l diamonds . Th e onl y singl e crysta l diamond s tha t Genera l

Electri

c no w supplie s ar e th e isotropicall y pur e (99.99% ) C ^ crystals . 1 7 Owin g t o th e muc h reduce d irregularitie s i n th e crysta l lattic e vibration s presen t i n diamond s wit h natura l isotropi c composition , th e G E crystal s hav e a roo m temperatur e therma l conductivit y o f 3 3 W/cm^-K , o r 50
% abov e tha t o f th e bes t natura l diamonds . Tw o (400 ) G E sample s ( 4 m m x 4 m m i n area ) evaluate d o n th e X-2 5 beamlin e a t

Brookhave

n Nationa l Laborator y 1 8 usin g a (440 ) silico n analyze r gav e rockin g curv e FWHM s o f 2. 5 an d 8 ar c seconds , confirmin g tha t a t leas t on e o f th e tw o i s a n extremel y goo d crystal . Othe r investigation s sho w tha t th e rockin g curv e width s fo r thes e crystal s ar e no t perceptivel y dependen t o n th e isotropi c composition . 1 9 Th e siz e o f G E crystals , accordin g t o th e supplier , doe s no t excee d 5 m m x 5 m m i n area , l ^ Durin g th e cours e o f th e presen t study , i t ha s becom e obviou s tha t th e potentia l x-ra y optica l application s o f syntheti c diamond s hav e no t bee n communicate d t o th e respectiv e manufactures . I n fact , th e Sumicrystals ™ diamond s tha t w e hav e examine d ar e mostl y use d fo r hea t sin k applications , an d hav e no t benefite d fro m an y specia l handlin g (i n cutting , polishing , etc. ) appropriat e fo r optica l applications . W e hav e measure d th e RM S surfac e roughnes s o f thes e diamon d crystal s t o b e abou t 10 A wit h a radiu s o f curvatur e o f abou t 1 0 m . Th e larges t syntheti c diamon d crystal s currentl y available ^ fro m Sumitom o i s abou t 1 2 x 1 2 x 0. 3 mm 3 an d cost s abou t $32,000 . A n 8 x 1 2 x 0. 3 mm 3 wil l cos t abou t $19,000 . A s w e shal l shortl y see , thes e size s ar e adequat e fo r th e presen t application . 4 . ROCKIN G CURV E MEASUREMENT S Tw o Sumicrystal ™ diamon d specimens , 5 x 5 x 0. 3 mm 3 i n size , wer e firs t teste d usin g a Lau e camer a t o determin e th e crysta l planes . Th e larg e surfac e are a o f th e crystal s wer e foun d t o b e nearl y paralle l t o th e (400 ) planes . Thes e plane s wer e use d i n th e Brag g diffractio n experiment s t o determin e th e qualit y o f th e syntheti c crystals . Th e experimenta l setu p fo r thes e experiment s i s show n i n Fig . 1 . Th e radiatio n fro m a Mo- K x-ra y sourc e (o n th e right) passe s throug h a se t o f doubl e (vertica l an d horizontal ) slit s an d impinge s o n th e firs t diamon d crystal . Th e diffracte d bea m fro m thi s crysta l passe s throug h a secon d se t o f doubl e slit s an d impinge s o n th e secon d crysta l wher e th e radiatio n i s diffracte d fo r a secon d time . Th e intensit y o f thi s diffracte d bea m i s recorde d wit h th e x-ra y detecto r o n th e left . Thi s i s th e standar d non-dispersiv e geometr y use d t o determin e th e averag e qualit y o f tw o crystals . Th e horizonta l width s o f th e first an d secon d slit s ar e 0.02 5 m m an d 0.1 5 mm , respectively . Thes e ar e sufficien t t o limi t th e diffractio n t o on e o f th e K x-ra y line s (K-LIII ) i n th e M o spectrum . Th e footprin t o f th e bea m o n th e secon d crysta l i s abou t 0. 6 m m horizontall y an d 3. 0 m m vertically . Th e doubl e crysta l rockin g curv e (photo n coun t rat e a s a functio n o f Brag g angle ) i s obtaine d b y rotatin g th e secon d crysta l an d recordin g th e photo n coun t rate . Th e se t u p show n i n Fig . 1 wa s first teste d b y measurin g th e doubl e crysta l rockin g curv e FWHM s o f nearl y perfec t silico n (111 ) an d (333 ) crystals . Value s o f 4. 8 an d 0.9 6 ar c seconds , respectively , wer e obtained , whic h whe n divide d b y V 2 giv e th e correspondin g averag e width s o f individua l crystal s a s 3.3 8 an d 0.6 8 ar c seconds . Thes e value s ar e accurat e t o bette r tha n 3 % whe n compare d t o th e theoretica l value s (Darwi n widths ) o f 3.3 2 an d 0.6 6 ar c seconds , respectively . The double crystal rocking curve of diamond (400) crystals was then obtained as shown in Fig. 2. Als o show n i n Fig . 2 fo r compariso n i s th e rockin g curv e obtaine d b y replacin g th e diamond s wit h silico n (111 ) crystal s without changin g th e photo n sourc e o r th e sli t sizes . Th e measure d doubl e crysta l rockin g curv e FWH M fo r diamon d (400 ) i s 6. 2 ar c second s an d fo r silico n (II1 ) i s 4. 8 ar c seconds . I f th e diamon d crystal s wer e perfect , on e woul d expec t t o obtai n ^ a rockin g curv e wit h a FWH M o f 0.9 7 ar c second s a s show n i n Fig . 3 . Thus , mos t o f th e measure d lin e widt h i n th e diamon d i s relate d t o th e crysta l imperfections . Th e measure d averag e widt h o f a Sumicrystal ™ i s the n 6.2 / -v/2=4. 4 ar c seconds , whil e a perfec t diamon d (400 ) woul d hav e a FWH M (Darwi n width ) o f 0.97/-\/2=0.6 9 ar c seconds . Wit h th e abov e information , i t i s possibl e t o estimat e th e averag e mosai c widt h o f th e diamon d crystals . Assumin g tha t th e mosai c widt h add s t o th e Darwi n widt h a s th e squar e roo t o f th e su m o f th e squares , th e mosai c widt h wil l b e give n b y th e squar e roo t o f th e differenc e betwee n th e square s o f th e measure d an d theoretica l (Darwin ) widths , tha t is , Mosai c widt h = [4.4^-0.69^ 1 =4.3 5 ar c second s

Assumin

g tha t th e mosaicit y i s isotropic , on e ca n no w us e thi s valu e o f th e mosai c widt h t o estimat e th e FWH M o f th e thes e diamon d crystal s wher ; the y ar e use d t o diffrac t x-rays , fo r example , fro m th e (111 ) planes . On e combine s th e theoretica l diamon d (400 ) widt h o f 3. 1 ar c second s wit h th e mosai c widt h o f 4.3 5 ar c second s t o obtai n th e valu e o f 5. 3 ar c second s fo r thi s width . Thu s a tw o crysta l monochromato r syste m usin g thes e diamon d crystal s wit h th e (111 ) plane s shoul d generat e a rockin g curv e wit h a FWH M o f 5. 3 V2 , o r 7. 5 ar c seconds . Th e result s o f th e rockin g curv e experiment s ar e summarize d i n Tabl e I . Tabl e I . Result s o f th e rockin g curv e experiment s wit h diamon d an d silico n crystals . Al

lexperiments were performed with the Mo K-LIII x-ray. Given widths are all for onecrystal.Description

Measure

d averag e widt h o f th e syntheti c (400 ) diamon d specimen s

Theoretica

l (Darwin ) widt h o f a perfec t (400 ) diamon d crysta l

Estimate

d mosai c widt h o f th e syntheti c diamon d specimen s

Estimate

d widt h o f th e syntheti c (111 ) diamon d crystal *width(arc seconds) 4. 4 0.6 9 4.3 5 5. 3 *denote s inferre d value s base d o n th e compute d mosaicity . Th e compariso n o f th e rockin g curve s o f th e diamon d (400 ) an d perfec t silico n (111 ) show n i n Fig . 2 i s o f specia l interes t becaus e no t onl y th e width s bu t als o th e pea k intensitie s ar e quit e similar . I f diamon d crystal s o f thi s qualit y wer e use d i n a tw o crysta l monochromator , bot h th e angula r resolutio n (whic h i s a functio n o f th e rockin g curv e widt h an d th e synchrotro n bea m openin g angle ) an d th e pea k coun t rat e i n th e diffracte d bea m (whic h i s a functio n o f th e integrate d are a unde r th e rockin g curv e an d thu s i s sensitiv e t o bot h th e heigh t an d widt h i f th e curve ) woul d b e quit e similar . Ou r limite d test s indicat e tha t th e syntheti c singl e crysta l diamond s produce d a t thi s tim e ar e alread y o f sufficien t qualit y t o mak e usabl e doubl e crysta l monochromato r systems . Th e mai n differenc e betwee n a doubl e crysta l monochromato r usin g thes e (400 ) diamond s an d perfec t silico n (111 ) i s tha t th e Brag g angl e i n th e diamon d cas e i s a facto r o f 3. 6 larger . Thi s wil l improv e th e energ y resolutio n b y a simila r faclor since AE/E is proportional to A8/8. Here, A6 is the angular resolution of the monochromator, whic h i s simila r fo r bot h cases , an d 9 i s th e Brag g angle , whic h fo r diamon d (400 ) i s 3. 6 time s large r tha n fo r silico n (111) . Th e integra l diffractio n efficienc y fo r th e (111 ) plane s i n diamon d i s expecte d t o b e large r tha n fo r th e (400 ) planes , s o th e diamon d (111 ) plane s wil l produc e monochromalor s wit h eve n highe r efficiencies . 5 . FABRICATIO N O F A DIAMON D MONOCHROMATO R

Althoug

h singl e crysta l diamond s currentl y availabl e ar e rathe r modes t i n size , the y ar e adequat e fo r th e collimate d hig h powe r densit y x-ra y beam s generate d b y undulators . A 1 2 x 8 mm ^ diamon d i s larg e enoug h t o intercep t th e centra l con e o f th e AP S Undulato r A.2.2 0 A t 3 0 m fro m th e source , th e centra l con e o f th e x-ra y bea m a t close d ga p (a t whic h th e powe r loadin g i s maximum ) i s abou t 3. 6 m m horizontall y an d 1. 2 m m verticall y (ful l widt h a t zer o height) . Thi s mean s tha t a (111 ) diamon d crystal , 1 2 m m long , ca n intercep t an d diffrac t th e entir e centra l con e radiatio n a t Brag g angle s o f 5.7 * o r larger . Thi s cover s th e entir e 4-3 0 ke V tunin g rang e o f Undulato r A . Small(er ) Brag g angle s correspondin g t o high(er ) diffracte d photo n energie s requir e tunin g th e undulato r t o highe r harmoni c energie s a t whic h th e powe r loadin g o f th e bea m i s substantiall y reduce d an d therefor e a silico n monochromato r ca n b e used .

Becaus

e o f it s lo w atomi c number , diamon d absorb s les s x-ra y radiatio n tha n doe s silico n o f identica l thickness . Th e PHOTON^ l progra m wa s use d t o calculat e th e absorbe d values . Th e result s ar e show n i n Fig . 4 fo r AP S Undulato r A (se e specification s i n Tabl e II) . Th e thicknes s o f th e diffractin g diamon d ca n b e a s smal l a s ten s o f microns . Th e thinne r th e diamond , th e les s th e absorbe d radiation , an d therefor e th e smalle r th e therma l loa d o n it . I t i s thu s advantageou s t o us e a thi n diamon d monochromato r i f th e crysta l ca n b e convectivel y surface-cooled , fo r example , b y a heliu m o r nitroge n jet . I f th e crysta l i s edg e cooled , the n th e thinne r th e crystal , th e smalle r i s th e conductio n are a fo r th e transfe r o f th e hea t fro m th e cente r o f th e crysta l t o it s coole d periphery , an d th e ne t effec t o n th e temperatur e an d strai n i n th e crysta l is , i n general , insignificant . Th e importan t paramete r i n edg e coolin g i s th e effectiv e hea t transfe r coefficien t a t th e crysta l boundaries . Becaus e o f th e hig h conductivit y o f diamond , a doublin g o f th e effectiv e hea t transfe r coefficien t a t th e crysta l edge s wil l reduc e th e maximu m temperatur e i n th e crysta l nearl y b y half . Thus , a thi n crysta l wit h edg e coolin g ma y b e a n optio n dependin g o n th e absorbe d hea t loa d an d th e edg e coolin g efficiency . Fo r th e AP S Undulato r A bea m considere d i n thi s study , w e assum e tha t th e diffractin g singl e crysta l diamon d i s bonde d t o a substrat e mad e o f polycrystallin e diamon d t o buil d wha t w e cal l a n integra l diamon d crystal . Polycrystallin e diamond s ca n hav e hig h therma l conductivities ^ approachin g tha t o f singl e crysta l diamond s and , mor e importantly , the y ca n b e produce d i n larg e size s usin g chemica l vapo r depositio n (CVD ) o r associate d techniques . Th e diamon d (o r possibl y silicon ) diffractin g elemen t ca n b e bonded ^ t o a CV D substrat e wit h appropriatel y configure d coolin g channel s Wit h a carefull y selecte d bondin g procedure , on e ma y b e abl e t o produc e strain-fre e diamon d t o diamon d bonding . W e ar e unawar e o f an y wor k i n whic h th e stres s level s i n suc h bondin g wer e measured . A n alternativ e techniqu e woul d involv e depositio n o f CV D diamon d directl y o n th e diffractin g diamon d element . Again , w e ar e unawar e o f an y wor k t o produc e o r tes t stain-fre e bondin g usin g thi s techniqu e bu t believ e ma t thi s ma y no t b e a n insurmountabl e problem . 6 . THERMA L AN D STRUCTURA L ASPECT S O F A N INTEGRA L

DIAMON

D MONOCHROMATO R I n orde r t o determin e th e relativ e performanc e o f a diamond-base d versu s a silicon-base d monochromato r system , th e slop e error s resultin g fro m th e therma l distortio n o f th e monochromator s unde r th e hig h hea t loa d o f a n x-ra y bea m ar e required . A s a rul e o f thumb , a figur e o f meri t fo r th e

performance is given by llie ratio k/a, where k is the thermal conductivity and a is the thermal expansion

coefficient . A s see n fro m th e propert y dat a i n Tabl e II , singl e crysta l diamon d ca n hav e a figure o f meri t 4 0 t o 5 0 lime s highe r tha n silico n a t roo m temperature . Th e therma l conductivit y o f polycrystallin e diamon d i s i n th e 7-2 1 W/cm^- K rang e (an d possibl y highcr).^ 2 it s therma l expansio n coefficien t i s simila r t o tha t o f singl e crysta l diamond . Tabl e H Propertie s o f singl e crysta l diamon d an d silico n a t room temperature.6~9

Propert

y Atomi c number , Z•3

Densit

y (g/c m )Thermal conductivity (W/cm-K)

Therma

l expansio n coefficien t ( K x 10 " )

Specifi

c hea t (J/Kg-K )Thermal diffusivity (cm^/s)

Young'

s module s (GPa )

Poison

s rati o

Meltin

g poin t (°C )

Tensil

e strengt h (GPa ) Yiel d strengt h (MPa )

Lattic

e spacin g (A )Diamond 6 3.51 6 2 1 0. 8 52
011.5 1,05 0

0.1-0.2

9 430
0 > 3 N A 3.567

0Silicon

1 4 2.33 0 1.2 5 2.3 3 75
00.72 16 7 0. 3 142
0 N A

1240-206

0 5.430 5 Fo r a mor e detaile d compariso n o f th e performances , w e evaluat e th e temperatur e fields an d th e resultin g slop e error s i n th e tw o monochromnto r systems , on e silico n an d th e othe r diamond . Th e radiatio n sourc e i s assume d t o b e Undulato r A a t close d ga p (11. 5 mm ) o n th e 7-Ge V AP S storag e ring wit h a positro n curren t o f 10 0 mA . Th e tota l powe r o f th e sourc e i s 3. 8 kW , an d th e pea k norma l incidenc e hea t flux a t th e monochromato r 3 0 m fro m th e cente r o f th e undulato r i s abou t 15 0 W/mm2 . Th e FWHM s o f th e bea m i n th e horizonta l an d vertica l direction s ar e 8. 2 an d 2. 9 mm , respectively . Th e centra l con e o f th e beam , whic h contain s mos t o f th e desire d (harmonic ) photons , ha s a muc h smalle r footprint . Fo r AP S Undulato r A a t 3 0 m fro m th e source , th e entir e (ful l widt h a t zer o height ) centra l con e ha s a footprin t o f 3. 6 m m horizontall y an d 1. 2 m m vertically . I n th e computation s tha t follow , i t i s assume d tha t a n apertur e wit h a n openin g o f 3. 6 m m an d 1. 8 m m i n th e horizonta l an d vertica l directions , respectively , i s place d upstrea m o f ?h e monochromator . Not e tha t th e vertica l dimensio n o f thi s sli t i s 50
% large r tha n th e 1. 2 m m o f th e bea m centra l cone . I t i s als o assume d tha t th e entir e hea t loa d intercepte d b y th e monochromato r i s absorbe d o n th e surface , a n assumptio n tha t i s mor e appropriat e fo r silico n tha n fo r diamond . I n fact , a s show n i n Fig . 4 , fo r AP S Undulato r A wit h a characteristi c energ y o f 23.
5 keV , abou t 30
% o f th e powe r i s absorbe d i n a 1 m m thic k diamond . Thi s figur e fo r silico n i s abou t 50%
. In-dept h absorptio n o f hea t wil l generall y lea d t o reduce d temperature s an d strains . A s mentione d previously , th e lo w absorptio n o f har d x-ray s i n diamon d favor s th e possibl e us e o f a thi n singl e crysta l diamon d i n Brag g o r Lau e geometries . Fo r example , fo r typica l inciden t angle s greate r tha n 5° , a 0. 2 m m diamon d se t t o diffrac t Undulato r A bea m wil l absor b n o mor e tha n 35
% o f th e inciden t bea m power . Not e tha t th e actua l bea m pat h lengt h i n th e 0. 2 m m thic k foi l i s 2. 2 mm . I t ma y b e possibl e t o edg e coo l th e thi n diamond . Th e cooling , a s w e hav e noted , woul d hav e t o b e exceptionall y goo d t o maintai n moderat e temperature s an d strain s i n th e diamond . In the present study, the total power intercepted by the monochromator through the aforementioned apertur e i s 86
0 W . W e se t th e monochromator s t o diffrac t thir d harmoni c radiatio n (12. 6 keV ) fro m

Undulato

r A a t close d gap . Th e crystal s ar e assume d t o b e 1 c m thick . Th e width s an d length s ar e eac h 2 c m large r tha n th e correspondin g dimension s o f th e bea m footprint . Th e thicknes s o f 1 c m i s arbitraril y chose n for comparison only, and , i n fact , i t i s neithe r necessar y no r optima l t o hav e suc h thic k substrates . Th e substrate s ar e assume d t o b e coole d o n th e bac k surfac e b y liqui d gallium . Th e hea l transfe r coefficien t use d i s 5 W/cm 2 -K . Again , thi s valu e i s somewha t arbitrar y bu t sufficien t fo r th e presen t comparativ e study . Tabl e II I summarize s thes e inpu t data . Table III . Parameter s an d dat a use d i n therma l an d structura l analyses .

Paramete

r

Radiatio

n Sourc e Bea m curren tTotal power Powe r densit y Bea m V-FWH M @3 0 m Bea m H-FWH M @3 0 m

Therma

l Sli t Locatio n Sli t openin g ( v x h ) Bea m footprin t ( v x h )

Absorbe

d radiatio n

Monochromato

rMonochromator location

Coolin

g (o n bac k surface ) Hea t transfe r coefficien t Tota l powe r intercepte d Pea k norma l inciden t hea t flu x

Diffractin

g photo n Energ y

Undulato

r harmoni cData 2. 5 m Undulato r A (close d gap ) 10 0 m

A3.8 kW

13 5 kW/mrad 2 2. 9 m m 8. 1 m m 3 0 m fro m th e sourc e 1. 8 x 3. 6 m m 7. 5 m m x 3. 6 m m surfac e absorptio n assume d diamon d o r silico n30 m from the source galliu m 5 W/cm 2 - K 86
0 W 15 0 W/mm 2 12. 6 ke V 3r d Th e mode l use d i n th e thermal-structura l analyse s o f th e diamon d monochromato r i s show n i n Fig . 5 . Th e dimension s o f th e bea m footprint s an d th e monochromato r component s ar e give n i n Tabl e III . Th e thicknes s o f th e singl e crysta l diamon d (assume d t o hav e bee n bonde d ont o th e substrate ) i s 0. 5 mm , whic h i s mor e tha n sufficien t fo r diffractio n purposes . I n th e cas e o f silicon , th e substrat e i s als o th e diffractin g element . Becaus e silico n ha s a relativel y lo w therma l conductivity , w e hav e als o considere d a silico n crystal , 0. 1 c m thick , t o sho w th e effec t o f reducin g substrat e thickness . Th e temperatur e profile s alon g th e AA'-axi s (Fig . 5 ) fo r th e diamon d an d silico n monochromator s wit h 1-c m substrate s ar e show n i n Fi g 6 . I n th e cas e o f diamond , th e temperatur e o n th e to p surfac e o f th e diffractin g elemen t (th e heav y line ) i s slightl y abov e th e to p surfac e o f th e substrat e (th e ligh t line) . Fo r th e silico n case , the y ar e th e sam e surfac e an d thu s th e sam e temperature . Th e footprin t region , whic h i s smalle r fo r th e diamon d monochromato r (large r Brag g angle) , i s highlighte d b y th e thicke r lin e i n Fig . 6 . Th e maximu m temperatur e ris e i n th e silico n monochromato r i s abou t 660°C
, whil e i n th e diamon d monochromato r i t i s abou t 55°C
. A reductio n i n th e thicknes s o f th e silico n monochromato r fro m 1. 0 c m t o 0. 1 c m wil l no t lowe r th e temperature s substantiall y (se e Tabl e IV) . Figure 7 shows the corresponding thermal distortions for the two monochromators. It plots the displacemen t i n th e plan e o f scatterin g alon g th e lengt h (A-A ' i n Fig . 5 ) o f th e crysta l monochromators . Th e maximu m displacement s fo r silico n an d diamon d crystal s ar e 0.2 7 fi m an d 1 4 jim , respectively . Th e displacemen t i n a 0. 1 -cm-thic k silico n crysta l i s no t significantl y differen t fro m tha t i n a 1.0-cm-thic k crystal . I t shoul d b e noted , however , tha t thi s displacemen t woul d b e substantiall y les s i f (a s i s normall y th e case ) di e crysta l wer e restrained . Th e maximu m temperatur e i n th e crysta l i s reduce d b y mor e efficien t cooling , whil e th e temperatur e gradien t acros s th e thickness , t o a first approximation , remain s unaffected . Tabl e IV . Simulatio n dat a an d result s fo r diamon d an d silico n monochromators .

Materia

l

Diffractin

g plane s Photo n energ y (keV ) Brag g angl e (° )

Monochromato

r siz e (c m x cm ) Bea m footprint , v x h (c m x cm )

Diffractin

g elemen t siz e (c m x cm )

Diffractin

g elemen t thicknes s (cm ) Pea k inciden t hea t flu x (W/mm^ )

Monochromato

r substrat e thicknes s (cm )Max. temperature rise above gallium temperature (°C) Max . temp , rise a t wall-G a interfac e (°C )Max. temp, rise across the crystal (°C) Max . compressiv e stres s (MPa ) Max . tensil e stres s (MPa )Max. displacement in the scattering plane (p.m) Max . slop e erro r i n th e scatterin g plan e (ar c second )Diamond (111 ) 12. 6 13. 8 4. 7 x 2. 2 0.7 5 x 0.3 6 0.7 5 x 0.3 6 0.0 5 3 5 1. 0 5 51837
2 1 80.27

5Silicon

(HI ) 12. 6 8.9 9 6. 6 x 2. 2 1. 2 x 0.3 6 N A N A 2 3 1. 0 66

027633

15 4 4 614
18 00.1 50

6280226

13 6 3 318
20 0 Th e slop e error s alon g th e AA'-axi s fo r th e tw o 1-c m thic k monochromator s ar e show n i n Fig . 8 , wher e again , th e footprin t region s ar e highlighted . Th e maximu m slop e errors , whic h occu r nea r peripher y o f th e footprints , ar e abou t 5 ar c secon d fo r diamon d an d 18 0 ar c second s fo r silicon . Sinc e th e photo n beam s hav e typicall y Gaussia n profile s wit h thei r peak s wher e slop e erro r i s negligibl e an d thei r nadi r wher e th e slop e erro r i s maximum , th e effective slope error s ar e somewha t smaller . 7 . SUMMAR Y AN D CONCLUSION S W e hav e propose d a diamond-base d monochromato r fo r ver y hig h hea t loa d beamlines . Th e monochromato r consist s o f a smal l singl e crysta l diamon d bonde d t o a polycrystallin e diamon d substrat e i n whic h th e necessar y coolin g channel s ar e configured . A preliminar y stud y o f th e subjec t examine s th e potentia l o f suc h a monochromator . Fro m a thermal - structura l poin t o f view , a diamon d monochromato r i s vastl y superio r t o a silico n monochromator . A simulate d compariso n o f a silico n versu s a diamon d monochromato r subjecte d t o th e AP S Undulato r A bea m a t close d ga p indicate s slop e error s o f 18 0 an d 5 ar c seconds , respectively . Whil e th e incline d monochromator2> 3 provide s a solutio n t o th e hig h hea t loa d monochromato r problem , a diamon d monochromato r allow s conventiona l (non-inclined ) operatio n o f a monochromator . I n addition , a diamon d monochromato r ca n b e devise d t o operat e i n a n incline d mode , i n whic h cas e ther e i s potentia l t o

be able to handle heat fluxes an order of magnitude higher than those generated by undulators in the hear

future . Thi s las t statemen t assume s tha i on e ca n obtai n large r (2- 4 c m size ) singl e crysta l diamonds .

Preliminar

y testin g o f Sumitom o syntheti c singl e crysta l diamonds , 5 m m x 5 m m x 0. 3 mm , gav e a doubl e crysta l rockin g curv e (fo r M o K-LIH ) o f abou t 6 ar c secon d compare d t o th e theoretica l valu e o f abou t 1 ar c second . Thes e measurement s mus t b e carefull y repeated . Furthe r stud y an d characterizatio n o f thes e crystal s i s necessar y t o evaluat e thei r suitabilit y a s monochromato r material.2 4 u shoul d als o b e realize d that , unlik e silicon , commerciall y availabl e diamond s ar e restricte d t o a limite d numbe r o f crysta l orientations . A numbe r o f additiona l issue s mus t b e investigate d t o determin e th e suitabilit y o f diamon d a s th e monochromato r materia l fo r routin e us e o n hig h hea t loa d synchrotro n beamlines.2 5 Thes e includ e (a ) strain-fre e bondin g o f diamon d t o diamond , o r depositio n o f CV D diamon d o n th e singl e crysta l diffractin g element , (b ) dimensiona l stabilit y o f a composit e diamon d monochromator , (c ) radiatio n damag e stud y fo r diamond,26-2 8 an d (Diamon dCrystal B

Detecto

r Doubl e Slit s Doubl e Slit s . Sourc e

Diamon

d

Crysta

l A Figur e 1 . Experimenta l setu p (viewe d fro m th e top ) fo r th e rockin g curv e measurements . Th e x-ra y bea m fro m th e M o x-ra y sourc e o n th e right passe s throug h a se t o f doubl e slit s an d i s inciden t o n th e Crysta l A .

Crysta

l A diffract s th e K-LII I x-ra y line , whic h passe s throug h th e secon d se t o f doubl e slit s an d i s diffracte d a secon d tim e b y th e Crysta l B . Th e final intensit y i s detecte d i n th e detecto r o n th e left . IDVI aso700 60
0 50
0 40
0 30
0 20 0 10

0Diamond (400)

•Silico n (111 ) -1

5-103-5 0 5

9 (arcsec )4.8 arcsec 6. 2 arcse c 1 015 Figur e 2 . Doubl e crysta l rockin g curve s fo r th e syntheti c diamon d (400 ) an d silico n (111 ) crystal s wit h th e M o K-LII I x-ray . Th e countin g rat e i n th e detecto r i s plotte d versu s th e Brag g diffractio n angl e o f th e secon d crysta l usin g a n arbitrar y zer o locate d nea r th e cente r o f th e peak . 1. 0 0. 8 a ais* 0.6 *5 >0.4 £ 0. 2 0.

0Theoretical(FWHM=0.97|arc secon

. t,t- fExperimental (FWHMM6. 2 aircsec ) -1 0 - 8 -6 -4- 2 0 2

6(arcsec

)4 6 8 10 Figur e 3 . Compariso n o f th e measure d an d theoretica l doubl e crysta l rockin g curve s o f diamon d (400 ) usin g photon s fro m M o K-LIII . 1.0 1 0 1 5 2 0 2 5 3 0 Dept h (mm ) Figur e 4 . Th e absorptio n o f th e AP S Undulato r A bea m i n diamon d an d silico n compute d fro m a bendin g magne t approximatio n fo r th e sourc e wit h a characteristi c energ y o f 23.
5 keV . Figur e S . Th e monochromato r mode l use d i n th e analysi s o f th e diamon d monochromator . Th e substrat e i s CV D diamon d whil e th e diffractin g elemen t bonde d t o i t i s singl e crysta l diamon d show n i n heav y lines . 1000
diffractin gclement -3. 0 -2.

0-1.0 0.0 1.0

Distanc

e (cm )2.0 3,0 Figur e 6 . Temperatur e rise i n th e 1-cm-thic k silico n an d diamon d crystal s alon g th e AA'-axi s o f Fig . 5 . 10 1 q 5 i o- A/ -Silicon |

ADiamond•diffractingelement-1 !

substrat e |\ -3. 0 -2.

0-1.0 0.0 1.0 2.0 3.0

Distanc

e (cm ) Figur e 7 . Th e displacemen t alon g th e AA'-axi s o f Figur e 5 i n th e 1-cm-thic k silico n an d diamon d crystal s unde r th e AP S undulato r bea m a t close d gap .

1000 I-

50
0 " = 1 U ouW a 3 3 -50 0 -100

0| Sil

| Di .icon imon c1 1\ \I V \/ / 1 •-3.0 -2.0 -1.0 0.0 1.0 2.0

Distanc

e (cm )3.0 Figur e 8 . Slop e error s alon g th e AA'-axi s o f Figur e 5 fo r th e silico n an d diamon d crystal s unde r th e AP S

Undulato

r bea m a t close d gap . 8 . ACKNOWLEDGMENT S Thi s wor k wa s supporte d i n par t b y th e U . S . Departmen t o f Energ y BE S Material s Scienc e unde r

Contrac

t No . W-31-109-ENG-38 . W e woul d lik e t o than k Denni s Mill s fo r hi s helpfu l comment s an d Davi d Lun t fo r obtainin g surfac e profile s o f th e syntheti c diamon d crystals . Th e crystal s wer e kindl y provide d b y Mr . I . Nakamur a o f Sumitom o Electri c USA . W e woul d lik e t o than k Patrici a Fernande z fo r he r assistan t i n rockin g curv e measurement s an d S . Picologlo u fo r editin g thi s manuscript . 9 . REFERENCE S 1 . R. K Smithe r an d A.K . Freund , editors , Worksho p o n Hig h Hea t Loa d X-Ra y Optics , Worksho p Repor t No . ANL/APS/TM-6 , Advance d Photo n Source , Argonn e Nationa l Laboratory , Argonne , Illinois , USA , 1989
. 2 . A.M . Khounsary , " A Nove l Monochromato r fo r Hig h Hea t Loa d Synchrotro n X-Ra y Radiation, " Rev. Sci. Instrum. 63
, 461-464
, 1992
. 3 . A.T . Macrander , W.K . Lee , R.K . Smither , an d D.M . Mills , C.S . Rogers , an d A.M . Khounsary , "Hig h Hea t Loa d Performanc e o f a n Incline d Crysta l Monochromato r wit h Liqui d Galliu m Coolin g o n th e

CHESS-AN

L Undulator," , Nucl. Instrum. Meth. A319 , 181-196
, 1992
. 4 . R.C . Evans , P.B . Hirsch , an d J.N . Keller, " A Paralle l Bea m Concentratin g Monochromato r fo r

X-Rays,

" Ada Cryst. 1 , pp . 124-129
, 1948
.

5. Y.S. Touloukian and E.H. Buyco, editors, Thcrmophysical Properties of Matter. IFI/Plenum

Pub. , Ne w York , 1970
. 6 . R . Berman , Physica l Propertie s o f Diamond . Clarendo n Press , Oxford , 1965
. 7 . J . Wilk s an d E . Wilks , Propertie s an d Application s o f Diamond . Buttcrwort h Heincmann , 1991
. 8 . J.E . Field , editor . Th e Propertie s o f Diamond . Academi c Press , 1979
. 9 . J.T . Glass , R . Messier , an d N . Fujimori , editors . Diamond . Silicon . Carbide , an d Relate d Wid e

Bandga

p Semiconductors . 1990
. 10 . Dubbelde e Harri s Diamon d Corp. , Moun t Arlington , N J 07856
, privat e communicatio n wit h AMK , 1992
. 11 . M . Seal , Amsterdam , Holland , privat e conversatio n wit h AMK , 1992
. 12 . P.L . Hanley , I . Kiflawi , an d A.R . Lang , "O n topographicall y identifiabl e source s o f cathodoluminescenc e i n natura l diamond, " Phil. Trans. R. Soc. Lond. A.2S4 , 329-368
, 1977
. 13 . A . Jackson , "Th e NIN A polarise d photo n beam, " Nucl. Instrum. andMeth., 129,73-83
, 1975
. 14 . S . Bernnan , an d P.L . Cowan , " A suit e o f FORTRA N program s fo r calculatin g perfec t crysta l x - ra y diffractio n performanc e fo r arbitrar y crystal s a t arbitrar y wavelength, " Rev. Sci. Instrum., 63
, 850
- 853
, 1992
. 15 . Sumitom o Electri c USA , Inc. , Lo s Angeles , CA , privat e communication s wit h AMK , 1990
- 1992
. 1 6 H.P . Bbvenkerk , FiP . Bundy , H.T . Hall , H.H . Strong , an d R.H . Wentrof , "Preparatio n o f diamond, " Nature, 184
, 1094-1098
, 1959
. 17 . R . Diangello , Genera l Electric , Schenectady , NY , Privat e communication s wit h AMK , 1992
. 18 . L . Berman , Brookhave n Nationa l Laboratory , NY , Privat e communicatio n wit h AMK , 1992
. 19 . H . Holloway , K.C . Hass , an d M.A . Tamor , T.R . Anthony , an d W.F . Banholzer , "Isotropi c dependenc e o f th e lattic e constan t o f diamond, " Phys. Rev. B, 44
, 7123-7126
, 1991
. 20 . G.K . Shenoy , P . J . Viccaro , an d D . M . Mills , "Characteristic s o f th e 7-Ge V Advance d Photo n

Source

: A Guid e fo r Users , "Argonn e Nationa l Laborator y Repor t ANL-88-9 , Feb . 1988
. 21
. D . Chapman , N . Gmuer , N . Lazarz , an d W . Thomlinson , "PHOTON : A progra m fo r synchrotro n radiatio n dos e calculations, " Nucl. Instrum. andMeth. A266 , 191-194
, 1988
. 22
. J.E . Graebner , S . Lin , G.W . Kammlott , J.A . Herb , an d C.F . Gardinier , "Unusuall y hig h therma l conductivit y i n diamon d films, " Appl. Phys. Lett. 60
, 1576-1578
, 1992
. 23
. M . Seal , " A revie w o f method s o f bondin g o r makin g electrica l contact s t o diamond, " Diamond

Review

29
, 408
, 1969
. 24
. B.K . Tanner , X-Ra y Diffractio n Topography . Pergamo n Press , 197
6 25
. A.M . Khounsar y an d T.M . Kuzay , "O n diamon d window s : r hig h powe r synchrotro n x-ra y beams, " Nucl. Instrum. Meth. A319 , 233-239
, 1992
. 26
. M . Itoh , M . Hori , H . Komano , an d I . Mori , " A stud y o f radiatio n damag e i n Si N an d Si C mas k membranes, " J. Vac. Sci. Technol B9 , 3262-326
5 1991
. 27
. Suzuki , R . Kumar , H . Windischmann , H . Sano , Y . Iimura , H . Miyashita , an d N . Watanabe , "X-ra y irradiatio n effect s o n a microwave-plasm a chemica l vapo r depositio n diamon d membrane , "J . Vac. Sci. Technol.B9, 3266-3269
, 1991
. 28
. G.M . Wells , S . Palmer , an d F . Cerrina , A . Purdes , an d B . Gnade , J. Vac. Sci. Technol. "Radiatio n stabilit y o f Si C i n diamon d membrane s a s potentia l x-ra y lithograph y mas k carriers, " B8 ,

1575-1578

, 1990
.

Stress Documents PDF, PPT , Doc

[PDF] accepting feelings of stress

  1. Engineering Technology

  2. Mechanical Engineering

  3. Stress

[PDF] accepting stress

[PDF] against stress

[PDF] amigdalite stress

[PDF] amygdala stress

[PDF] ap psychology stress practice test

[PDF] articles concerning stress

[PDF] basics stress formula with zinc

[PDF] below stress ball

[PDF] below stress mark

Politique de confidentialité -Privacy policy