[PDF] van der Waals Forces - CORE





Loading...








LS COLLEGE MUZAFFARPUR What are Van der Waals Forces?

L S COLLEGE MUZAFFARPUR What are Van der Waals Forces? www lscollege ac in/sites/default/files/e-content/vander_vals_forces pdf Van der Waals forces are weak intermolecular forces that are dependent on the For example, Van der Waals forces can arise from the fluctuation in the




van der Waals Forces - CORE

van der Waals Forces - CORE core ac uk/download/ pdf /82486132 pdf VAN DER WAALS FORCES SPECIAL CHARACTERISTICS IN LIPID-WATER SYSTEMS AND A GENERAL METHOD OF CALCULATION BASED ON THE LIFSHITZ THEORY

Bonding in Solids and Liquids - Caltech AUTHORS

Bonding in Solids and Liquids - Caltech AUTHORS authors library caltech edu/25050/15/Chapter_14 pdf Molecular solids become compre- hensible as soon as we recognize the contributions of the weak forces known as van der Waals attraction and hydrogen bonding

Bonding, Structure and Properties Lesson 4 – Van der Waal's Forces

Bonding, Structure and Properties Lesson 4 – Van der Waal's Forces blogs glowscotland uk/er/public/SNHChemistryWebsite/uploads/sites/2701/2020/06/01075229/1B4-Van-der-Waals-Forces-LDFs pdf London Dispersion Forces are weak forces of attraction which operate between all atoms and molecules LDFs are the weakest Van der Waals forces Even the noble

Chapter 11 Intermolecular Forces - MSU chemistry

Chapter 11 Intermolecular Forces - MSU chemistry www2 chemistry msu edu/courses/cem151/Intramolecularforces_Ch11 pdf All weak intermolecular forces are called: van der Waals forces Page 8 van der Waals Forces Two major forms: • Dipole–




Compilation of Definitions “van der Waals interaction”

Compilation of Definitions “van der Waals interaction” ww2 chemistry gatech edu/~lw26/structure/molecular_interactions/van_der_waals_interactions pdf “Van der Waals forces - the relatively weak attractive forces that act on neutral atoms and molecules that arise because of the electric polarization induced in

REPULSIVE CASIMIR AND VAN DER WAALS FORCES

REPULSIVE CASIMIR AND VAN DER WAALS FORCES robobees seas harvard edu/files/capasso/files/s0217751x10049529_01 pdf 23 mai 2020 both the Casimir force and the van der Waals force are of quantum Several examples of material systems that obey [Eq 1] exist in nature

[PDF] Fundamental Interactions: 6 Forces - Department Chemie und Biologie

the weak interaction: nuclear interaction (responsible for nuclear -decay / electron emission and attractive intermolecular forces ( van der Waals forces) w r A electrons (electron sea) between positively charged atoms over entire sample

[PDF] Non-Covalent Short Range Interactions

Van der Waals Interactions for Point Interactions Before we discuss FD analysis, we first discuss interaction forces, particularly weak interactions between B Covalent Bond: The standard example for a covalent bond is the hydrogen

[PDF] Graphenes Bonding Forces in Graphite

Graphenes bonding forces in graphite are widely known as an example of the van Weak forces between graphenes suggest that they are the van der Waals

[PDF] van der Waals Forces - CORE

(a) We define precisely what we mean by a van der Waals force and, to put our investigation into For example, and typically when I1 50 A, t,> (3 X 1016) ~ 10166 In the near- to mid-uv, water (14) shows a weak absorption at X = 1650 A or

PDF document for free
  1. PDF document for free
[PDF] van der Waals Forces - CORE 99688_782486132.pdf

VANDERWAALSFORCES

SPECIALCHARACTERISTICSINLIPID-WATER

SYSTEMSANDAGENERALMETHODOF

CALCULATIONBASEDONTHELIFSHITZTHEORY

B.W.NINHAMandV.A.PARSEGIAN

FromthePhysicalSciencesLaboratory,DivisionofComputerResearchandTechnology, NationalInstitutesofHealth,Bethesda,Maryland20014.Dr.Ninham'spermanentaddress istheDepartmentofAppliedMathematics,UniversityofNewSouthWales,

Kensington,NewSouthWales,Australia2033.

ABsTRAcTApracticalmethodforexaminingandcalculatingvanderWaalsforcesisderivedfromLifshitz'theory.RatherthantreatthetotalvanderWaalsenergyasasumofpairwiseinteractionsbetweenatoms,theLifshitztheorytreatscomponentmaterialsascontinuainwhichthereareelectromagneticfluctuationsatallfrequenciesovertheentirebody.Itisnecessaryinprincipletousetotalmacroscopicdielectricdatafromcomponentsubstancestoanalyzethepermittedfluctuations;inpracticeitispossibletouseonlypartialinformationtoperformsatisfactorycalculations.Thebiologicallyinterestingcaseoflipid-watersystemsisconsideredindetailforillustration.ThemethodgivesgoodagreementwithmeasuredvanderWaalsenergyofinteractionacrossalipidfilm.Itappearsthatfluctuationsatinfraredfrequenciesandmicrowavefrequenciesareveryimportantalthoughtheseareusuallyignoredinpreferencetouvcontributions."Retarda-tioneffects"aresuchas todampouthighfrequencyfluctuationcontributions;ifinteractionspecificityisduetouvspectra,thiswillberevealedonlyatinteractions

across<200angstrom(A).DependenceofvanderWaalsforcesonmaterialelectricpropertiesisdiscussedintermsofillustrativenumericalcalculations.

INTRODUCTION

Thepurposeofthisandasucceedingpaper(forapreliminaryreport,seereference1) istodevelopinsomedetailageneralmethodforcalculatingvanderWaalsforces insituationsofbiologicalinterest.Fordefinitenessweshallreferinmostparttothe interactionofwateracrossathinhydrocarbonfilm.Theenergyofsuchasystem wasrecentlymeasuredbyHaydonandTaylor(2).Weshallshowthatvander Waals

forcesinthissystemcanbeanalyzedeasilyandaccuratelybythemacro-scopictheoryofLifshitz(3).Further,severalimportantqualitativefeaturesof

theseforces,unnoticedinearliertreatments,arerevealedbythisanalysis.The approachelaboratedhereallowspredictionofattractiveenergiesinothersystems,

646brought to you by COREView metadata, citation and similar papers at core.ac.ukprovided by Elsevier - Publisher Connector

aswellaspointedexaminationoftheprobableroleoftheseforcesinbiological processes.Inparticular,weshallfindthatacarefulanalysisprovidesastrong hintconcerningtheproblemofattractivespecificity.

Theoutlineofthepaperisasfollows:

(a)WedefinepreciselywhatwemeanbyavanderWaalsforceand,toputour investigationintoperspective,brieflysummarizeearlierworkontheproblem. (b)WegiveadescriptionoftheformulaeofLifshitzapplicabletothinfilms betweensemi-infinitemedia,anddiscussausefulrepresentationofdielectricsus- ceptibilitybymeansofwhichspectroscopicinformationmaybeadaptedforcal- culation. (c)Estimatesofthedispersionforceinlipid-watersystemsareobtainedand comparedwiththemeasuredvalues. (d)Adetailedexaminationismadeofthehighfrequencyspectrumofcontribu- tionstotheenergyinordertodevelopanintuitiveunderstandingofthebehavior ofvanderWaalsforcesacrosslipidlayers,andoftheexperimentalvariableswhich affectforces.Thisisimportantinasmuchasthisstudythrowssomelightonthe physicaloriginofspecificityinbiologicalsystems.Itwillbeshownthatthereisas greatacontributiontotheenergyfrominfraredfrequenciesasfromtheuvand thecontributionfromthemicrowaveregionisasgreatasinfraredanduvcombined.' Further,theso-calledretardationeffectsduetothefinitevelocityofsignalpropaga- tionemergeasaprogressivedampingofhigherfrequencycontributionsasfilm thicknessisincreased. (e)Finallywesummarizesomequalitativeimplicationsconcerningbiological systemswhichcanbedrawnfromadetailedstudyofvanderWaalsforcesby

Lifshitztheory.

THEVANDERWAALSFORCE

ThevanderWaalsforceisfoundedontherecognitionthatspontaneous,transient

electricpolarizationcanariseatacenterduetothemotionofelectrons,moleculardistortion,ormolecularorientation.Thispolarizationwillactonthesurrounding

regiontoperturbspontaneousfluctuationselsewhere.Theinteractionresulting fromthisperturbationissuchastolowertheenergy.Theclassesofsuchinteraction havebeenextensivelyreviewedbyKauzmann(4)andJehle(5). Theresultingattractive"dispersion"forceforelectronicfluctuationswasfirst calculatedbyF.London(6)inhisfamous1930paper.Heshowedthattheforce

betweentwoisolatedatomsisproportionaltotheinverseseventhpowerofdistance,andtheproductoftheirpolarizabilities.London'stheoryprovidedthe

basisforsubsequenttheoreticalestimates(7)ofdispersionforcesbetweencon-

1Thecharacteristicsofthemicrowave-frequencyfluctuationsaresufficientlydistinctfromthoseofhigherfrequenciessothattheyareconsideredseparatelyinthesucceedingpaperreferredtoas"two";Parsegian,V.A.,andB.W.Ninham.1970.Biophys.J.10:664.

NINHAMANDPARSEGIANVanderWaalsForces:CalculationforLipidWaterSystems647 densedmedia.Theseestimateshavebeenseverelylimitedbyseveraladhocassump- tionswhichare: (a)theassumptionofpairwiseadditivityofindividualinteratomicinteractions inacondensedmedium; (b)theapproximationthatcontributionscenteredaroundasingledominant frequencyoftheelectromagneticfieldintheultravioletareimportant;and (c)thatthedifficultyofdealingwithanintermediatesubstance(e.g.hydrocarbon betweenaqueousregions)canbehandledbytheinsertionofanarbitrary"dielec- tricconstant"correctionatasinglefrequency.Inaddition,detailedinformation aboutatomicpolarizabilitiesandrelaxationfrequencieswasrequiredforcom- putations.Asemphasizedbylaterworkers(3)acalculationofvanderWaals forcesbasedontheseassumptions(validfordilutegases)isintrinsicallyunsound. Thismethodobscuresalmosttotallythemostinterestingqualitativefeaturesof vanderWaalsforces. In1955Lifshitz(8)andlaterheandhiscoworkers(3)developedatheorybased

onideasofCasimirandPolder(9)whichovercomesthesedifficulties.Histheoryincludesallmany-bodyforcesthroughacontinuumpicture,retainscontributions

fromallinteractionfrequencies,anddealscorrectlywiththeeffectsofintermediate substances.Moreimportant,theinformationrequiredforcalculationsiscontained inthedielectricpropertiesofcomponentmaterials-informationavailableinprin- ciplefromindependentspectroscopicmeasurements. Foracondensedmedium,wheretherangeofstronginteractionexceedsthe distancebetweenatomiccenters,Lifshitzregardstheentiresetoflocalspontaneous electricfieldfluctuationsasanelectromagneticfieldwhichextendsoverthewhole system.Thistime-varyingfieldcanbefrequencyanalyzed;thestrengthofafield ofagivenfrequencyisdirectlydependentontheresponseofthematerialtoan appliedfieldofthatfrequency,i.e.,itsdielectricsusceptibilitye(W).Boundary surfacesbetweenunlikematerialswillaffecttheseelectricfieldsandconsequently theelectromagneticenergyofthesystem.Thisapproachtodispersionforces examinesthechangeinenergyofasystemwithmovementoftheboundarysur- facesbetweenunlikeregions. Itwasthought(10)thatthetheoryofLifshitzcouldnotbeappliedtothecalcu- lationofdispersionforcesintheabsenceofcompletespectralinformation.Wefind thatsuchcompletedataareunnecessary,particularlywhencomponentsubstances

areofsimilarweightdensity.Infact,itispossibletomakeseveralsimplifyingassumptionsregardingspectra.Allthatappearsnecessaryforthecalculationofvan

derWaalsforcesinthepresentthinhydrocarbonfilmsystemaresingleaverage absorptionfrequenciesintheinfraredanduvforwater,oneaveragefrequencyin theuvforhydrocarbon,indicesofrefractionatvisiblefrequencies,alimiting

valueforthedielectricsusceptibilityofwaterbetweenmicrowaveandinfraredfrequencies,andthesimplestformforthedielectricdispersionofliquidwaterinthemicrowaveregion.

BIOPHYSICALJOURNALVOLUME101970648

FORMULARY

LifshitzExpression

Thegeneralformulafortheattractiveforceperunitareabetweentwosemi-infinite mediaofsubstance1acrossaplanarslabofsubstance2ofthicknessI(Fig.1)(3)is

F(l)=0CE823n$f2{[(S+p)exp(2Pne2)]-1

F(1)~[(e-pl(=C~ex]+[(SE2+;::)2ex2P~nIE2)f}d/21

wherekisBoltzmann'sconstant,Tabsolutetemperature,cthevelocityoflightin vacuum,qandE2thedielectricsusceptibilitiesevaluatedontheimaginaryfre- quencyaxisatco=itn, s=vi2_17/2,(2) and 2irkT with2wrhPlanck'sconstant.Thesumistakenoverintegralnandtheprime(')on thesumsignindicatesthatthen=0termbemultipliedbyY2. Byintegrationoftheforcewithrespectto1,thecorrespondingfreeenergyof interactionperunitarea(takingG=0atI=X)is

G(l,T)kTEI((n1)(4)870ln=O

waterhydrocarbonwater

FIGURE1Twosemi-infinitemediaofsubstance1separatedbyaplanarslab,thickness1,ofsubstance2.Inthetextweconsiderthecasewhere1iswaterand2ishydrocarbon.

NINHAMANDPARSEGIANVanderWaalsForces:CalculationforLipidWaterSystems649 where

1(n1)p(2nle2)f{[1-i2exp(2ptnIE2

+In[-A2expe2)]}dp(5) with

Se2-=l-P(s6)

SE2+pC-1s+p

Toconformwiththenotationofcolloidchemistry,itwillbeconvenientinthe followingtodefinea"Hamakerfunction,"A=A(l,T),suchthat

G(l,T)=A(1,)7

Comparingequation7withequation4,then

00

A(1,T)=1.5kTElI(n21).(8)n==O

LimitingCases.Lowtemperature:whenkT<ForI<

IU(n0)=fxln[1-(::)2e~ld(10)

(Inthiscasespsincevaluesofp>>1contributetotheintegralinequation5.)SometimesA2<<1and /2o0)'(2-61

InthedoublelimitI->0,T->0

A(O)_3h4JolxIun[1_(2'Ele-dxdt

,3hlo(f2-fld(112

BIOPHYSICALJOURNALVOLUME101970650

DielectricDispersionA

Inordertousetheaboveformulae,weneedaconvenientrepresentationforthe dielectricsusceptibility. Thefunctione(co)isacomplexfunctionE!+iE"ofacomplexfrequencyco= (wR+it.Thedispersionenergydependsonlyonthevaluesofeontheimaginary frequencyaxise=e(iQ)and,fromequations4and5,aknowledgeofE(i#)isim- portantonlyforthosevaluesoftforwhichthereisadifferencebetweenthedi- electricsusceptibilitiesofthetwomaterialsatagivenfrequency.Weseekasuitable representationfore(it)whichwillincorporateexperimentaldataaswellassatisfy generalconstraintswhichmustbesatisfiedbyanydielectricsusceptibility.These constraintsarethatE(it)beapurerealquantitymonotonicdecreasingwithi, andthatthefunctione(w)(C=WR+it)havenozerosorpolesintheupperhalfW planeinordertosatisfytheKramers-Kronigrelations(11).Asuitablerepresenta- tionis e(X)1+1-ixjx+E1-(co/c)2+i(*(12') ThisrepresentationincludessimpleDebyerelaxationformicrowavefrequencies plustheclassicalformofLorentzelectrondispersionforinfraredthroughmid-uv

frequencies.WewilldescribebelowhowthenecessaryconstantsCmwandCy(proportionalto"oscillatorstrengths")andresonancefrequenciescomw,WXmay

bedeterminedfrommeasurementsmadeontherealfrequencyaxisco=WR.On theimaginaryaxis(co=it),wehavefromequation11 +1mwCE1j(13)1+~/cmwjtc)Y Nowthedampingterminyjcoinequation12issignificantonlywhencoCojsince

bandwidthsarealwaysmuchlessthanabsorptionfrequencies.Thecontributionofthisterminequation13willbenegligible(1+(/Coj)2>>yjy)sothatwemay

take

CmwC,e(it)=1+1+/jm+E1+(/coj)(14)

Clearlythen,onlytheoscillatorstrengthsandabsorptionfrequenciesofcom- ponentmaterialswilldeterminedispersionenergies. Atveryhighfrequenciesthedielectricdispersionhasthelimitingform(11) (O)1-_4xA2(15) Hereeandmareelectronchargeandmass,andNisthenumberofelectrons/cc. NINHAMANDPARSEGIANVanderWaalsForces:CakulationforLipidWaterSystems651

Ontheimaginaryaxisequation15becomes

=1+42Ne(16)mi Thisformholdsformaterialsmadeoflightelementsatfrequenciesinandabove thefar-uv.Itisimportanttoemphasizethatmaterialsoflightelementsandsimilar weightdensitywillhavesimilarsusceptibilitiesatthesehighfrequencies,andcon- sequentlygiveaverysmallcontributiontotheforceandenergyintegrals.Thisis theusualsituationinsystemsofbiologicalinterest. Betweenthelow-tomid-uvregiondescribedbyequation14andthefar-uvto

X-rayregiondescribedbyequation16,thesimplestprocedureistoconstructaninterpolationformulaforE(it).GiventheconditionthatE(it)bemonotonicde-

creasing,thereislittleambiguityinsodoing. However,becauseofthesimilarityofthesusceptibilitiesofcomponentsubstances inthemid-uv,theintegrandsorsumtermsoftheforceandenergyexpressions tendtozeroveryrapidlyinthisregion,andgivelittlecontribution.Inpractice therefore,itisusuallysufficienttousetheformofequation14forsusceptibilities, andnointerpolationisrequired.Indeed,inspectionofthefullexpressionsequations

1,4,and5fortheforceandenergyshowsthattheeffectoftheexponen-tialsexp(-2ptle2112/c)istodiminishcontributionstotheintegrandseverelyforfrequenciest.>c/(2lV\e2).Forexample,andtypicallywhenI150A,t,>(3X

1016)~10166,frequenciesintheuvbandsatisfy10el.8.,1016.8sothatfrequencies

atandabovethefar-uvwillbeinanyeventunimportant.Thispointisillustrated indetailinthesectionAnalysisofIntegralswherewecarryoutananalysisofthe integralofequation9.

DATAANDCALCULATIONS

SpectroscopicExperimentalData

Forwaterandhydrocarbonsthefollowingdielectricdataareknown. Water.Fromaudiothroughmicrowavefrequencieswaterexhibitssimple

Debyerelaxationfromitsstaticvalueof80.4downto5.2withacharacteristicrelaxationwavelength1.78cm.Thus,Cmw=(80.4-5.2)=75.2,andwmw=27rC/XmW=(1.06X1011)=1011.026radians/sec.(Datahere(12)areforT=

20°C.)Theinfraredspectrumisdominatedbythreecloselyspacedabsorption

peaks(13)atcir=3.0X1014,6.89X1014,and7.08X1014,afterwhichere- laxestovaluesobservedasthesquareoftheindexofrefractionntwIwhere

2nw=1.78.WeshalluseCir=(5.2-1.78)=3.42andapproximatethevibrationfrequencybyanaveragevaluewir=[U3(3+6.89+7.08)X1014]=1014.75radians/

sec.Insensitivityofthecalculatedenergytothisapproximationischeckedbelow. Inthenear-tomid-uv,water(14)showsaweakabsorptionatX=1650Aor

BIOPHYSICALJOURNALVOLUME101970652

wuv=(1.14Xl01)=1016.058andanapparentlymuchstrongerabsorptionat aboutX=1250Aorwuv=(1.507X101w)=1016.178.However,therelativestrength ofthesepeaksandthepresenceofotherabsorptioninthefurtheruvarenotknown.

Becauseoftheslowvariationofe(it)withtonemayuseanaveragefrequencyw,uvforthenear-tomid-ultravioletregion.Acommonapproximationistousea

frequencyequivalenttothefirstionizationpotential(4).Inthiscase12.62ev-hcouv,orcouv=(1.906X101")=1016.28rad/sec.(Throughoutpaperradusedfor

radian.)Itwillbeshownthatuseoftheionizationpotentialvalueorthestronger absorptionbandvaluehaslittleeffectontheestimatedenergy.ThevalueofCu, forthisrelaxationis(n2-1)=(1.78-1)=0.78.Wehavethen

Ewater=ew(i)=1+1+7mW+1+C+1+(17)

wheretheconstantsaregivenabove. Hydrocarbons.Thereappearstobelittledielectricrelaxationshownby

hydrocarbonliquidsbetweenaudioandvisiblefrequencies(12)where(ha=nhe(n=indexofrefraction).Byexaminingthereflectionoflaserbeamsfromathin

lipidfilm,CherryandChapman(15)havemadeaprecisemeasurementofan anisotropicindexofrefraction:nhe=1.486forpolarizationperpendiculartotheplaneofthefilmandnho-

1.464paralleltothefilm.ThesegiveEhe=2.208and2.143,respectively.Other

2possibleestimatesatopticalfrequenciesareEhc=nhc=1.89forn-hexane(12)

andehe=nhc=2.0,anaveragevalueoftenusedastypicalforhydrocarbons.

Eachofthesenumberswillbeconsideredbelow.Againwewillsummarizerelaxationasoccurringatanaveragefrequencycor-

respondingtotheionizationpotential.Anappropriatevalueofthisforathin

hydrocarbonfilmisnoteasilydeterminedfromavailabledata.Valuesfordecane(16),10.19evorCuv=1.54X1016,andforethane(16,14),11.65evorcouv=

1.76X1016,willsufficeinthepresentinstance.Usingthesevalueswehave

2-1Ehe(lt)=1+1he+v)2

TheoreticalEstimates

WefirstcalculatethevanderWaalsenergyofwateractingacrossalipidfilm (Fig.1)50Athickat20°C.Usingequations17and18fore.(it)andfhc(it)with anaverageinfraredabsorptionfrequencyforwaterandaverageuvabsorption

derivedfromionizationpotentialsofwateranddecaneorethane,wefindA(50A)byequation8forfourvaluesofn20(TableI).Forthesedata,valuesofA(=50A,

T=20°C)rangefrom5.5to7.1X1014erg.WenotethatAisnotsimplymono- tonicinnhhc NINHAMANDPARSEIGANVanderWaalsForces:CalculationforLipidWaterSystems653

Theseestimatesareslightlyhigherthanthoseinferredfromexperimentsonthinlipidfilms(2)(4.7X10-14erg)butmuchlowerthanthosederivedfromex-

perimentsonsuspensionsofparaffinsinaqueoussuspension(17)(r1.6X10-'1 erg).Inprinciplebothexperimentalestimatesshouldbeapproximatelythesame sothattheoreticalestimatesherearelessambiguousthanexperimentsbutwithin thecorrectranges. TableIIAsuggeststhatAisrelativelyinsensitivetotheassumedcUs,aslong astheyarechoseninaconsistentwayforthetwomaterials.Usingstrongestnear- uvabsorptionpeaksorionizationpotentialsforbothmaterialsgiveAestimates

6.1-7.1X10-14forn2=2.208thataredistinctfromthevalueobtainedbyusing

thesecond-strongestwaterpeak(9X10-14).Also,(TableIIB)itmakeslittle differenceifoneaverage(Dirisusedforwaterorifthethreemaininfraredpeaksare equallyweighted,andseparatelycontributetoew(it).

Acarefulattempttousee(it)thatsatisfybothlowandhighfrequencybehavior(equations14and16)makesnegligibledifferencetotheestimatedA.Bystraight-

lineinterpolationbetweenformsfornear-uvandX-rayregionsandusingthe

TABLEI

ESTIMATESOFTHEHAMAKERFUNCTIONAUSINGTHEGENERALEQUATION7

Takelr=5.66X1014rad/sec,C1°r=3.4cow=1.06X1011rad/sec,C;mw=75.2.2.Wuv=1.906X10"rad/sec,n2=1.78.I=50A,T=20°C.

2A(erg),wuv=1.54X1016A(erg),Wuv=1.76X1016nho(decaneI.P.*)(ethaneI.P.)

ergerg

1.9(n-hexane)5.8X10-145.8X10-14

2.0("typical"value)5.55.82.143(laserexpt.)5.76.52.208(laserexpt.)6.17.1

*I.P.=ionizationpotentials.

TABLEIIA

DEPENDENCEOFAONWufv

Takenhw=2.208,otherwiseasinTableI.

uhoX10-16-vX10-16AX1014Sourceofw01 rad/secrad/secerg

1.41.5076.6Strongestabsorption

1.41.149.2ndstrongestH20absorption

1.761.9067.1Ionizationpotentials(ethaneforhc)

1.541.9066.1Ionizationpotentials(decaneforhc)

BIOPHYSICALJOURNALVOLUME101970654

TABLEIIB

EFFECTOFAVERAGINGVS.EQUALWEIGHTINGOFTHREEWATERINFRAREDFREQUENCIES

Dataasabove.

WjyA,(couh=1.54X1016)A,(coh"=1.76X10")

ergerg

3.0,6.89,7.88X1014rad/secequally5.9X10-147.0X1-14weighted=5.66X1014md/sec6.17.1

TABLEIII

A(l)VS.I

Usen2hO=2.208,V=1.54X1016andasinTableI.

I(A)A(l)X1014A(l)/A(O)A(l)/A(O)oldtheory(18)

erg

06.3656.351.1.106.331.0.95506.090.960.841005.780.910.725004.740.750.2810004.430.70.1550003.650.570.03100003.330.520.015500003.160.50.003

electrondensityofmaterialhaving1g/ccweightdensity,wefindthattheeffectis alwayslessthan6%.(Themethodofinterpolationisdescribedindetailelsewhere forthecaseofsoapfilmsinair[18].) AasaFunctionofThickness1.Byvirtueofequations8and10thevalue ofAas1->0convergesto

A(I=0,T)=l.5kT>2'fxIn[1-(2)e-x]dx.

nO0O2+C-1 DeviationsofAfromthislimitingformwhenI>0arecalled"retardationeffects" sincetheyarecausedbythefinitetraveltimeofelectromagneticradiationacross thegap1. InTableIIIwehavelistedcalculationofA(L)forI=0to50,000A.There-

tardationfactorofA(1)/A(0)isalsolistedforcomparisonwiththefunctionusedincolloidchemistry(19).Clearlytheneglectofnon-uvfrequencyfluctuations,typical

oftheoldertheory,givesvastlylowerestimatesatlargeseparationdistances. NINHAMANDPARSEGIANVanderWaalsForces:CalculationforLipidWaterSystems655 Theproperanalysisofretardationeffectsisdiscussedinthefollowingsectionand intheAppendix.AtverylargedistancesthecalculationofAisdominatedbythe n=0terminequation8;thistermisthesubjectofthesucceedingpaper(two).

ANALYSISOFINTEGRALS

SpectralContributions

Inordertoclarifythedependenceofthedispersionenergyonfluctuationfrequencies suchthathwkT,weexaminetheintegrandsoftheintegralswhichoccurin equations7and9.Theseareoftheform

JI(t,1)dt,(19)

whereI(,1)definedbyequations5and10measuresthecontributiontotheenergy

1-infrared-l1-.UV--.1

6-n2n=2.208

5I(C;0)x)

Q:0

1j21031415161718

x=logioCP

FIGURE2SpectrumofrelativeinfraredanduvcontributionstovanderWaalsenergyinthelimitI=0.Useequations17,18,and10withdataforwaterandethane.Datafordecanegivesharplyreduceduvpeak.Notelargeinfraredcontribution,sharpdecreasein

uvcontributionwhenn2h,isreducedfrom2.208to2.0tobringitclosertontO2=1.78for water.ThefactortmultiplyingI(Q,I=0)intheordinateistocorrectforthelogarithmicscaleintheabscissa.

BIOPHYSICALJOURNALVOLUME101970656

offrequenciesintherange(Q,t+dc).Changingvariablestox=logio(Q),the relativecontributionfromthespectralrange(x,x+dx)isthen2.303(IQ,1)dx. Fig.2showsplotsofI(Q,I=0)fortwovaluesofn2,2.208and2.0withI=

0.(OtherdataareasinTableI.)Thefinitefrequencycontributiontothetotal

energyiscleanlydividedintoaninfraredandanuvpeak.Therelativemagnitude ofthesetwopeaksobviouslydependsonthevalueofnh.Forexample,withnh=

2.208,35%oftheintegralcomesfromtheinfrared;butwithnhe=2.0,80%of

theenergyintegralisduetoelectromagneticfluctuationsatinfraredfrequencies! Itisremarkablethattheroleoftheinfraredspectrumofwaterhasbeenignoredin previousdiscussionsofvanderWaalsforces.Similarly,asalreadyemphasized, thereisanimportantcontributionfromthemicrowaveregionwhosequalitative featuresaresufficientlyuniquetobeconsideredseparately(two).

ForfixedIandfixedwatercomposition,theonlytwoparameterswhichcan2-hoaltersignificantlywithhydrocarboncompositionarenhoand&Dhc.TheplotsofI(Q,1)inFig.2alsoshowthattheeffectofchangingn20istoaltertheentirespectrum

ofcontributingfrequencies.Similarly,variationinabsorptionfrequenciescO, willshiftthepositionofmaximaofthespectrum,andaltertheheightofpeaks. Forthepresentexamplec,>Elhiintheinfrared,butc,RetardationEffects ThecaseI=0consideredaboveshowsthenatureofspectralcontributionstothe energywithvariationofmaterialpropertiesofcomponentsubstances.Thereis anotherconditionimposedontheallowedcorrelationsinelectromagneticfluc- tuationsacrossagapduetothefinitevelocityoflight.Whenthetraveltimeofa

fluctuationsignalacrossthegapiscomparabletoafluctuationfrequency(21E2'12)/c1/i,thecorrelationinfluctuationsbetweeneithersideisdiminished.Thein-

tegrandI(Q,I)satisfiestheunequalityI(Q,I)1=0,50Aand500A,andfornh0=2.208and2.0;theyillustratetheprogressive removalofhighfrequencymodeswithincreasing1.Onthesameabscissawehave alsoplotted(Fig.3c)theratioI(Q,I)/I(I,0)<1.Thisrathercomplicatedfunction isweaklydependentonmaterialpropertiesandisthemultiplicativefactorfordampingthesehighfrequencymodes. Thefrequencyregimeoverwhichtheintegrandintisdampedoutisaboutonedec- NINHAMANDPARSEGIANVanderWaalsForces:CalculationforLipidWaterSystems657 -infrared--

II(C;i)xC

x10-13 nh2a2.208n.2=1.78A

Xc-I0910-

FIGuRE3aTheinfluenceofthefinitevelocityofpropagationonthespectrumofinfraredanduvcontributionstovanderWaalsenergies.n2hc=2.208,dataforethaneandwater.LargeuvcontributionatI=0andsignificantdecreaseofAwith1.

IF-*---infrared-1-UV---

tI(C;l)4X

Xto-s3

n2L2.0 n2=1.78

FIGURE3bTheinfluenceofthefinitevelocityofpropagationonthespectrumofinfraredanduvcontributionstovanderWaalsenergies.nfhc=2.0,dataforethaneandwater.SmalluvcontributionatI=0andweakdependenceofAon1.

BIOPHYSICALJOURNALVOLUME101970658

1. 0. 0. 0

0..0CA=__QOA

I(C;O).4%Q=50A

.2Q-500A\\

I~II}_I_

FIGURE3cTheinfluenceofthefinitevelocityofpropagationonthespectrumofinfraredanduvcontributionstovanderWaalsenergies.Retardationfactorfordampingcontribu-tionsatdifferentfrequencies.ArrowsIindicatefrequencyatwhichE=c/21.NotethatretardationdampingiseffectivelyashiftofthecurveI(t;I)/I(I;0)tothelefttocutouthigherfrequencies.Therangeofdampingisapproximatelyonedecadewideandcenteredaboutt=c/21.

adewideandroughlycenteredabout=c/(21E'12)-'(c/21)whereeho--s1.Byvirtue ofthelargeinfraredcontributiontotheenergy,evenat500A(where,10155< uvfrequencies),almosthalftheoriginalintegralisintactwhennh.,=2.208(Fig.

3a).Fornh.2=2,(Fig.3b)some78%oftheoriginalcontributiontotheintegral

remains.ItwouldappearthenthatvanderWaalsinteractionsinhydrocarbon- watersystemsarepeculiarlylongrangebecauseoftheinfraredandmicrowave spectrumofwater.Theeffectofdampingouthighfrequencymodesbyretardation

isintimatelyconnectedwiththemagnitudesofoscillatorstrengthsaswellasab-sorptionfrequencies;bothmaterialpropertiesandgeometricfactorssetsimul-

taneousconditionsontheenergyspectrumandmustbeconsideredtogetherin addingupthemodalenergies.

CONCLUSIONS

Thetimeislongoverdueformakingsystematicinquiryintothenatureofvander Waalsforcesinbiologicalsystems.ThepresentmethodderivedfromtheLifshitz theoryallowsonetolearnthequalitativefeaturesoftheseinteractionsaswellas makesatisfactoryestimatesoftheirmagnitude.Inadditionitmakesclearthede- pendenceofvanderWaalsforcesonbothdielectricpropertiesanddimensionsofa system. Inprincipleitisnecessarytoknowthedielectricdispersionofallcomponent substancesforallfrequencies;inpracticeitisimportantonlytoknowoscillator strengthsandmeanabsorptionfrequenciestogetagoodideaoftheelectromagnetic NINHAMANDPARSEGIANVanderWaalsForces:CalculationforLipidWaterSystems659

forces.WefindthatfittingthesimpleformE(ic)=1+(Cmw/[l+(Q/cmmw)])+2(Cj/[I+(/lwj)2])givesanadequaterepresentationforthedielectricdispersion

asitisneededhere. Thereisaverystrongcontributiontothetotaldispersionenergyfromthein- fraredspectrumofwater.Thisfeature,certaintoholdinbiologicalsituations,is usuallyignoredinpreferencetotheuvcontributionsandisimportantincalculating thelong-distancebehaviorofthevanderWaalsforce. Ontheotherhand,twophenomenamilitateagainstimportantcontributions fromthefar-uvfluctuationfrequenciesinbiologicalsystems.First,materialsof similarweightdensitywillhavesimilardielectricsusceptibilitiesathighfrequencies (i.e.far-uvtoX-rayregion).Sincetheinteractingsurfacesareelectromagnetically definedonlywhentherearedifferencesindielectricsusceptibilityofinteracting speciesandinterveningmedium,therewillnotbeimportantbehaviorfromthe far-uv.Thisisqualitativelydifferentfromthecasewherebodiesinteractatshort distanceacrossavacuum. Second,thefinitevelocityoflight,c,causesretardationdampingacrossgaps1 atandabovefrequenciestsuchthat1/t<21/corwavelengthsX<4irl.This saysthatatlongdistance,e.g.I=50m,u=500A,thematerialpropertiesonlyfor X<500m,u=5000Aareneeded.Atshortdistancesshorterwavelengthsbegin tocontribute. Itisclearthatsubstancesthatchangetheindexofrefractionofwatercanchange thedispersionforces.Wehavecalculatedelsewhere2bythepresentmethod thatproteinorsaccharidematerialsonthebiologicalcellsurfacecangreatlyin- creaseintercellattractiveforces. Ifthecoatingmaterialsondifferentkindsofcells havedifferentuvspectra,weexpectspecificityinattractiveforcestoappearfor intercellulardistanceslessthan200A.(Itwouldbemostfortunateifthedistinctive spectrawereintheeasilyaccessible150m,u oo)limit.Inotherpapers(18)wehavederivedformulaefortriplefilms(e.g.soap bubblesinair),multilayers3(e.g.myelinfiguresandnervemyelin),andalarge numberofconfigurations2appropriatetotheinteractionofbiologicalcells witheachotherorwithasemi-infinitesubstratum. Two,therepresentationforeandnumericalintegrationasusedhereareapractical

andsimpleprocedureforexaminingvanderWaalsforcesquantitatively.Webelieveitwillbeusefulinmanyconnections.

ItisourhopethattheLifshitztheorycanbeusedforausefultheoreticalandexperimentalframeworkinwhichtoviewelectromagneticforcesinawidevariety

2Ninham,B.W.,andV.A.Parsegian.Manuscriptsubmittedforpublication.Ninham,B.W.,andV.A.Parsegian.Manuscriptsubmittedforpublication.

BIOPHYSICALJOURNALVOLUME101970660

ofbiologicalproblems.Betterspectraldatamayalterthenumericalestimatesmade inthispaperbutshouldnotinvalidatethemethodofcalculationintroducedhere, ortheprincipalqualitativefeatureswhicharealreadyapparent.

APPENDIX

RetardationEffects:ExplicitAnalysis

TheprecisenatureofthedampingduetoretardationdiscussedinAnalysisofIntegralscanbemadeexplicitbyacarefulanalysisoftheintegralI(t,1)whichgivesthespectrumoffrequencycontributions.Werecalleq.(8)intheform

I(t;l)=-(t/28)2fpdp{-(5P)e-(In'I)P]

+InLl(SE2+P)e-')PJ).X(A) where

2=e212]=V(1/e2)-1±p2.(A2)

Intermsofthisintegral,theHamakerfunctionandenergyaregivenas

A(l)=4I(;1)d{;E(l)=-A/(12X12).(A3)

ToagoodapproximationthelogarithmswhichoccurinequationA1canbereplacedbytheirleadingterms,andweconsiderfirst

Iapprox=(t/t*)2Jpdp(SE2e-E8)P(A4)

Forafixedfrequencyi,thefunction([SE2-PEL]/[SE2+pei])isslowlyvaryingasafunctionofp.Sincetheexponentialisadecreasingfunctionofpwhilepisincreasing,theintegrandofequationA4hasamaximumatp=pogivenby

dcdp(Inp-[p/l.81)=O;POrl%W/=2tl-,*/e2(A5)

Thismeansthatforafixedvalueof1,andsmalli,themajorcontributiontothepintegralcomesfromlargevaluesofp.Ontheotherhandforthesamegivenvalueof1,forlarget,Po<1andthemaincontributiontothepintegralcomesfromtheregionp-1.Two

casesthenarise (a)t2v1.

ThiscorrespondstothecaseofsmalldistancesdiscussedbyLifshitz(3).Forthesevaluesoftwemayputptsintheintegrandofequation19.Thefirsttermdisappears.Inthe

NINHAMANDPARSEGIANVanderWaalsForces:CalculationforLipidWaterSystems661 remainingintegrandthelowerlimitcanbereplacedbyzeroandwehave

J(t;1)(<)2dpapiE2-Ele-tPlt8'V~~~~~~~-E2+'El/

=-fxdxln-1_)2e-]

5m=::).(A6)E2+'El

Thecorrectiontermsareoftheorderof(Q,/t)2.

AtI=50A,t8t3X1016whichhesinthemid-uv.Fort>3X1016thefunction(1C2-1lJ/[E2+El])2isalreadyverysmallcomparedwithitsmaximumvalue,sothateffectsofretardationarealsosmall.OntheotherhandforI=500A,t8liesinthenear-uvandweexpectthesehighfrequencycontributionstobediminished.

(b)t/A="<<1

ConsiderfirstthesecondintegralofequationA1

Jqt;1)(>)(Z/Z8)2pdp(5E2ElPC-pQlt.).A7)

Writingx=p-1,wehave~(~,~j2f[si(+X)(El/E2)I(t;l)(>)-"t/JoL5+(1++X))(E12)Jexp[-(t/t,)(I+x)]dx.(A8)

Afterafurtherchangeofvariabletoxt/l8=y,notingthatthemajorcontributioncomesfromtheregiony=0,wecanexpandtheintegrandinascendingpowersofytoget

00(;)>)t0)exp(/8)adyo~~~~~~~~~

Xexp(-Y)(_23_/)(1+O(YAk/ID))

(tt)exp(-2/_VAsimilarcontributioncomesfromtheremainingintegrandofequationA1.Thusfort>t,(I;1)hasaformessentialyequivalenttoequationA6butwithexponentialdamp-ing.Completeasymptoticexpansionswhichconvergerapidlyforcomputationcaneasilybeconstructed.However,thereappearstobelittlepointinsodoing-theexpansionsarerathercomplicated,anditissimplertocalculatethespectrumnumericallyforeachcase.

RequestsforreprintsshouldbeaddressedtoDr.Parsegian. Receivedforpublication14November1969andinrevisedform3April1970.

BIOPHYSICALJOURNALVOLUME101970662

REFERENCES

1.PARSEGIAN,V.A.,andB.W.NINHAM.1969.Nature(London).224:1197.

2.HAYDON,D.A.,andJ.L.TAYLOR.1969.Nature(London).217:739.3.DZYALOSHINSKII,I.E.,E.M.LIFSHITZ,andL.P.PITAEVSKII.1959.Advan.Phys.10:165.4.KAUZMANN,W.1957.QuantumChemistry.AcademicPress,Inc.,NewYork.514.

5.JEHLE,H.1969.Ann.N.Y.Acad.Sci.158:240;JEHLE,H.,W.C.PARKE,andA.SALYERS.1964.InElectronicAspectsofBiochemistry.AcademicPress,Inc.NewYork.313.6.LONDON,F.1930.Z.Phys.63:245.7.VERWEY,E.J.W.,andJ.TH.G.OVERBEEK.1948.TheoryoftheStabilityofLyophobicColloids.N.V.UitgeversMij.Elsevier,Amsterdam.8.LIFSHrrz,E.M.1955.Zh.Eksp.i.Teor.Fiz.29:95;1956.Sov.Phys.J.E.T.P.2:73.9.CASIMIR,H.G.B.,andD.POLDER.1948.Phys.Rev.73:360.10.OVERBEEK,J.TH.G.1966.Discuss.FaradaySoc.42:7.11.LANDAU,L.D.,andE.M.LIFSHITZ.1960.ElectrodynamicsofContinuousMedia.Addison-WesleyPublishingCo.,Inc.,Mass.12.TablesofDielectricDataforPureLiquidsandDiluteSolutions.1958.NationalBureauofStandards,Washington.Circular589.13.BRAND,J.C.,andJ.C.SPEAKMAN.1960.MolecularStructure.ArnoldLtd.,London.14.HERZBERG,G.1966.ElectronicSpectraofPolyatomicMolecules.D.VanNostrandCo.,Inc.Princeton.15.CHERRY,R.J.,andD.CHAPMAN.1969.J.Mol.Biol.40:19.16.REED,R.I.1962.IonProductionbyElectronImpact.Table1.AcademicPress,Inc.,NewYork.Table1.17.SRIVASTAVA,S.N.,andD.A.HAYDON.1964.Trans.FaradaySoc.60:971.18.NINHAM,B.W.,andV.A.PARSEGIAN.1970.J.Chem.Phys.52:4578.19.OVERBEEK,J.TH.G.1952.InColloidScience.H.Kruyt,editor.N.V.UitgeversMij.Elsevier,Amsterdam.1:271.

NINHAMANDPARSEGIANVanderWaalsForces:CalculationforLipidWaterSystems663

Van Der Waals Forces Documents PDF, PPT , Doc