Geophysical field disturbances and quantum mechanics




Loading...







[PDF] Introduction to Geophysics – Lecture Notes

23 mar 2015 · This method is based on the fact that the Bouguer anomaly depends on the density of rocks as well as on the topography If the topography along 

[PDF] Geophysics - University of Manitoba

Facts about a Geophysics degree: • In Canada, geoscience is a regulated profession The Major and Honours (4-year) Geophysics programs

[PDF] PRINCIPLES OF GEOPHYSICS

Geophysics, we study earthquakes, the main magnetic field, physical oceanography, studies of the Earth's thermal state In fact to a good approximation

[PDF] Archaeological Geophysics – a Short Guide - BAJR

The purpose of this note is to seek to establish what geophysics is good and bad at and to give some information concerning the methods which are used

Geophysical field disturbances and quantum mechanics

The fact is that physicists use to solve the problem in the frames of one method inside the so-called classical physics Currently the situation in science 

[PDF] Nuclear Geophysics and its Applications

provides the practical basis for nuclear geophysics is the fact that the geological properties of the materials are factors determining the characteristics 

Contribution of geophysics for the characterization of ore deposits

As a matter of fact, the magnetic method is the most appropriate tool especially when we are dealing with a Manganese mineralization, because it is usually 

Geophysical field disturbances and quantum mechanics 102240_7e3sconf_strpep2017_02005.pdf

Geophysicaleld disturbancesand quantummec hanics

Kuznetsov

1,? 1 Abstract.Quantum processesimpact intoph ysicsof geophysicalfielddisturbances is discussed herein examples ofphenomenasuchas anearthquak ewith processespreced- ing andaccompan yingit,volcanoes eruptionsand diamondexplodingpipes. Physics of shock wavesgenerationinionosphereand atmosphere,mechanism ofatmosphere phe- nomena insupercooled cloudsrecorded bya stormglassis considered.The reporttreats of physicsofball anddark lightning,of generatingin atmospherethe high-energy parti- cles involvedinspritesoccurrence,and soon. Geophysicalphenomenaconsideredherehavenoclearandconsistentinterpretationinthe contextof classicalph ysics.W eattempttoin volvethe recentachie vements ofquantum physicsnamely thequantum entanglementbetween elementaryparticles implicatedin considered phenomena.

1 Introduction

It iswell known thatgeophysicsdescribes naturephenomena occurringinsolidEarth (earthquakes, volcanoeruptions, heatflo w),in oceans(tsunami),inatmosphere (cloudsformation, climate,atmo- sphere electricity,thunderstorms,sprites). Geophysics isa complexofsciences, whiche xplorethe structure ofthe Earthby theph ysicalmethods. Eachphenomenon impliestheformationof "itso wn "fields uniqueto it,the yare thermalfieldofthe Earth,gra vityfield, theEarth" smagnetic fieldand the electromagneticfield. Thedi visioninto fieldsdeterminesthedi visionof geophysics intorele vant disciplines, suchas meteorology, oceanography,etc. Geophysicsphenomenasuchasearthquak es, volcanoeruptions, lightningand sprites,climatology ,etc. appearnot tofittheonly onesection. This is particularlynotice ablewhentalkingabout possiblemethods ofprediction. Letus cite,for example, some ofthe ways ofearthquakesforecast. They areacousticmonitoring,and monitoringof electric and magneticfields, changesof gravity andstresses inlithosphere,monitoringof heatflo w, change in groundwaterlev el,etc.Asmanyof thesefields aree xperiencingaperturbationon thee ve ofan earthquakethe ymustbeconsidered jointly. Sometimesit turnsout thatitisimpossible tofind an "agent" whichw ouldbemanifestedsimultaneously inthese fields.The fact isthat physicists useto solvethe problemin theframes ofone methodinside theso-called classicalph ysics. Currently thesituation inscience beg anto changeradically.Toe xplainsome phenomenathe physicistsappeal toquantum mechanicsassuming theso-called classicalph ysicsin whichframes the phenomena havenoapparente xplanationto bea componentofquantummechanics. Hereph ysicists has calledattention toa particularmatter state,named quantumentanglement (QE)(quantum entan- glement, nonlocality).Quantum propertieswere consideredto manifestthemselv esonly atv erylo w ?

Corresponding author:vvkuz38@mail.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons

Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors temperatures closeto theabsolute zero.Recently itw assho wnthat itis notentirelytrue.Secondly , entangled substancesha veapropertye ecting ase xpressedbyEinstein,a "supernormallong-range action". Otherwise,particles ofsubstances inQE statebeha ve like asingle substance,despitethefact that thereare nointeraction betweenits partsand particlescan beat any large distancefrom each other.In quantummechanics itmeans thatall linked particlesof asubstance aredescribed byasingle wavefunctionandthe yha ve aspeciccoherence.It isnotappropriatetoobjectto thisapproach from the pointof GTR.Thirdly ,talking abouttheroleof QEin natureit isw orthto referto therecently published paperstating thatthe essenceof gravity consistsin quarks andantiquarksQE[1]. The developmentofthis approachseems toallo wto solve theproblem ofgravityquantization. Is QEcommon atthe Earth?The answerto thisquestion isgi ven ata recentlypublished article allegingthat "ev erythingislinked"inthe world [2].Accordingtothe authorsQE originatesfrom the creationof theUni verse i.e.fromtheBigBang.In fact, atypical particleis entangledwith manyparticles far outsideourhorizon.Ho wev er, asQE isevenlypropagatingbyavolume thetw o randomly chosenparticles areunlik elyto beassociatedthroughreduced densitymatrix whichapplies to anypairsthat areseparable [2]. Here wewill focuson thef astperturbations ofthe geophysicalenvironment, calledquak es.Quak e is theen vironmentshakingagainst thebackground ofitsinitiallycalm conditions.Where andho w do quakesoccur?In themonograph [3]these phenomenarefer tosuch ones(not includinga well knownearthquak e)like:ice quake,wood quake, proteinquake,etc. Authorofthismonograph rightly believesthatin suchcases aviolation ofthe uctuation-dissipativ etheorem hasoccurred. We refer lightning (balland dark),sprites, etc.to quantumphenomena. Obviously ,the broaderis therange of quake,the moredi cult isto selectan environment witha universalQE. Inthe subsequentdiscussion we willrestrict ourselves toQEofh ydrogenbonds protons(HB). Hydrogenbond - aspecial typeof bondingdue tothe fact thatthe hydrogen atomassociated with a stronglyelectrone gativeelement(nitrogen,oxygen,uorine,etc.)lacks ofelectrons andit therefore is ableto interactwith thelone electronpair ofanother electroneg ativ eatom ofthe sameor another molecule (thetotal proton).The presenceof HBand theircooperati ve properties,particularly inw ater, lead tothe fact thatwaterproperties changedepending onthenumberof HB.F ore xample,in icethere is alot ofHB andtheir numberis decreasingwith icemelting. Thenumber ofHB smallin meltis less in hotw aterandthereis almostno HBin boilingw ater. Ifw atercompletely haslost itsability toform HB, itw ouldturnintov apor, condensinginto liquidat100°C.Presentnot onlyin water but alsoin the lithosphereh ydrogenbondsaredetermining itsspecial properties.The mechanismof HBis that the electrondensity onthe lineH...O (N,F ,etc.) isshifted tothe electronegativ eatom generatinga nearing ofelectrons ofelectrone gati veatomsintheneighboringmoleculesandthedistance O-H,O -

N, etc.decreases.

Data onQE. "A surprisingfeature ofthe quantumw orldis thatone particleinstantlyaects "entangled" withit anotherone, nomatter how far apartthe yare.Theterm "entanglement"todescribe this phenomenoncame upwith Schrödingerwho like Einsteinw asnot afanof whatEinstein called a "supernormallong-range action".But despitetheir skepticism, thequantum "entanglement"pro ved in manyexperiments isoneofthe mostfundamental ideasin quantummechanics. .. "([4], p.235). Quoting thebook ofS. I.Doronin, "Quantummagic" [5]:"The matter, thatis thematter andall known physicalelds arenot environm entbasis butrepresentonlyasmall partof thetotalQuantumReality ."

Some basicdenitions fromquantum mechanics:

Decoherenceis aph ysicalprocessinwhich thelocality breaksand quantumentangleme ntbe- tween theconstituent partsof thesystem reducesin itsinteraction withthe environment. Herthe subsystems "manifest"from theirnonlocal statesas separateindependent elementsof reality, they separate fromeach other, acquiringvisiblelocalforms. 2

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors temperatures closeto theabsolute zero.Recently itw assho wnthat itis notentirelytrue.Secondly , entangled substancesha veapropertye ecting ase xpressedbyEinstein,a "supernormallong-range action". Otherwise,particles ofsubstances inQE statebeha ve like asingle substance,despitethefact that thereare nointeraction betweenits partsand particlescan beat any large distancefrom each other.In quantummechanics itmeans thatall linked particlesof asubstance aredescribed byasingle wavefunctionandthe yha ve aspeciccoherence.It isnotappropriatetoobjectto thisapproach from the pointof GTR.Thirdly ,talking abouttheroleof QEin natureit isw orthto referto therecently published paperstating thatthe essenceof gravity consistsin quarks andantiquarksQE[1]. The developmentofthis approachseems toallo wto solve theproblem ofgravityquantization. Is QEcommon atthe Earth?The answerto thisquestion isgi ven ata recentlypublished article allegingthat "ev erythingislinked"inthe world [2].Accordingtothe authorsQE originatesfrom the creationof theUni verse i.e.fromtheBigBang.In fact, atypical particleis entangledwith manyparticles far outsideourhorizon.Ho wev er, asQE isevenlypropagatingbyavolume thetw o randomly chosenparticles areunlik elyto beassociatedthroughreduced densitymatrix whichapplies to anypairsthat areseparable [2]. Here wewill focuson thef astperturbations ofthe geophysicalenvironment, calledquak es.Quak e is theen vironmentshakingagainst thebackground ofitsinitiallycalm conditions.Where andho w do quakesoccur?In themonograph [3]these phenomenarefer tosuch ones(not includinga well knownearthquak e)like:ice quake,wood quake, proteinquake,etc. Authorofthismonograph rightly believesthatin suchcases aviolation ofthe uctuation-dissipativ etheorem hasoccurred. We refer lightning (balland dark),sprites, etc.to quantumphenomena. Obviously ,the broaderis therange of quake,the moredi cult isto selectan environment witha universalQE. Inthe subsequentdiscussion we willrestrict ourselves toQEofh ydrogenbonds protons(HB). Hydrogenbond - aspecial typeof bondingdue tothe fact thatthe hydrogen atomassociated with a stronglyelectrone gativeelement(nitrogen,oxygen,uorine,etc.)lacks ofelectrons andit therefore is ableto interactwith thelone electronpair ofanother electroneg ativ eatom ofthe sameor another molecule (thetotal proton).The presenceof HBand theircooperati ve properties,particularly inw ater, lead tothe fact thatwaterproperties changedepending onthenumberof HB.F ore xample,in icethere is alot ofHB andtheir numberis decreasingwith icemelting. Thenumber ofHB smallin meltis less in hotw aterandthereis almostno HBin boilingw ater. Ifw atercompletely haslost itsability toform HB, itw ouldturnintov apor, condensinginto liquidat100°C.Presentnot onlyin water but alsoin the lithosphereh ydrogenbondsaredetermining itsspecial properties.The mechanismof HBis that the electrondensity onthe lineH...O (N,F ,etc.) isshifted tothe electronegativ eatom generatinga nearing ofelectrons ofelectrone gati veatomsintheneighboringmoleculesandthedistance O-H,O -

N, etc.decreases.

Data onQE. "A surprisingfeature ofthe quantumw orldis thatone particleinstantlyaects "entangled" withit anotherone, nomatter how far apartthe yare.Theterm "entanglement"todescribe this phenomenoncame upwith Schrödingerwho like Einsteinw asnot afanof whatEinstein called a "supernormallong-range action".But despitetheir skepticism, thequantum "entanglement"pro ved in manyexperiments isoneofthe mostfundamental ideasin quantummechanics. .. "([4], p.235). Quoting thebook ofS. I.Doronin, "Quantummagic" [5]:"The matter, thatis thematter andall known physicalelds arenot environm entbasis butrepresentonlyasmall partof thetotalQuantumReality ."

Some basicdenitions fromquantum mechanics:

Decoherenceis aph ysicalprocessinwhich thelocality breaksand quantumentangleme ntbe- tween theconstituent partsof thesystem reducesin itsinteraction withthe environment. Herthe subsystems "manifest"from theirnonlocal statesas separateindependent elementsof reality, they

separate fromeach other, acquiringvisiblelocalforms. Quantum tunnelingis aquantum mechanicale fiect ofparticles passagethrough theener gybar -

rier.Similar tothe passagethrough thetunnel thisprocess iscalled atunneling. Thereis noanalogue in classicalmechanics. Nonlocalityis afeature ofentangled stateswhich cannotbe relatedto thelocal elementsof reality. It isnot relev anttowaves, eldsand totheclassicalenergyofany kindand type.Quantum nonlocality havenoclassical analogand itcannot bee xplainedwithin classicalph ysics. Nonlocal correlations(quantum correlations)- aspecic efiect ofnonseparability (quantumen- tanglement) whichconsists inconcurrent behavior ofseparate partsofthesystem. Itis a"telepathic" association ofobjects wheneach ofthem feelsthe otherone "asitself." This"supernatural" coupling between distantobjects isnot explained byclassical physics.Unlike regular interactionsrestricted for examplebythe lightspeed, thenonlocal correlationsare instantaneous,that is,changes ateach part ofthe systema fi ects itsother partsat thesame thetime reg ardlessof thedistance betweenthem. Quantum physicshasre vealed themechanismofthiscoupling,it gotinto aquantitati ve description of couplingla wsandgraduallybe ginsto usein technicaldevices. Nonseparability(quantum entanglement)- theinability todi videthe systeminto separateand completely independentparts. The principleof superposition ofstates- ifthe systemcan bein difierent states,it maybe ina state whichis asimultaneous "superposition"of two ormore statesfrom thisset. Recoherence- reversetodecoherencethe processis regenerating aquantum entanglementbe- tween thesystem components. Fig.1. Quantum jumpson theborder betweenthe materialw orldand thenon-material one[6]

2 Physicsofthe earthquake

As anunsolv edproblemphysics ofthe earthquakechallengeshumanity foro ver 100yearsandstill remains unclear.Asw asrecently announcedbyexperts ofthe popular journalLi veScience,oneof the tenmysteries ofthe Univ erseis formulatedapproximatelyas:"Whatishappening inthe "heart" of theearthquak e?" 3

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors A specialistin quantummechanics ProfessorJim al-Khaliliformulates the10 tasksof modern physicsin hisbook "Paradox. Ninegreat mysteriesofphysics" [7].Among them,the secondposition is fordark matter, thethirdonefor darkener gy, andquestion "willwe learnone daytopredict earthquakes?"is atthe ninthposition. To answerthis questionI statedabout25years ago:"already begunthe earthquake doesnotknow whathappens further." Inotherwords thereis nohope forreliable prediction. IntuitivelyItriedto ndquantum "roots"of anearthquak eand thenI conrmedmy statement. Here thepurpose isan attemptto understandph ysics.In previous papersthe authorshowed that theearthquak ecanbepresented asthe outputof ashock wa ve tothe Earthsurf ace,causing the emergenceof theso-called strongmotions ofground [8].Let" sfollo wthis conceptionon dataof quantum mechanics. Our modelis basedon fundamentallyne wapproaches tothe explanationofthe resultsobtained in research ofrock samplesunder theircompression bypo werfulpresses. Theauthors hav ebeenrepeat- edly recordedspontaneous amplicationof theintensity ofacoustic emissionfollo wedby itssponta- neous determination[8-10]. Theauthor [8]attempted toe xplainthis phenomenonfrom thepoint of viewof self-org anizationincoherentstructuresbyinteraction ofsound wa ves withopening cracks. The e  ects ofacoustic emissionsamplication was suggestedto besimilartooptical superradiance of Dicke[11]. The e  ects ofacoustic superradianceare notedto occurnot inall typesof rocks.F ore xample, the acousticemission ofgranites (granodiorites)of two di  erent types:Oshima (ne-grained)and Inada (coarse-grained)under theirloading was rev ealedtobedi  erent thoughthe sampleshad a formal resemblance[9]. Whereassamples ofgranites fromOshima depositsho weda sharpincrease in intensityof acousticemission, therew asno e  ect atsamples ofgranites fromInada. Thisresult repeatedly conrmedsuggests thatEarth interiorth eremay begeological bodieswhichrheology enables self-organizationandgeneratingof anearthquak einside them,while inother bodiesatrst glance identicalto therst onessuch phenomenado notoccur . The resultsof laboratorye xperimentsand eldobservations(Fig. 2A) showthatconstant acoustic background hasa uctuatingcharacter ( fi N), whereNis acomplete, themaximum possiblenumber of soundimpulses arriving atthereceiv erfrom theloaded sample.Ifimpulsesaregeneratedcoher - ently Nappears. For comparison(Fig.2B) showstheresult ofthe experiment onthe eect ofquantum entanglement. Payattentionto thef actthat inthese gurestheformof signalsis identical.In our model weaccept thatthe acousticimpulses aregenerated dueto changesof hydrogen bondslength (breaks) atthe rocksamples. Let"sdiscuss thee xperimentson high-pressuredkalicinite(KHCO3),the mineralin whichh ydrogen bonds showthecapacity forquantum entanglement.On compressionthe structureof hydrogen bonds changes simultaneouslyo verthewholevolume ofthe sample(Fig. 3)resultinginthe changeof its unit-cell volume(ordensity) andcorrespondingly (accordingto ourmodel) inthe SWgeneration. Similar resultswere obtainedfor otherminerals containingh ydrogenand oxygen(nitrogen, uo- rine). Bydata ofman yauthors suchstructuralphasetransition ofh ydrogenbonds happensinstantly overalar gev olumeandthisphenomenon iscalledacooperati vity. The partsof ourmodel: 1)a shockw av eformation atthe breakupofthemediumcharacteristics;

2) evaluationofanearthquak eener gy;3) outputoftheshock wave atthe surface andph ysicsof

4

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors A specialistin quantummechanics ProfessorJim al-Khaliliformulates the10 tasksof modern physicsin hisbook "Paradox. Ninegreat mysteriesofphysics" [7].Among them,the secondposition is fordark matter, thethirdonefor darkener gy, andquestion "willwe learnone daytopredict earthquakes?"is atthe ninthposition. To answerthis questionI statedabout25years ago:"already begunthe earthquake doesnotknow whathappens further." Inotherwords thereis nohope forreliable prediction. IntuitivelyItriedto ndquantum "roots"of anearthquak eand thenI conrmedmy statement. Here thepurpose isan attemptto understandph ysics.In previous papersthe authorshowed that theearthquak ecanbepresented asthe outputof ashock wa ve tothe Earthsurf ace,causing the emergenceof theso-called strongmotions ofground [8].Let" sfollo wthis conceptionon dataof quantum mechanics. Our modelis basedon fundamentallyne wapproaches tothe explanationofthe resultsobtained in research ofrock samplesunder theircompression bypo werfulpresses. Theauthors hav ebeenrepeat- edly recordedspontaneous amplicationof theintensity ofacoustic emissionfollo wedby itssponta- neous determination[8-10]. Theauthor [8]attempted toe xplainthis phenomenonfrom thepoint of viewof self-org anizationincoherentstructuresbyinteraction ofsound wa ves withopening cracks. The e  ects ofacoustic emissionsamplication was suggestedto besimilartooptical superradiance of Dicke[11]. The e  ects ofacoustic superradianceare notedto occurnot inall typesof rocks.F ore xample, the acousticemission ofgranites (granodiorites)of two di  erent types:Oshima (ne-grained)and Inada (coarse-grained)under theirloading was rev ealedtobedi  erent thoughthe sampleshad a formal resemblance[9]. Whereassamples ofgranites fromOshima depositsho weda sharpincrease in intensityof acousticemission, therew asno e  ect atsamples ofgranites fromInada. Thisresult repeatedly conrmedsuggests thatEarth interiorth eremay begeological bodieswhichrheology enables self-organizationandgeneratingof anearthquak einside them,while inother bodiesatrst glance identicalto therst onessuch phenomenado notoccur . The resultsof laboratorye xperimentsand eldobservations(Fig. 2A) showthatconstant acoustic background hasa uctuatingcharacter ( fiN), whereNis acomplete, themaximum possiblenumber of soundimpulses arriving atthereceiv erfrom theloaded sample.Ifimpulsesaregeneratedcoher - ently Nappears. For comparison(Fig.2B) showstheresult ofthe experiment onthe eect ofquantum entanglement. Payattentionto thef actthat inthese gurestheformof signalsis identical.In our model weaccept thatthe acousticimpulses aregenerated dueto changesof hydrogen bondslength (breaks) atthe rocksamples. Let"sdiscuss thee xperimentson high-pressuredkalicinite(KHCO3),the mineralin whichh ydrogen bonds showthecapacity forquantum entanglement.On compressionthe structureof hydrogen bonds changes simultaneouslyo verthewholevolume ofthe sample(Fig. 3)resultinginthe changeof its unit-cell volume(ordensity) andcorrespondingly (accordingto ourmodel) inthe SWgeneration. Similar resultswere obtainedfor otherminerals containingh ydrogenand oxygen(nitrogen, uo- rine). Bydata ofman yauthors suchstructuralphasetransition ofh ydrogenbonds happensinstantly overalar gev olumeandthisphenomenon iscalledacooperati vity. The partsof ourmodel: 1)a shockw av eformation atthe breakupofthemediumcharacteristics;

2) evaluationofanearthquak eener gy;3) outputoftheshock wave atthe surface andph ysicsof

Fig.2. A) Formationrateof soundimpulses indiabase undera constantuniaxial compressiv estress [10]. B)Number ofphotons pairsre gisteredas afunction ofdelaybetweenthe momentsof two photons detection.Flat plotcorresponds torandom coincidencesbetween uncorrelatedpho tons,the peak correspondsto quantumentanglement [12] accompanyingphenomena; 4)model ofan earthquake source- arediscussed in[13].Asthese parts are notassociated withquantum mechanicsas wellas withmaterial presentedfurther they arenot treated here.Model ofaftershocks asquantum phenomenafollo ws. Fig.3. The changeof theunit-cell volume (==4%) forkalicinite atthe pressureof 3.2GP a -, thechange ofkalicinite crystalstructure -,[12]. Shockw avegenerationinsidethelayerof lithosphere containingh ydrogenbonds-[13]

5 Aftershocks

After astrong earthquake attheregion ofits sourcea swarmofrecurrent earthquakes withthe depth of theirh ypocentersasarule higherthan theplane ofthe mainshock occur. Afterthe mainshock the decline ofaftershocks numberin timeis denedby ah yperbolicla w(Omori law ()~1/ζ, where ζ>1). Asusually aftershocksll thespace previously occupiedby thesource ofthemainshock its volumemay bee valuated insuchaway(Fig. 4-). Almostall hypocenters ofaftershocks,someof them arecomparable inmagnitude tothe mainshock, arelocated abov eits hypocenter . Though aftera deepearthquak eaftershocks arevirtuallyabsent,ho wev er, thisrelation iskno wn to berarely violated.After thedeep (564km) earthquake of9 March1994 (witha magnitudeof =7.6) nearthe Tong atheauthors[14]observed therst seriesof aftershocksusing eightbroad- band seismographs.Aftershocks (82e vents) havebeenfading afterthemainshockfor42 hours according tothe power lawwithmagnitudes from3.8to6.0. Themain shockand mostof aftershocks

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors were locatedalong thev erticalplane ofthemainshock withthe maximumdistance fromit ofnot more than5 km. Seismicallyactivemediumincludingentangledelementshasanumberofuniquepropertiesamong which weare interestedin theability tomemory .T ouse thisfeature, physicistsaretrying tocreatea quantumcomputer.Inseismology thispropertymanifestsitselfwhen,alongwiththemainearthquake, foreshocks andaftershocks occur. Ifmediumhav enot sucha property,itisnotable togenerate foreshocks andaftershocks. Model ofthe Northridge earthquakeruptures(center) [14].Left-depth distribution ofP-, S-wavesandshockw av esv elocities.Right-aftershocks[14]

6 Quantumeff ectsinphysics ofear thquakes

Let"srefer toFig. 2,which shows thatthe rocksample loadedbypressemits asound impulse.It is generally acceptedthat thecause ofthese impulsesis thecracks formation.W ewill notcriticize this model [15]here. Herewe supposeanother mechanismof acousticemission. Assumingthat therock sample includesHB asit follows fromFig. 3-Band 3-Cwe considera modelof acousticemission generation dueto themotion ofa protonin thesun. Let"suse themodel ofHB [4],where theproton inthe hydrogen bondlinking thetw opairs of DNAbases isre garded asbeingontwosprings suchthat itcan oscillatefrom sidetoside.It hastw o possible stablepositions modeledhere asa doubleener gywell. The left-handwell (correspondingto the unmutatedposition) isslightly deeperthan theright-hand well(the tautomericposition), andso the protonprefers tosit inthe leftone. In Fig.5 shows thecomponentofthe system[4]. Remember, inquantum mechanicsa proton is anelementary particlewhich issimultaneously aw av e.The mov ementofprotonwillberecorded as aphonon, i.e.,the soundimpulse. Moving alongthe hydrogen bondtheprotonmeets anener gy 6

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors were locatedalong thev erticalplane ofthemainshock withthe maximumdistance fromit ofnot more than5 km. Seismicallyactivemediumincludingentangledelementshasanumberofuniquepropertiesamong which weare interestedin theability tomemory .T ouse thisfeature, physicistsaretrying tocreatea quantumcomputer.Inseismology thispropertymanifestsitselfwhen,alongwiththemainearthquake, foreshocks andaftershocks occur. Ifmediumhav enot sucha property,itisnotable togenerate foreshocks andaftershocks. Model ofthe Northridge earthquakeruptures(center) [14].Left-depth distribution ofP-, S-wavesandshockw av esv elocities.Right-aftershocks[14]

6 Quantumeff ectsinphysics ofear thquakes

Let"srefer toFig. 2,which shows thatthe rocksample loadedbypressemits asound impulse.It is generally acceptedthat thecause ofthese impulsesis thecracks formation.W ewill notcriticize this model [15]here. Herewe supposeanother mechanismof acousticemission. Assumingthat therock sample includesHB asit follows fromFig. 3-Band 3-Cwe considera modelof acousticemission generation dueto themotion ofa protonin thesun. Let"suse themodel ofHB [4],where theproton inthe hydrogen bondlinking thetw opairs of DNAbases isre garded asbeingontwosprings suchthat itcan oscillatefrom sidetoside.It hastw o possible stablepositions modeledhere asa doubleener gywell. The left-handwell (correspondingto the unmutatedposition) isslightly deeperthan theright-hand well(the tautomericposition), andso the protonprefers tosit inthe leftone. In Fig.5 shows thecomponentofthe system[4]. Remember, inquantum mechanicsa proton is anelementary particlewhich issimultaneously aw av e.The mov ementofprotonwillberecorded as aphonon, i.e.,the soundimpulse. Moving alongthe hydrogen bondtheprotonmeets anener gy barrier andpasses throughit dueto thee fi ect ofquantum tunneling.It was Per-Olof Lundin,Swedish physicist,who suggestedthat theprotons inh ydrogenbonds mov eby quantumtunnelingresultingin formation ofmutational formsof thenucleotides ([4]p. 277). Fig.5. Proton inh ydrogenbondslinkingthe two pairsof DNA bases[4].Therange ofHB -an element ofan earthquake source Whythere isa sharpincrease inthe numberof soundimpulses, whichis thenreduced tothe previousbackground values, andsoontheprocess isrepeated. Inquantum mechanicsthe back- ground acousticemission isa randomprocess ofproton moving whenprotons becomecoherent. Upon reachingfull coherenceby protonsof HBin asample volume decoherenceoccurs (Fig.1). The consequenceof decoherenceis arapid increasein thenumber ofsound inpulsesN followed by recoherence, thesystem entersquantum domain.This stageis calleda virtualquantum entanglement, here HBprotons again "nd"thesameprotons inthe samequantum states.The processrepeats. Fig. 2-Bshowsthe resultof laboratorye xperimentson quantumentanglement ofcorrelatedpho- tons [12].Decoherence similarto thattreated abov eis recorded:turning intoclassicaldomainthe system turnsback intoquantum onein theprocess ofrecoherence. In ourmodelthe reasonfor changingof HBpotential isthe pressuresize ofthe pressin laboratory experimentsand themagnitude ofgra vityin nature.In [16]thedependenceof rateconstant fortunnel solid-phase reactionson temperatureand pressureis considered.The temperaturedependence is determined byintermolecular andweak intramolecularvibrations inreagents, leadingto oscillations in thepermeability ofthe potentialbarrier forthe tunnelingatom. Thee xternalpressure accountsfor static reductionin thewidth andheight ofthe potentialbarrier (dashedline inFig. 5)under hydrostatic compression ofmatrix thatleads toa highertransparenc yof thebarrier . Synchronous protonsjump fromtop energy lev eldownto theloweroneasdecoherence leadsto coherent additionof soundimpulses andshock wa ve (SW)initiation. Propagatingfromthehypocen- tre upto epicentreSW carriesa pressureadditional tolithostatic oneat itsfront. Thispressure, in turn, causesthe sameHB protonsjump inupper layersof anearthquak esource andan aftershock generation. Anob viousconditionforaftershock occurrencein volv esquantum entanglingof protons overthetotal volume. Ifsuch entanglementoccursnotonly withinthe earthquake source,b utalso with HBprotons ofthe external environment thenSWcanoccur fortheseprotons.As willbe shown below,theaftershock canbe generatedbetween theprotons ofthe lithosphereand supercooledw ater clusters ofthe cloud.It follows thatdecoherence inaquantumsystem isan earthquake. 7

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors

7 Theshoc kwaveinitiator andsourceof geoph ysicalphenomena

8 SWand volcano formation

  ,T?K

9 SWand thef ormationof blowholes

8

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors

7 Theshoc kwaveinitiator andsourceof geoph ysicalphenomena

8 SWand volcano formation

  ,T?K

9 SWand thef ormationof blowholes

Diamonds turnedout tobe formedabout amilliard yearsago atdepth of5 -10 kmand thenthe y were deliveredclosetothe earthsurf acethrough theen vironmentmo vingafterSWwhich actedas diatreme.

10 SWin ionosphere

Newmodel ofthe formationof shockacoustic wa ves (SAW) inthe atmosphereandtheionosphereis discussed [13]. Recording propagationofthe shockacoustic wa ves (SAW) inionosphereusingawidenetwork of GPSstations modernresearch methodsof phenomenain atmosphereand ionospheredon" tsolv e the problemof mechanismof SAW generation.W econsiderattemptsto assignoccurrence ofSAWto strong groundmotions duringan earthquake beingincorrect, becausethespeedof thesemotions for

SW initiationis toolo w.

Model ofSA Wgenerationasan aftershockof lithosphereearthquak eis proposedhere. Quantum entanglement in"earthquak esource-supercooled water clouds"system postulatedin ourmodel may occuron HBprotons inthe sourcesubstance and,of course,on thesepresent inthe aquatic environmentof suchclouds. Ourmodel remov esall timeand spaceinconsistenciesobservedbetween the earthquakesourceand SAW hypocenter .Thesamepostulate isappliedtoaftershocks. On theone handthe occurrenceof SWin aclo udof supercooledw aterleads tothe generationofa "hole" inthe cloud,and onthe otherto thehigh-speed releaseof icepiece fromclouds. Itis aproduct of activitiyofraref actionw ave,which occurssimultaneouslywithSW.Probably,this mechanism leads tothe appearanceof UFOsand, atthe sametime, ifice speedis higherthan thatof soundin air there isa so-called"bombshell". Not thatv ariousmechanismsofentanglement (many-particle quantumentanglement) except those adopted here(for simplicity)for HBprotons arediscussed in[22], but they willcomplicate ourtask greatly.

11 Shock-wavemodelofe xplosivehole

Model ofe xplosiveholeformationontheY amalPeninsula andrelease ofg ash ydratesonBennett island issuggested [23].The reasonfor thesuch phenomenais theSW impacton thev olumeof gas hydratesdeposits atthe permafrost.Gas hydrates aredestro yedthrough SWpassingasan earthquake or anicequak ewhichfrequentlyoccur inof gas hydrates deposits.Explosi ve holeformationorrelease of gashydrates onBennettislandshould needa seriesof earthquakes (shockw av es).

12 Rockbump -SWoutputat amine

Model inwhich arock bump (aninduced earthquake)asSW outputat theinner wallamine isdis- cussed[24].An associatedrarefactionorstretchingwaveismovinginreverse(intothewall)direction. Ground motionsin thedirection ofSW propagation witha velocity muchsmallerthanthat ofSW oc- cur.Phenomena onthe innersurf aceof amine resultintherelease ofcoal dustand methane.Spatial separation ofchar gedparticlescausesan electricalbreakdo wn,which initiatesmethane explosion.

13 Stormglass monitoringof quantumentanglement

English hydrographeradmiralRobert Fitzroy was thefirstwhodescribed astrangebarometercalled then Fitzroystormglass (SG)[25]. In19-th centuryhe usedit forweather predictionnamely for 9

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors storms forecasting.Camphora crystallizationwithin theliquid was believ edto berelatedtothe weather.Crystals form,height andamount wereinterpreted. Numerous researchersof SGinsist thatSG hasa littlev aluein weatherprediction andits operation principle isunclear .Wewere solidwiththeseconclusions beforewe arriv eat Kamchatkawhere the devicebe gantorecordcyclones far beforetheir coming. Returning toNo vosibirskwemadethreesimilar SG.The yturn todescribe cyclones behavior at Kara Searather thanNo vosibirsk weather.Interestedinquantume ects Ide velopnowaquantum model ofSG. AsI proposeSG quantumentangles withsupercooled cloudsof northc yclonesrather than southc yclones.Wecalled thisdeviceby anentanglemeter suggestingthat itrecordsaquantum entangling degreebetweenclod supercooledw aterand camphorawith itshydrogenbonds. Protons shifting inHB accountsfor crystalgro wthat SG.

14 Lightning,MeV -particleuxes,sprites

Ball lightning(BL) isunique anatural phenomenon[26]. First,this phenomenonis far aheadof all ones inthe numberpublications. Second,despite ahuge researchnumber ,it cannot interpretedin the framesof classicalph ysics.The onlywayto understandthe BLnature weseeisto considerits physicsfrom quantummechanics principlesand achiev ements. Here wepropose amodel inwhich theproperties ofSHM follow fromthe context ofnonlocal multiparticle quantumentanglement (entanglements,the coherence- entanglement)between protons of hydrogenbonds(HB) inw aterclusters afterthe destructionofdarklightning. Darkzip. Discusses the problemof emergence inthecloudsstreams ofhigh-ener gyparticles. Describesse veral situations in whichsuch discov eredstreamsofdarklightning,preceding theordinary andcreate additional ionisation, streamsof fast electronsMaweiener gyprior totheearthquake, lightningstrikes,triggering the appearanceof balllightning, lighte ects, sprites,etc. Allthese phenomenaseem toha ve a common originbased onthe manifestationof thee ects ofquantum coherenceof protonsin hydrogen bonds ofw aterclustersinthe cloud[27].

15 Darklightning

Emergenceof high-energyparticleuxesin cloudsisdiscussedhere.Sev eralcases inwhichthey were discoveredaredark lightning,preceding anordinary oneand creatingadditional ionisation,prior to an earthquakeuxes offastelectrons withMeV -energy,lightning strikes, triggeringan appearanceof ball lightning,light e ects, sprites,etc. Allphenomena listedseem toha ve acommon originbased on manifestationof quantumcoherence ofHB protonsin water clustersof acloud [27].Disco vered as aphenomenon in1991 darklightning (DL)is aux off astelectrons, moving withv elocitiesclose to thatof lightthat sharplydistinguishes themfrom ordinarylightning, whichelectrons arenot so rapid. Ultrafastelectronsof DLcolliding withthe airmolecules giv erise tog ammarays thatgenerate electrons andtheir antiparticles,whose subsequentannihilation withair producesmore gamma rays. Lightning familiartous follows thetrack leftbyDLwhich electriccurrent isless byse veral ordersof magnitude thanthat ofusual lighning.DM voltage iskno wnto bemuchhigherthan thepotential of a stormcloud.

16 Quantumeff ectsinatmosphereelectric eld

"Crystal structure",similar tothat whichoccurs incrystalline dustyplasma isa possiblereason for the stabilityof water -jumper(bridge)betweentwow ater containersunder theinuenceofa constant 10

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors storms forecasting.Camphora crystallizationwithin theliquid was believ edto berelatedtothe weather.Crystals form,height andamount wereinterpreted. Numerous researchersof SGinsist thatSG hasa littlev aluein weatherprediction andits operation principle isunclear .Wewere solidwiththeseconclusions beforewe arriv eat Kamchatkawhere the devicebe gantorecordcyclones far beforetheir coming. Returning toNo vosibirskwemadethreesimilar SG.The yturn todescribe cyclones behavior at Kara Searather thanNo vosibirsk weather.Interestedinquantume ects Ide velopnowaquantum model ofSG. AsI proposeSG quantumentangles withsupercooled cloudsof northc yclonesrather than southc yclones.Wecalled thisdeviceby anentanglemeter suggestingthat itrecordsaquantum entangling degreebetweenclod supercooledw aterand camphorawith itshydrogenbonds. Protons shifting inHB accountsfor crystalgro wthat SG.

14 Lightning,MeV -particleuxes,sprites

Ball lightning(BL) isunique anatural phenomenon[26]. First,this phenomenonis far aheadof all ones inthe numberpublications. Second,despite ahuge researchnumber ,it cannot interpretedin the framesof classicalph ysics.The onlywayto understandthe BLnature weseeisto considerits physicsfrom quantummechanics principlesand achiev ements. Here wepropose amodel inwhich theproperties ofSHM follow fromthe context ofnonlocal multiparticle quantumentanglement (entanglements,the coherence- entanglement)between protons of hydrogenbonds(HB) inw aterclusters afterthe destructionofdarklightning. Darkzip. Discusses the problemof emergence inthecloudsstreams ofhigh-ener gyparticles. Describesse veral situations in whichsuch discov eredstreamsofdarklightning,preceding theordinary andcreate additional ionisation, streamsof fast electronsMaweiener gyprior totheearthquake, lightningstrikes,triggering the appearanceof balllightning, lighte ects, sprites,etc. Allthese phenomenaseem toha ve a common originbased onthe manifestationof thee ects ofquantum coherenceof protonsin hydrogen bonds ofw aterclustersinthe cloud[27].

15 Darklightning

Emergenceof high-energyparticleuxesin cloudsisdiscussedhere.Sev eralcases inwhichthey were discoveredaredark lightning,preceding anordinary oneand creatingadditional ionisation,prior to an earthquakeuxes offastelectrons withMeV -energy,lightning strikes, triggeringan appearanceof ball lightning,light e ects, sprites,etc. Allphenomena listedseem toha ve acommon originbased on manifestationof quantumcoherence ofHB protonsin water clustersof acloud [27].Disco vered as aphenomenon in1991 darklightning (DL)is aux off astelectrons, moving withv elocitiesclose to thatof lightthat sharplydistinguishes themfrom ordinarylightning, whichelectrons arenot so rapid. Ultrafastelectronsof DLcolliding withthe airmolecules giv erise tog ammarays thatgenerate electrons andtheir antiparticles,whose subsequentannihilation withair producesmore gamma rays. Lightning familiartous follows thetrack leftbyDLwhich electriccurrent isless byse veral ordersof magnitude thanthat ofusual lighning.DM voltage iskno wnto bemuchhigherthan thepotential of a stormcloud.

16 Quantumeff ectsinatmosphereelectric eld

"Crystal structure",similar tothat whichoccurs incrystalline dustyplasma isa possiblereason for the stabilityof water -jumper(bridge)betweentwow ater containersunder theinuenceofa constant electric intensity.Perhapsa similarmechanism isresponsible fortornado water columnbeha viorlik e that ofa rigidbody [28].An interestinge xperimentwith astable water bridgebetweentwo beakers containing waterandplatinum electrodesw asdescribed in2007 (referencedin[28]).Each electrode had aconstant voltage of15-20kV. Touching fromthe startthebeakers werepulledapartafter the voltagebeing appliedand water inboth beakersroseby contactingbeak ersw allsuptoconnecting of bothw ater,owsmo vingtowards eachother.W aterbridge("bridge")ofcircularsection witha diameter of2-4 mmand alength ofabout 2-3cm was observed. In the80-90 Iw asde velopingmyhot modeloftheexpandingEarth. Atthat timeI was interested in researchon so-called"plasma crystal"and itsquantum properties.An alyzingthe resultsof this research, Icreated mymodel ofthe Earthinner core[20]. Theidea ofa "plasmacrystal" helpedme ?nd themost likely modelofwater bridge:under theelectric ?eldwaterof bridgebeha ved asa rigid body. It iskno wnthatwater columnof tornadobehaves asa rigidbody .If weimaginethatwatercolumn of tornadois aw aterbridge withapotentialof aparent cloudthe problemw ouldbe solved. Iha ve not foundhere quantumentangled HBprotons but itis rev ocable.

17 Conclusions

In February2013 Iput sitedmy Memorandumwith justi?cationfor ane wscience ofquantum Geo- physicsin www.vvkuz.ru .Bythattime anumber ofw orkson thissubject Ihad writtenand published. Since thattime, myscienti?c interestis associatede xclusiv elywith thisscience. NowIpublisheda dozen articlesand madesome conferencereports. Mybook called"Quantum Geophysics" iscon- ceived.Ane xcellentbook al-KhaliliandMcFadden "Lifeon theedge. Your ?rstbookaboutquantum biology" [4]w asadecidingf actor. Iused apicturefromthisbook(Fig.5, p.290) abov eand Iturn to the nextpictureof thisbook (Fig.6). “The threestrata ofreality .The toplayeristhe visiblew orld,?lled withobjects suchas falling apples, cannonballs,steam trainsand airplanes,whose motionsare describedby Newtonian mechan- ics. Lyingbeneathis thethermodynamic layerof billiard-ball-like particleswhose motionis almost entirely random.This layeris responsiblefor generatingthe “orderfrom disorder"la wsthat gov ern the behaviorofobjects suchas steamengines. Thene xtlayer down isthe layerof fundamentalparti- cles ruledby orderlyquantum laws. Thevisible featuresofmostof theobjects thatwe seearound us appear tobe rootedin eitherthe Newtonian orthermodynamic layersb utlivingor ganisms hav eroots that penetrateright down tothequantumbedrock ofreality [4]." The earthquakesource(Fig. 6)is achain ofHB protonswhich arein acoherent state.After a decoherence occurs,SW arisesand thenby theabo ve mentionedscript. HBprotons ofthesourcecan be quantumlink edwithHBprotons ofwith supercooled water inclouds ("rootsof clouds"reachthe ?eld ofquantum mechanics).Shock crystallizationmay occurin acloud asan earthquake aftershock. Reaching ionospherethe resultingSW iscon verted toSW ontheelectrons,whichisrecorded then by GPSmethods. Sucha cloudis ableto generatenot onlythe lightningb utalso thedark lightning in whichw aterclustersarecoupled intoa chainso thata voltage ofse veral MeVinstantly appears between thechain ends. This articledeals withsome, notall quantumaspects ofgeoph ysics.Among thelatter ,for ex- ample, arequantum e fi ects occurringat theboundary ofthe Earthinner corewhere aphase change leading toa rev erseofgeomagnetic?eldpolarityproceeds, etc.[20]. Letus notethe roleof quantum linkedparticles whichaccumulation inatmosphere causesan abruptclimate change,beha vingas the ,icker-noise. 11

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors

Fig.6.  

References

111
718
WeakLinks: Theuniver salk eytothe stabilityofnetworksandcomplex systems Life onthe Edge .Thecomingofquantumbiolo gy Quantum magic fifi fi fi fi fi fi Paradox.Thenine greatest enigmasin science 12 67
Physical processesinearthquak efoci: Sat. scientic 93
Aspect A.Bell' stheorem:the naïveviewof ane xperimentalist. Quantum [Un]speakables -F rom BelltoQuantuminformation 3 12

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors

Fig.6.  

References

111
718
WeakLinks: Theuniver salk eytothe stabilityofnetworksandcomplex systems Life onthe Edge .Thecomingofquantumbiolo gy Quantum magic fifi fi fi fi fi fi Paradox.Thenine greatest enigmasin science 12 67
Physical processesinearthquak efoci: Sat. scientic 93
Aspect A.Bell' stheorem:the naïveviewof ane xperimentalist. Quantum [Un]speakables -F rom BelltoQuantuminformation 3 [14] D.A.W iens,J.J.McGuire,P .J.U.Shore, etal., Nature372, 540-543(1994) [15] V.V.Kuznetsov ,PMTF42(4), 184-189(2001) [16] L.I.T rakhtenberg,A.A.Fokee v, V.L.Klochikhin,etal.,Chemicalphysics23(6), 56-68(2004) [17] V.V.Kuznetsov ,Newappr oachestothephysicsof earthquakes anderuptions ofvolcanoes. Re- port atthe conference .InstituteofVolcanology andSeismolo gy. DVORAN(2015) [18] V.I.Levitas, R.Ravelo, Proc.Nat. Acad.Sci.USA.109(33):13204-7 (2012) [19] V.V.Kuznetsov ,Geophysicaljournal30(6), 76-92(2008) [20] V.V.Kuznetsov ,Introductionto thephysics ofthe hotsoil (Kamgu, Petropavlovsk-Kamchatsky,

2008) 367

[21] V.V.Kuznetsov ,GeologyandMCPSiberia,(2017) [22] V.V.Kuznetsov ,Quantummagic8(1), 1101-1119(2011) [23] V.V.Kuznetsov ,VolcanologyandSeismology(2017) [24] V.V.Kuznetsov ,VestnikKRAUNC.Phys.-Mat.science 1(10), 34-43(2015) [25] N.D.K uznetsova,V.V.Kuznetso v,JournalofUnconv entionalScience3(9), (2015) [26] V.V.Kuznetsov ,QuantumMagic8(3), 3101-3107(2011) [27] V.V.Kuznetsov ,Heraldkraunts.Phys.-Mat.science4(15), 63-73(2016) [28] V.V.Kuznetsov ,JournalofUnconventionalScience11(4), (2016)

E3S Web of Conferences

, 02005 (2017) DOI: 10.1051/e3sconf/20172002005 Solar-Terrestrial Relations and Physics of Earthquake Precursors
Politique de confidentialité -Privacy policy