Time and frequency: theory and fundamentals - GovInfo




Loading...







Time and frequency: theory and fundamentals - GovInfo

Time and frequency: theory and fundamentals - GovInfo www govinfo gov/content/pkg/GOVPUB-C13-e1edb3c9f15cce79026b68215342ba26/ pdf /GOVPUB-C13-e1edb3c9f15cce79026b68215342ba26 pdf with a very long history [1, 2, 3] 1 For this reason, it is difficult to understand the current operations of time and frequency measurements without some

Chapter 17: Fundamentals of Time and Frequency

Chapter 17: Fundamentals of Time and Frequency tf nist gov/general/ pdf /1498 pdf And by counting events or cycles per second, we can measure frequency Time interval and frequency can now be measured with less uncertainty and more

Very Long-term Frequency Stability: Estimation using a Special

Very Long-term Frequency Stability: Estimation using a Special tf nist gov/general/ pdf /1894 pdf evaluate frequency stability at longer averaging times than given by the definition of Avar, and (2) it has the highest number of equivalent degrees of

Time-Frequency Analysis of Time-Varying Signals and Non

Time-Frequency Analysis of Time-Varying Signals and Non www maths lu se/fileadmin/maths/personal_staff/mariasandsten/TFkompver4 pdf The ambiguity or doppler-lag function is the Fourier transform in both variables of the Wigner distribution The ambiguity function has some nice properties,

The history of time and frequency from antiquity to the present day

The history of time and frequency from antiquity to the present day www epj org/images/stories/news/2016/10 1140--epjh--e2016-70004-3 pdf as measured by clocks, and frequency, as realized by some device, were difficult to exploit the ability of the clock to measure long time intervals

First detection of frequency-dependent, time-variable dispersion

First detection of frequency-dependent, time-variable dispersion www aanda org/articles/aa/ pdf /2019/04/aa34059-18 pdf tens of AUs) but steep density variations in the interstellar electron content We find that long-term trends in DM variability equally affect DMs measured at

METHODS FOR TIME-FREQUENCY ANALYSIS - DiVA portal

METHODS FOR TIME-FREQUENCY ANALYSIS - DiVA portal www diva-portal org/smash/get/diva2:832704/FULLTEXT01 pdf 13 mar 1998 Other time intervals will be analyzed with a longer window, to gain better frequency resolution The method is implemented using a set of

Time and frequency: theory and fundamentals - GovInfo 113316_3GOVPUB_C13_e1edb3c9f15cce79026b68215342ba26.pdf

DATEDUE

WOTI.921teILL

- , - ____

GAYLORD'HINTEDINU.S.A.

NationalBureauofStandard

TIMEANDFREQUENCY:

TheoryandFundamentals

ByronE.Blair,Editor

TimeandFrequencyDivision

InstituteforBasicStandards

\J ,$,NationalBureauofStandards

Boulder,Colorado-80302

JUL101974

U.S.DEPARTMENTOFCOMMERCE,FrederickB.Dent,Secretary NATIONALBUREAUOFSTANDARDS,RichardW.Roberts,Director

IssuedMay1974

LibraryofCongressCatalogNumber:73-600299

NationalBureauofStandardsMonograph140

Nat.Bur.Stand.(U.S.),Monogr.140,470pages(May1974)

CODEN:NBSMA6

^6-19^ ForsalebytheSuperintendentofDocuments.U.S.GovernmentPrintingOffice.Washington,D.C.20402 (OrderbySDCatalogNo.C13.44:140).Price$8.65

StockNumber0303-01202

ABSTRACT

ThisisatutorialMonographdescribingvariousaspectsoftimeandfrequency(T/F).Included arechaptersrelatingtoelementalconceptsofprecisetimeandfrequency;basicprinciplesofquartz oscillatorsandatomicfrequencystandards;historicalreview,recentprogress,andcurrentstatus ofatomicfrequencystandards;promisingareasfordevelopingfutureprimaryfrequencystandards; relevanceoffrequencystandardstootherareasofmetrologyincludingaunifiedstandardconcept; statisticsofT/FdataanalysiscoupledwiththetheoryandconstructionoftheNBSatomictime scale;anoverviewofT/Fdisseminationtechniques;andthestandardsofT/FintheUSA.The Monographaddressesboththespecialistinthefieldaswellasthosedesiringbasicinformation abouttimeandfrequency-TheauthorstracethedevelopmentandscopeofT/Ftechnology,its improvementoverperiodsofdecades,itsstatustoday,anditspossibleuse,applications,and developmentindaystocome. Keywords:Accuracy;Allanvariance;atomicfrequencystandards;atomictimescales;AT(NBS); BIH;buffergases;CCIR;clockensembles;clocks;crystalaging;Csfrequencystandard;dissemi- nationtechniques;figureofmerit;flickernoise;frequencydomain;frequencystability;frequency standards;frequency/timemetrology;hydrogenmaser;leapseconds;Loran-C;magneticreso- nance;masers;NBS-III;NBS-5;NBS/USNOtimecoordination;Omega;opticalpumping;pre- cision;quartzcrystaloscillators;radioT/Fdissemination;Rbfrequencystandards;satelliteT/F dissemination;short-termstability;SIUnits;TAI;televisionT/Fdissemination;thalliumbeam standards;time;timedispersion;timedomain;time/frequencystatistics;timescalealgorithm;time scales;"unifiedstandard";URSI;USAstandardtimezones;UTC(NBS);UTC(USNO).

PreparationofthisdocumentwassupportedinpartbytheDirectorateofCommunicationsEngineering,COMSEC/DataSystemsDivision,AirForceCommunications

Service.

in

FOREWORD

ItisindeedfittingthatatimeandfrequencyMonographshouldappearnow.Theyear1973 marksthe50thAnniversaryofthetransmissionofstandardradiofrequenciesonaregularly announcedschedulefromWWVatWashington,DC;the25thAnniversaryoftimeandfrequency broadcastsfromWWVHinHawaii;andthe25thAnniversaryofthefirstlaboratoryoperationofan atomicclock(attheNationalBureauofStandards,Washington,DC).Thatthefieldoftimeand frequencyisslowlyemergingasaspecialtytechnologyisnotsurprisingintoday'sworldoftime- referencedmeasurementsandsystemssuchasthoserequiredfornavigationandcommunication. Itisparadoxicalthattime,relatedcenturiesagosolelytothedailyapparentmovementofthesun, waterclocks,mechanicalinstruments,andthelike,shouldbeatthecenterofthiscomplexfield. Nevertheless,itisbecomingapreciseandimportantscientificdiscipline,incombinationwith elementsofphysics,chemistry,quantummechanics,electronics,radiopropagation,andstatistics toformatomicfrequencygenerators,timescales,andvariedtechniquesofdissemination. Theurgentdemandsofscientificendeavors,requiringprecisionmeasurementsinthe1950's, ledtheNationalBureauofStandards(NBS)topublishHandbook77 - athreevolumepublication ofPrecisionMeasurementandCalibration;oneofthesevolumes - ElectricityandElectronics containedasmalltimeandfrequencysection.Withtheadvanceinthe1960'sofscientificmeth- odology,standardsofmeasures,andcomplexexperimentaltechniques,NBSpublishedanew seriesofPrecisionMeasurementandCalibrationinsomeelevenvolumes - VolumeVofthis SpecialPublication300wasdevotedentirelytopapersonFrequencyandTimepublishedinthe

1960's.ThepresentMonographresultsfromrecommendationsofrecentTimeandFrequency

DivisionAdvisoryPanelstopublishcurrentinformationthatwouldbe"basic,understandable,and practical."ThePanelswereconcernedthatthegainsandutilityoftimeandfrequencytechniques bemadereadilyavailabletobothnewandexperiencedworkersinthefieldinatutorialandcompre- hensiblemanner.ThathasbeentheobjectiveoftheauthorsofthisMonograph. TheInstituteforBasicStandards(IBS),oneoffourInstitutesoftheNBS,isgiventhefollowing responsibility - it"shallprovidethecentralbasiswithintheUnitedStatesofacompleteandcon- sistentsystemofphysicalmeasurement;coordinatethatsystemwithmeasurementsystemsofother nations;andfurnishessentialservicesleadingtoaccurateanduniformphysicalmeasurements throughouttheNation'sscientificcommunity,industry,andcommerce."1Assuch,IBSisatthe centeroftheNationalMeasurementSystemwithaprimarygoalofcompatibilityamongstandards; i.e.,everyuserinameasurementsystemexpectstoobtainthesamevalueofameasurementbased onthesamereference,butindependentofthemeans.ApersondesiringtimemaylistentoWWVby radio,dialthetelephonetimenumber,orrecordasatellitetimesignal.Thedegreeofaccuracymay varybuttheinformationisrelatedtoacommonsourceandiscompatible. Ishouldemphasizethatthemajoreffortofthisworkistodescribebasicprinciplesandprac- tices;itisoflittleusetomaintainandupdatemeasurementstandardswithoutpublicizingtheir construction,theoryofoperation,capabilities,andmannerofuse.Wesincerelyhopethatthis Monographwillbecomeavaluablesourcebookofinformationtothepracticing"timeandfre- quency"specialistaswellastothosenewinthefieldseekinganunderstandingofcompatibility amongNationalandInternationaltimeandfrequencystandardsandtimescales,telecommunica- tion/navigationsystems,andvarieddisseminationtechniques.Itisequallyimportantthatthe materialmightstimulatenewideasandapplications,whichofthemselveswouldbroadenthedepth andscopeoftimeandfrequencytechnology.

E.Ambler,Director

InstituteforBasicStandards

NationalBureauofStandards

May8,1973

1U.S.DepartmentofCommerce,DepartmentalOrganizationalOrder30-2B,NBSMissionStatements,June12,1972(seeann.ll.A-chap.11).

IV

PREFACE

"NationalBureauofStandardsTime...ThisisradiostationWWV,FortCollins,Colorado broadcastingoninternationallyallocatedstandardcarrierfrequenciesof2.5,5,10,15,20and25 MegaHertz,providingtimeofday,standardtimeinterval,andotherrelatedinformation..." Behindsuchperiodicradioannouncementslieasubstantiveandstate-of-the-arttechnology whichhasadvancedtremendouslythelastseveraldecades.ItistheobjectiveofthisMonograph togivecomprehensivepicturesofvariousaspectsoftimeandfrequencystandardsintermsofthe past,presentandfuture.Assuch,wetrustitwillserveasatutorialreferencebookbyprovidinga historicalbackground,thepresentcapabilities,andthefuturepotentialofthepreciseandaccurate time-keepingtechnology. Thesubjectmatterispresentedin11majorchaptersofreprinted,updated,andnewmaterial authoredbystaffmembersoftheNBSTimeandFrequencyDivisionandseveralotheragencies, suchastheU.S.NavalObservatoryandtheU.S.ArmyElectronicsCommand.Chapter1describes basicconceptsoftime,frequency,andtimescalesincludingtheInternationalAtomicTime(TAI) scale.Followingbasictimeaspectsarechaptersdescribingcrystaloscillators,fundamentalprin- ciplesofatomicfrequencystandards,andboththehistoricaldevelopmentandrecentprogressin realizingvarioustypesofatomicfrequencystandards.Chapter5detailsimprovementsincesium beamstandardsattheNationalBureauofStandards(NBS)includingabriefdescriptionofthenew NBS-5;thisfrequencystandardshowsatentativepotentialaccuracyof2partsin1013whichis equivalenttoalossofasecondin~160,000years.(Needlesstosay,aclockwillnotrunsucha lengthoftime.However,thecurrentstateofthearttodayrequires6fxsinayearwhichisthesame relativeaccuracy.) Nextaretwochapterswhichprojectone'sthinkingtofuturepossibilities;oneofthesede- scribesareasofpromisefordevelopingtomorrow'sprimaryfrequencystandardswhilethesecond relatesfrequencystandardstoareasofmetrologywhichmightincludeaunifiedstandardfor frequency,time,andlength.Chapter8presentsbasicprinciplesofstatisticsusefulforanalyzing timeandfrequencydataandfordescribingthequalityofsuchmeasurements.Thisisfollowedby achapterwhichdepictsindetailboththetheoryandformationoftheNBSatomictimescaleAT (NBS).AT(NBS)isoneofseveninputstotheTAIscalemaintainedbytheBureauInternational d'Heure(BIH)inParis,France. Ifalaboratorymaintainsastate-of-the-artfrequencystandardandtimescale,suchstandards areofsmallvalueunlesstheycanbemadeavailablereadilytodistantusers.Chapter10describes variousdisseminationtechniquesforbridgingthegapbetweenafrequencystandardandvaried classesoftimeandfrequencyusers.TheMonographconcludeswithChapter11,ajointpaperof theNBSandUSNO,whichdepictsthestandardsoftimeandfrequencyintheUSA;thechapter detailsandcomparesthetimekeepingmissionsandresponsibilitiesofbothorganizations.By mutualagreement,timeatbothnationallaboratoriesismaintainedwithinabout±5/asofeach other.Chapter11includesabriefdescriptionofinternationalagenciesinvolvedwithtimekeeping responsibilitiesaswellastheUniformTimeActof1966oftheUSAgivenintheU.S.Code. Therehasbeenanearnestattempttothoroughlydocumenteachchapterwithacomplete referencelisting.Inmanyinstancesaselectedbibliographyalsohasbeenincludedtoaidareader seekingadditionalinformationinthegivensubjectareas.Wehaveattemptedtobeconsistentand completeinlistingthereferences;journaltitleabbreviationsarethosegiveninthe1961Chemical Abstracts - ListsofPublicationsorthe1966RevisedandEnlargedWordAbbreviationListfor USAZIZ39.5-1963 - AmericanStandardforPeriodicalTitleAbbreviations.Manyofthebiblio- graphiclistingscanbeseenatpublicoruniversitylibraries.NBSTechnicalNotesandpublications withaUSGPOnotationmaybepurchasedfrom: V

SuperintendentofDocuments

U.S.GovernmentPrintingOffice

Washington,DC20402.

ReferencesshowinganADorNaccessionnumberandaNTISnotationareavailableatreproduc- tioncostsfromtheNationalTechnicalInformationServiceasfollows:

NationalTechnicalInformationService

U.S.DepartmentofCommerce

5285PortRoyalRoad

Springfield,VA22150.

Limitedreprintsofresearcharticlesandreportsareavailableusuallyfromindividualauthors. Wehavetriedtomaintainconsistencyintheuseofsymbolsortheirequivalentsinallchapters; definitionsaregivenintheGlossaryofSymbols - AnnexAofChapter8.Toaidreadersunfamiliar withlettersymbolsinthetimeandfrequencyfield,wehaveaddedanabbreviationfistingwhich followsthesubjectindex. Arapidlyincreasingnumberoftechnologiesanddisciplinesareemployingtimeandfrequency techniques.Includedareareassuchasnationaldefense,telecommunications,publicsafety, electricutilities,navigation,highspeeddata-computingnetworks,etc.Therearealsoindications thatalargenumberofsystemsindependentlygenerateanddisseminatetheirowntimeandfre- quencyinformation,largelythroughuseoftheradiospectrum.Wewouldpointoutthattheradio spectrummightbeconservedtoalargeextentifbothcommunicationandnavigationsystemswere designedtoincludesynchronizationpulseformatsconvenientforT/Fdisseminationwithoutcom- promisingprimarysystemconcerns.Bythesametoken,asystemdesignerbettercanaccommodate afrequencydisseminationfunctionthroughreferencingsystemfrequenciestorecognizednational frequencystandardsandchoosingconvenientsubsystemfrequencieswherefeasible. Theeditorwishestogratefullyacknowledgethecooperationandpatienceofthemanyauthors whohavecontributedtothisMonograph.ConsiderablehelpandsuggestionsweregivenbyDr. YardleyBeers,Mr.RogerEaston,Mr.DonaldHammond,Dr.RichardKlepsynski,Dr.Allan Mungall,Dr.DavidWait,Dr.BernardWieder,andmanystaffmembersoftheTimeandFrequency Division.CreditalsomustbegivenbothtotheNBSVisualInformationGroupforthemanydis- tinctiveillustrationsinthisbookandtotheNOAALibrarypersonnelforhelpinlocatingand verifyingmanyreferencecitations.LastbutnotleastspecialthanksaredueMrs.SharonErickson forherdiligenceandeffortinprocessingthefinalcopyofthispublication. TheauthorstrustthattheMonographwillprovehelpfulintheunderstandingoftheintriguing andeverchangingfieldoftimeandfrequency;theywouldwelcomesuggestions,commentsand/or questionsaboutthesubjectmaterial. Timemoveson;theWWVbroadcastproclaims"atthetonehours,minutes

GreenwichMeanTime."

ByronE.Blair,Editor

NationalBureauofStandards

Boulder,Colorado80302

April23.1973

VI

Contents

Page

Abstract'Ill

ForewordIV

ErnestAmbler,Director,InstituteforBasicStandards,NBS,Washington,DC20234

PrefaceV

ByronE.Blair,TimeandFrequencyDivision,NBS,Boulder,CO80302CHAPTER1.BASICCONCEPTSOFPRECISETIMEANDFREQUENCY1

JamesA.Barnes,TimeandFrequencyDivision,NBS,Boulder,CO80302

Introduction3

Clocksandtimekeeping3

Basicconceptsoftime4

Timescales4

InternationalAtomicTime(TAI)Scale10

Theconceptsoffrequencyandtimeinterval10

Usesoftimescales11

Conclusions13

References13

Bibliography14

AnnexA - DefinitionsofthesecondandTAI15

AnnexB - Standardfrequencyandtimebroadcastagreements29 AnnexC - Resultsof6thSessionofConsultativeCommitteeforDefinitionoftheSecond (CCDS)37CHAPTER2.PARTA-STATEOFTHEART-QUARTZCRYSTALUNITSANDOSCILLATORS41 EduardA.Gerber,ElectronicsComponentsLaboratory,U.S.ArmyElectronicsCommand,Ft. Monmouth,NJ07703,andRogerA.Sykes,BellTelephoneLaboratories,Inc.,Allentown,PA 18103

Introduction43

Quartzcrystalunits44

Frequencystabilityasafunctionof

Temperature48

Time(aging)48

Stress,vibrationandacceleration50

Drivelevel50

Nucleareffects51

Quartzcrystalcontrolledoscillators52

Conclusions55

PARTB-PROGRESSINTHEDEVELOPMENTOFQUARTZCRYSTALUNITSANDOSCIL-LATORSSINCE196657 EduardA.Gerber,ElectronicsTechnologyandDevicesLaboratory,U.S.ArmyElectronics Command,Ft.Monmouth,NJ07703,andRogerA.Sykes,formerlywithBellTelephoneLabora- tories,Inc.,Allentown,PA18103

Introduction59

Quartzcrystalunits59

Frequencystabilityasafunctionof

Temperature60

Time(aging)61

Stress,vibrationandacceleration61

Drivelevel61

Quartzcrystalcontrolledoscillators62

Conclusionsandpossiblefuturedevelopments62

References63CHAPTER3.THEPHYSICALBASISOFATOMICFREQUENCYSTANDARDS65 AllanS.Risley,TimeandFrequencyDivision.NBS.Boulder.CO80302

Introduction67

Atomicenergylevels67

Theinteractionbetweenatomsandelectromagneticradiation71

Choosingasuitableatom73

Thethreemajorexamplesofatomicfrequencystandards78

Summary83

References84

Bibliography84CHAPTER4.PARTA-AHISTORICALREVIEWOFATOMICFREQUENCYSTANDARDS85 RogerE.Beehler,FrequencyandTimeDivision,Hewlett-PackardCompany,PaloAlto,CA94304 (nowwithTimeandFrequencyDivision,NBS,Boulder,CO80302.)

Introduction87

Developmentofbasictechniques87

Applicationsofbasictechniquestothedevelopmentofspecifictypesofatomicfrequency standards93

Conclusions99

References99

VII PagePARTB-RECENTPROGRESSONATOMICFREQUENCYSTANDARDS101 RogerE.Beehler,TimeandFrequencyDivision,NBS.Boulder.CO80302

Introduction103

Laboratorycesiumstandards103

Hydrogenstandards105

Commercialcesiumstandards107

Commercialrubidiumstandards108

References108CHAPTER5.PARTA-IMPROVEMENTSINATOMICCESIUMBEAMFREQUENCYSTANDARDSATTHENATIONALBUREAUOFSTANDARDSIll

DavidJ.Glaze,TimeandFrequencyDivision,NBS.Boulder,CO80302

Introduction113

ModificationstotheNBS-IIISystem113

AccuracycapabilityofNBS-III(1969)115

Someimmediategoals116

Conclusions116

References117PARTB-THENEWPRIMARY'CESIUMBEAMFREOUENCYSTANDARD:NBS-5.... '. '. '.119 DavidJ.Glaze,HelmutHellwig,StephenJarvis,Jr.,ArthurE.Wainwright,andDavidW.Allan.

TimeandFrequencyDivision.NBS,Boulder,CO80302

Introduction121TheNBS-5system121

Preliminaryexperimentalresults(statusApril1973)122 References124CHAPTER6.AREASOFPROMISEFORTHEDEVELOPMENTOFFUTUREPRIMARYFREQUENCYSTANDARDS125 HelmutHellwig,TimeandFrequencyDivision,NBS,Boulder,CO80302

Introduction127

Effectsonfrequency:particleinterrogation127

Effectsonfrequency:particleconfinement129

Effectsonfrequency:particlesandparticlepreparation130 Existingconceptsforquantumelectronicfrequencystandards131

Frequencystabilityforonesecondaveraging133

Accuracycapability133

Conclusions134

References135CHAPTER7.ACCURATEFREQUENCYMEASUREMENTS:RELEVANCETOSOMEOTHERAREASOFMETROLOGY137 HelmutHellwigandDonaldHalford,TimeandFrequencyDivision,NBS,Boulder,CO80302

Introduction139

Accuratefrequencymeasurements:principlesandmethods140

Surveyofaccuratefrequencymeasurements142

Significanceandimpactofaccuratefrequencymeasurements144

Summary145

References146

Selectedbibliography:futuretrendsinaccuratefrequency/timemetrology148 CHAPTER8.STATISTICSOFTIMEANDFREQUENCYDATAANALYSIS151 DavidW.Allan,JohnH.Shoaf,andDonaldHalford,TimeandFrequencyDivision,NBS,Boulder,CO80302

Introduction153

Definitionsandfundamentals153

Characterizationoffrequencystability154

Requirementsforameasureoffrequencystability155

Conceptsoffrequencystability156

Thedefinitionofmeasuresoffrequencystability(SecondMonerttype)156

Translationsamongfrequencystabilitymeasures159

Examplesofapplicationsofpreviouslydevelopedmeasures161 Measurementtechniquesforfrequencystability162Summaryoffrequencystabilitymeasures165 Practicalapplicationsoffrequencystabilityspecificationandmeasurements165 Terminologyforspecificationoffrequencystability165

Comparisonofmeasurementtechniques167

OperationalsystemsformeasurementoffrequencystabilityatNBS(highfrequencyregion)168 OperationalsystemsformeasurementoffrequencystabilityatNBS(microwaveregion)171

Conclusions/summary175

References175

AnnexA - Glossaryofsymbols176

AnnexB - Translationofdatafromfrequencydomaintotimedomainusingtheconversionchart (table8.1)178 AnnexC - Spectraldensities:frequencydomainmeasuresofstability178 VIII Pane

AnnexD - Asamplecalculationofscript=Sf180

AnnexE - AsamplecalculationofAllanVariance,o-^(t)181 AnnexF - Computingcounterprogramusinganefficientoverlappingestimatorfor(o-'^(/V=2,

T,r,fh))il2182

AnnexG - Selectedfrequencystabilityreferences:bibliography182 AnnexH - Detailedprocedureforcalibratingmicrowave(frequencystability)measurement system187 AnnexI - Measurementprocedurefordeterminingfrequencystabilityinthemicrowaveregion...188 AnnexJ - Tablesofbiasfunction,B\andB>.forvariancesbasedonfinitesamplesofprocesses withpowerlawspectraldensities190

Table8.1 - Stabilitymeasureconversionchart166

CHAPTER9.THENATIONALBUREAUOFSTANDARDSATOMICTIMESCALE:GENERATION,

STABILITY,ACCURACY,ANDACCESSIBILITY205

DavidW.Allan,JamesE.GrayandHowardE.Machlan,TimeandFrequencyDivision,NBS,

Boulder.CO80302

Introduction.-207

Basictimeandfrequencyconsiderations208

Clockmodeling208

TheAT(NBS)timescalesystem214

TheUTC(NBS)coordinatedscale220

UTC(NBS)accessibility221

TheInternationalAtomicTimeScale(TAI)223

Conclusions223

References224

AnnexA - Optimumfiltersforvariousnoiseprocesses(Eq(9.19))225 AnnexB - TimedispersionwithrecursivefilterappliedtoflickernoiseFM226 AnnexC - Mini-computerprogramforfirstordertimescalealgorithm227

AnnexD - Selectedbibliographyontimescalesandtheirformation230CHAPTER10.TIMEANDFREQUENCYDISSEMINATION:ANOVERVIEWOFPRINCIPLESANDTECHNIQUES233

ByronE.Blair,TimeandFrequencyDivision,NBS,Boulder,CO80302

Introduction235

Disseminationconcepts235

Radiodisseminationoftimeandfrequency239

Disseminationoftimeandfrequencyviaportableclock290TFDviaothermeans294

T/Fuserandsystemevaluation299

Conclusions302

References303.

AnnexA - Characteristicsofradiofrequencybands4through10310a AnnexB - Characteristicsofstandardfrequencyandtimesignalsinallocatedbands311 AnnexC - Characteristicsofstabilizedfrequencyandtime-signalemissionsoutsideallocated frequencyassignaments312 AnnexD - Characteristicsoffrequencystabilizednavigationsystemsusefulfortime/frequency comparisons313CHAPTER11.THESTANDARDSOFTIMEANDFREQUENCYINTHEUSA315 JamesA.Barnes,TimeandFrequencyDivision,NBS,Boulder,CO80302,andGemotM.R. Winkler,TimeServiceDivision,USNO,Washington,DC20390

Introduction317

Timescales - termsofreference317

Timeandfrequency(T&F)activitiesoftheNationalBureauofStandardsandtheU.S.Naval

Observatory318

Internationalorganizationsinvolvedinstandardtimeandfrequency323

Thelegaldefinitionof"standardtime"325

Summary325

References325

AnnexA - NBSenablinglegislation329

AnnexB - USNOauthorizingdocuments347

AnnexC - NBStimeandfrequencyresponsibilities359

AnnexD - USNOprecisetimeandtimeinterval(PTTI)responsibilities363

AnnexE - NBS/USNOtimecoordination/services377

AnnexF - Treatyofthemeter385

AnnexG - Legaldocumentsconcerning"standardtime"389

SubjectIndex415

TimeandFrequencyAbbreviationListing458

CHAPTER1

BASICCONCEPTSOFPRECISETIMEANDFREQUENCY*

JamesA.Barnest

Contents

Page

1.1.Introduction3

1.2.ClocksandTimekeeping3

1.3.BasicConceptsofTime4

1.4.TimeScales4

1.4.1.UniversalTime(UTO)5

1.4.2.UniversalTime1(UT1)6

1.4.3.UniversalTime2(UT2)6

1.4.4.EphemerisTime(ET)6

1.4.5.AtomicTime(AT)7

1.4.6.CoordinatedUniversalTime(UTC)Priorto19728

1.4.7.TheNewUTCSystem8

1.4.8.ComparisonsofTimeScales9

1.4.8.1.ReliabilityandRedundancy9

1.5.InternationalAtomicTime(TAI)Scale10

1.6.TheConceptsofFrequencyandTimeInterval10

1.6.1.TimeIntervalandTimeScales11

1.7.UsesofTimeScales11

1.7.1.TimeScalesforSystemsSynchronizationUses11

1.7.2.TimeScalesforCelestialNavigationandAstronomicalUses11

1.8.Conclusions13

1.9.References13

1.10.Bibliography14

Annexl.A.DefinitionoftheSecondandTAI15

Annexl.B.StandardFrequencyandTimeBroadcastAgreements29 Annexl.C.Resultsof6thSessionofConsultativeCommitteeforDefinitionoftheSecond (CCDS)37 •ManuscriptreceivedJanuary9,1973.

tTimeandFrequencyDivision,InstituteforBasicStandards,NationalBureauofStandards,Boulder,Colorado80302.

1 "Whatistime?Theshadowonthedial,thestrikingoftheclock,the runningofthesand,dayandnight,summerandwinter,months,years, centuries - thesearebutarbitraryandoutwardsigns,themeasureof time,nottimeitself..."

Longfellow,

Hyperion,Bk.ii,Ch.6.

Thischapterdescribessomeelementsoftimekeepingandgivesbasicconceptsoftimeand frequencysuchasdate,timeinterval,simultaneityandsynchronization.Thischapterdetailscharacter- isticsofnumeroustimescalesincludingastronomical,atomic,andcompromisesofboth.Theuni- versaltimescalesarebasedontheapparentmotionofthesuninthesky.whileatomictimescales arebasedontheperiodicfluctuationsofaradiosignalinresonancewithacertainspeciesofatoms. ThechapterincludesadescriptionoftheUTCtimescalebothbeforeandafterJanuary1,1972,and delineatesrequirementsofanInternationalAtomicTimescale. Keywords:Atomictime;clocks;ephemeristime;frequency;navigation/time;TAIscale;time;time interval;timescales;universaltime;UTCsystem. 2

1.1.INTRODUCTION

Themeasurementoftimeisabranchofscience

withaverylonghistory[1,2,3].

1Forthisreason,it

isdifficulttounderstandthecurrentoperationsof timeandfrequencymeasurementswithoutsome background.Thischapterpresentsabriefhistory ofthescientificandengineeringaspectsoftimeand frequency.Thediscussioncommenceswithabasic considerationofclocksandconceptsinvolvedin timemeasurements.Timescalesaredescribedand delineatedaseitherastronomical,atomic,orcom- promisesthereof.Universaltimescalesarebased ontheapparentmotionofthesuninthesky,while atomictimescalesarerelatedtoperiodicfluctua- tionsofaradiosignalinresonancewithacertain speciesofatoms.Thischapterincludesadescrip- tionoftheUTCsystemwhichcommencedJan- uary1,1972.Characteristicsandrequirementsof anInternationalAtomicTime(TAI)2scaleindicate thattheatomictimescaleoftheBureauInter- nationaldel'Heure(BIH)isalogicalchoice.How- ever,theTAIscalewillnotreplacesomeofthe needsforastronomicaltimescaleswhichareneces- saryforearthposition.Thereaderisreferredto

Chapter9fordetailsofconstructingandmaintain-

inganatomictimescale. 10 100

1.)PRIMARYDATAFROMWARD[41

,

MARRIS0N[5],&FRASER[12]

.

2.)INTENTISTOSHOWBENCH-MARKSOFPROGRESS.VARIOUSCLOCKTYPESCANSHOWIMPR0VE0ACCURACIES.

3.)PRIORTO1000A.D.VARIEDTIMEKEEPERSWEREUSED

SUCHASMECHANICAL

WATERCLOCKS,N0CTURNIALS,SUNDIALS,TIMECANDLES

,

ETC.,OFLITTLEKNOWN

ACCURACY.

CESIUMCESIUMATOMIC|ATOMIC(IMPR0VED"(NBS-5EST)

NBSIII)I

BAROMETRIC

COMPENSATION

(ROBINSON)

PENDULUM(HUYGEN•IMPROVEDESCAPEMENT

(GRAHAM )

CROSS-BEAT

ESCAPEMENT

(BURGI )

VERGESF0LI0T

BALANCECLOCKS

14001600

CALEN0ARYEARS,A.D.

Fig.1.1.Progressintimekeepingaccuracy.

1.2.CLOCKSANDTIMEKEEPING

Inearlytimes,thelocationofthesuninthesky

wastheonlyreliableindicationofthetimeofday.

Ofcourse,whenthesunwasnotvisible,onewas

unabletoknowthetimewithmuchprecision.Peo- pledevelopeddevices(calledclocks)tointerpolate betweencheckswiththesun.Thesunwassortof a"masterclock"thatcouldbereadwiththeaidofa sundial.Anordinaryclock,then,wasadeviceused tointerpolatebetweencheckswiththesun.Thedif- ferentclockdevicesformaninterestingbranchof history;wewillnotreviewthemtoanyextenthere excepttopointouttheirgaininaccuracyovera periodofyearsasshowninfigure1.1andtorefer thereadertotheworksofWard,Marrison,andHood [4,5,6].(Timekeepinghasshownnearly10orders ofmagnitudeimprovementwithinthelast6cen- turieswithabout6ordersoccurringwithin70years ofthe20thcentury.)Thus,aclockcouldbea"pri- maryclock"likethepositionofthesuninthesky,or itcouldbeasecondaryclockandonlyinterpolate betweencheckswiththeprimaryclockortime standard.Historically,somepeoplehaveusedthe word"clock"withtheconnotationofasecondary timereferencebuttodaythisusagewouldbetoo restrictive.

1Figuresinbracketsindicatetheliteraturereferencesattheendofthischapter.

2The6thSessionoftheConsultativeCommitteefortheDefintionoftheSecond

recommendsthatInternationalAtomicTimebedesignedbyTAIinalllanguages(July

1972).

Whenonethinksofaclock,itiscustomaryto

thinkofsomekindofpendulumorbalancewheel andagroupofgearsandaclockface.Eachtimethe pendulumcompletesaswing,thehandsoftheclock aremovedapreciseamount.Ineffect,thegearsand handsoftheclock"count"thenumberofswingsof thependulum.Thefaceoftheclock,ofcourse,is notmarkedoffinthenumberofswingsofthepen- dulumbutratherinhours,minutes,andseconds.

Oneannoyingcharacteristicofpendulum-type

clocksisthatnotwoclockseverkeepexactlythe sametime.Thisisonereasonforlookingforamore stable"pendulum"forclocks.Inthepast,themost stable"pendulums"werefoundinastronomy.Here oneobtainsasignificantadvantagebecauseonly oneuniverseexists - atleastforobservationalpur- poses,andtimedefinedbythismeansisavailableto anyone - atleastinprinciple.Thus,onecanobtain averyreliabletimescalewhichhasthepropertyof universalaccessibility.Inthischapter,timescale isusedtorefertoaconceptuallydistinctmethodof assigningdatestoevents.

Inaveryrealsense,thependulumofordinary,

present-dayelectricclocksistheelectriccurrent suppliedbythepowercompany.IntheUnited

Statesthepowerutilitiesgenerallysynchronizetheir

generatorstotheNationalBureauofStandards (NBS)lowfrequencybroadcast,WWVB[7].Thus, therightnumberofpendulumswingsoccureach day.Sinceallelectricclockswhicharepoweredby thesamesourcehave,ineffect,thesamependulum, theseclocksdonotgainorlosetimerelativetoeach other;i.e.,theyrunatthesamerate.Indeed,they willremainfairlyclosetothetimeasbroadcastbyWWVB(±5seconds)andwillmaintainthesame timedifferencewithrespecttoeachother(±1milli- second)overlongperiodsoftime.

Ithasbeenknownforsometimethatatomshave

characteristicresonancesor,inaloosesense,"char- acteristicvibrations."Thepossibilitytherefore existsofusingthe"vibrationsofatoms"aspendu- lumsforclocks.Thestudyofthese"vibrations"has normallybeenconfinedtothefieldsofmicrowave andopticalspectroscopy.Presently,microwaveres- onances(vibrations)ofatomsarethemostpre- ciselydeterminedandreproduciblephysical phenomenathatmanhasencountered.Thereis ampleevidencetoshowthataclockwhichuses "vibratingatoms"asapendulumwillgeneratea timescalemoreuniformthanevenitsastronomical counterparts[8,9,10].

Butduetointrinsicerrorsinanyactualclocksys-

tem,onemayfindhimselfbackinthepositionof havingclockswhichdriftrelativetoothersimilar clocks.Ofcourse,therateofdriftismuchsmaller foratomicclocksthantheoldpendulumclocks,but nonethelessrealandimportant.Ifatallpossible,one wouldliketogaintheattributeofuniversalaccessi- bilityforatomictimealso.Thiscanbeaccomplished onlybycoordinationbetweenlaboratoriesgenerat- ingatomictime.Bothnationalandinternational coordinationareinorder.

1.3.BASICCONCEPTSOFTIME

Onecanusetheword"time"inthesenseofdate.

(By"date"wemeanadesignatedmarkorpointona timescale.)Onecanalsoconsidertheconceptof timeintervalor"length"oftimebetweentwo events.Thedifferencebetweentheseconceptsof dateandtimeintervalisimportantandhasoften beenconfusedinthesingleword"time".Thissec- tionexploressomebasicideasinherentinthevarious connotationsoftime.

Thedateofaneventonanearth-basedtimescale

isobtainedfromthenumberofcycles(andfractions ofcycles)oftheapparentsuncountedfromsome agreed-uponorigin.Similarly,atomictimescalesare obtainedbycountingthecyclesofasignalinreso- nancewithcertainkindsofatoms.(Severalatomic timescales[9]havechosenthe"zeropoint"atzero hoursJanuary1,1958(UT-2),butthisisnotuni- versalamongallatomictimescalesinexistence today.)Oneofthemajordifferencesbetweenthese twomethodsisthatthecyclesofatomicclocksare much,muchshorterthanthedailycyclesofthe apparentsun.Thus,theatomicclockrequiresmore sophisticateddevicestocountcyclesthanare requiredtocountsolardays.Theimportanceof thisdifferenceisamatteroftechnologicalcon- venienceandisnotveryprofound.Oftechnological significancearethefactsthatatomicclockscanbe readwithmuchgreatereaseandwithmanythou- sandsoftimestheprecisionoftheearthclock.In additionthereadingofanatomicclockcanbepre- dictedwithalmost100,000timesbetteraccuracy thantheearthclock.

IntheU.S.literatureonnavigation,satellitetrack-

ing,andgeodesy,theword"epoch"issometimes usedinasimilarmannertotheword"date."How- ever,dictionarydefinitionsofepochshowgra- dationsofmeaningssuchastimeduration,time instant,aparticulartimereferencepoint,aswellas ageologicalperiodoftime.Thus,epochoftensimul- taneouslyembodiesconceptsofbothdateanddura- tion.Becauseofsuchconsiderableambiguityinthe word"epoch,"3itsuseisdiscouragedinpreference totheword"date,"theprecisemeaningofwhichis neitherambiguousnorinconflictwithother,more popularusage.Thus,thedateofaneventmightbe:

30June1970,14h,35m,37.278954s,UTC,forexam-

ple,whereh,m,sdenotehours,minutes,andsec- onds.(ThedesignationUTC,meaningUniversal

TimeCoordinated,willbediscussedlater.)Onthe

otherhand,"date"shouldnotbeinterchangedindis- criminatelywith"epoch"or"time."

Anotheraspectoftimeisthatofsimultaneity;i.e.,

coincidenceintimeoftwoevents.Forexample,we mightsynchronizeclocksuponthearrivalofport- ableclocksatalaboratory.Hereweintroducean additionalterm,synchronization,whichimpliesthat thetwoclocksaremadetohavethesamereadingin someframeofreference.Notethattheclocksneed notbesynchronizedtoanabsolutetimescale.Asan example,twopeoplewhowishtocommunicatewith eachothermightnotbecriticallyinterestedinthe date,theyjustwanttobesynchronizedastowhen theyusetheircommunicationsequipment.Many sophisticatedelectronicnavigationsystems(and proposedcollisionavoidancesystems)donotdepend onaccuratedatesbuttheydodependuponvery accuratetimesynchronization.Evenordinarytele- visionreceiversrequireaccuratetimesynchroniza- tion.Wethusseesomeofthecomplexitiesinvolved inconceptsoftimeandhowvariedcombinationsof timeaspectsareembodiedinandinfluencevarious time-relatedactivities.

1.4.TIMESCALES

Asystemofassigningdatestoeventsiscalleda

timescale.Theapparentmotionofthesuninthe

3Thissuggestionawaitsdefinitiverecommendationsorstatementoftermsbyparties

suchastheCCIRStudyGroup7,InterimWorkingParty7/2on"FormsofExpression forUseoftheStandard-FrequencyandTimeSignalService";InternationalCouncilof ScientificUnions;andtheIEEEStandardsCommittees,amongothers. 4 skyconstitutesoneofthemostfamiliartimescales butiscertainlynottheonlytimescale.Notethatto completelyspecifyadateusingthemotionofthesun asatimescale,onemustcountdays(i.e.,makea calendar)fromsomeinitiallyagreed-uponbeginning.

Inaddition(dependingonaccuracyneeds)one

measuresthefractionsofaday(i.e.,"timeofday") inhours,minutes,seconds,andmaybeevenfrac- tionsofseconds.Thatis,onecountscycles(and evenfractionsofcycles)ofthesun'sdailyapparent motionaroundtheearth.

Therearebothastronomicaltimescales[11]and

atomictimescales[9]whichcanprovideabasisfor precisesynchronization.Asensibleuseofthe unqualifiedword"time"istheusewhichembodies allofthesevariousaspectsoftimescales,time measurement,andeventimeinterval(orduration).

Thisistotallyconsistentwiththedictionarydefini-

tionoftheword.Thus,thestudyofsynchronization wouldbeproperlysaidtobelongtothebroader studyoftimeingeneral.Thus,itisnotonlymislead- ingbutwrongtosaythat"time"isonlydetermined byastronomicalmeans.Indeed,therearemany classesoftime - astronomicaltime,biologicaltime, andatomictime,tonameafew[12].

Timederivedfromtheapparentpositionofthe

sunintheskyiscalledapparentsolartime.Asun- dialcanindicatethefractionsofcycles(i.e.,time ofday)directly[13J.Calendars,liketheGregorian

Calendar,aidincountingthedaysandnamingthem.

Copernicusgaveustheideathattheearthspins

onitsaxisandtravelsaroundthesuninanearlycir- cularorbit.Thisorbitisnotexactlycircular,how- ever,and,infact,theearthtravelsfasterwhen nearerthesun(perihelion)thanwhenfurtherfrom thesun(aphelion).Thedetailsoftheearth'sorbit andKepler'slawof"equalareas"allowsonetosee thatapparentsolartimecannotbeauniformtime [14].Thereisalsoaneffectduetotheinclinationof theearth'saxistotheplaneofitsorbit(ecliptic plane).Apictorialdiagramofthesun-earth-moon relationshipsisshowninfigure1.2.

1.4.1.UniversalTime(UTO)

Itispossibletocalculatetheseorbitalandincli-

nationeffectsandcorrectapparentsolartimeto obtainamoreuniformtime - commonlycalledmean solartime.Thiscorrectionfromapparentsolartime MAR21

VERNALEQUINOX

APHELION

JUL5,1966

PATH

PERIHELION

JAN3,1966

LUNARORBIT

NODALLINE

PERIOD=27.32DAYS

INCLINATIONOFEARTH'S

EQUATORTOITSORBIT

(23.45°)"20°TO26°

INCLINATIONOFLUNAR

ORBITTOEARTH'SEQUATOR

18.06°TO28.1°

5°INCLINATIONOFLUNAR

EQUATORTOITSORBIT

PERIGEE=3.64x1

0 8m -EARTH-MOON

APSIDELINE"

APOGEE=4.06x10m

Fig.1.2.Sun,earth,moonrelationships.(CourtesyofA.D.Watt) 5 tomeansolartimeiscalledtheEquationofTime andcanbefoundengravedonmanypresent-day sundials[13].

Ifoneconsidersadistantstarinsteadofourstar

- thesun - tomeasurethelengthoftheday,thenthe earth'sellipticorbitbecomesunimportantandcan beneglected.Thiskindoftimeistheastronomer's siderealtimeandisgenericallyequivalenttomean solartimesincebotharebased,ultimately,onthe spinoftheearthonitsaxis - thesecondofsidereal timebeingjustenoughdifferenttogiveasidereal yearonemore"day"thanthatofasolaryear.In actualpractice,astronomersusuallyobserveside- realtimeandcorrectittogetmeansolartime.Uni- versalTime(UTO)isequivalenttomeansolartime asdeterminedattheGreenwichMeridian,some- timescalledGreenwichMeanTime(GMT).

Time,ofcourse,isessentialtonavigationindeter-

mininglongitude[15].Ineffect,anavigatorusinga sextantmeasurestheanglebetweensomedistant starandthenavigator'szenithasshowninfigure1.3.

Itisapparentthatforagivenstarthereisalocusof

pointswiththesameangle.Bysightingonanother star,adifferentlocusispossibleandobviouslythe positionofthenavigatorisatoneoftheintersections ofthetwoloci.(Athirdsightingcanremovethe ambiguity.)Thepositionofthisintersectiononthe earthobviouslydependsontheearth'srotational position.Itisimportanttoemphasizethatcelestial navigationisbasicallyconnectedtoearthposition andonlytotimebecausetheearthalsodefinesa usefultimescale. LOCAL

Fig.1.3.Principleofcelestialnavigation.

1.4.2.UniversalTime1(UT1)

Inorderforthenavigatortousethestarsfornavi-

gation,hemusthaveameansofknowingtheearth's position(i.e.,thedateontheUTscale).Thus,clocks andsextantstogetherbecamethemeansbywhich navigatorscoulddeterminetheirlocations.With navigationprovidingabigmarketfortimeandfor goodclocks,betterclocksweredeveloped,and thesebegantorevealadiscrepancyinUniversal

Timemeasuredatdifferentlocations.Thecauseof

thiswastracedtothefactthattheearthwobbleson itsaxis;thelocationofthepoleasitintersectsthe earth'ssurfaceisplottedfor1964-69infigure1.4.

Ineffect,oneseesthelocationofthepolewandering

overarangeofabout15meters.Bycomparingastro- nomicalmeasurementsmadeatvariousobserva- toriesspreadovertheworld,onecancorrectfor thiseffectandobtainamoreuniformtime - denoted

UT1[16].

Fig.1.4.Pathofearth'spole1964-1969.

1.4.3.UniversalTime2(UT2)

Withtheimprovementofclocks - bothpendulum

andquartzcrystal - itwasdiscoveredseveralyears agothatUT1hadperiodicfluctuations(ofunknown origin)withperiodsofone-halfyearandoneyear.

Thenaturalresponsewastoremovethesefluctua-

tionsandobtainanevenmoreuniformtime - UT2.

Thus,thereexistsawholefamilyofUniversalTimes

basedonthespinoftheearthonitsaxisandvarious otherrefinementsasdiagrammedinfigure1.5.In thishistoricalprogression,onenotesthatUT1isthe truenavigator'sscalerelatedtotheearth'sangular position.UT2isasmoothedtimeanddoesnotreflect thereal,periodicvariationsintheearth'sangular position.

1.4.4.EphemerisTime(ET)

Atthispointitisdesirabletogobackintime -

neartheturnofthecentury - andtracesomeother astronomicalstudies.Inthelatter19thcentury, 6

UNIVERSALTIMEFAMILY

APPARENTSOLARTIME

CORRECTEDBY

EQUATIONOFTIME|MEANSOLARTIMET

[UTO]

CORRECTEDFOR

MIGRATIONOFPOIES

At-005secfUT1

CORRECTEDFOR

KNOWNPERIODICITY

AtO.05secmUT2

Fig.1.5.Universaltimefamilyinterrelationships.

SimonNewcombecompiledasetoftables,basedon

Newtonianmechanics,whichpredictedtheposi-

tionsofthesun,themoon,andsomeplanetsforthe future.Atableofthissortiscalledanephemeris.It wasdiscoveredthatthepredictedpositionsgrad- uallydepartedfromtheobservedpositionsina fashiontoosignificanttobeexplainedeitherby observationalerrorsorapproximationsinthetheory-

Itwasnoted,however,thatifthetimeweresome-

howinerror,allthetablesagreedwell.Atthispoint itwascorrectlydeterminedthattherotationalrate oftheearthwasnotconstant.Thiswaslatercon- firmedwithquartzclocksandatomicclocks[17,18,

19].Theastronomers'naturalresponsetothiswas,

ineffect,touseNewcombe'stablesforthesunin reversetodeterminetime - actuallywhatiscalled

EphemerisTime.EphemerisTimeisdeterminedby

theorbitalmotionoftheearthaboutthesun(notby rotationoftheearthaboutitsownaxis)andshould notbeaffectedbysuchthingsascoremantleslip- pageorothergeometricalchangesintheshapeof theearth. •100

170018001900

CALENDARYEARS,A.D.

2000
Fig.1.6.TrendofUT-ETforoverthreecenturies(datafrom

Brouwer[20]).

ThevariationsinUTscalesorearthrotationrates

havebeenstudiedextensivelybyBrouwerandmany others[20,21,22].Inthischapter,weneedonly pointoutthegeneralnatureandsizeofthevaria- tionswhichhavebeenobserved.Brouwer'sstudy coveredalongperiodoftime;thecurvesshownin figure1.6summarizemuchofhisdataandanalysis.

Theyreflecttherandombehavior[23JofUT,marked

onoccasionbysuddenerraticchangessuchasseen in1963[24J.Theabscissasinfigure1.6arepropor- tionaltotheastronomicaltimescale,ET.Atpresent

ETcanbeconsidereduniformwithrespecttoAT

[25Jandisagoodcomparisonscaletobeusedin detectinglong-term(gross)propertiesofatime scale.ItisofvaluetorecognizethatBrouwerdeter- minedthattherandomprocesseswhichaffectthe rotationoftheearthonitsaxiscausedthermsfluc- tuationsinUniversalTimetoincreaseast312 ,fort greaterthanoneyear.Forperiodsoftheorderofa yearorlessitappearsthatthevariationsintheUT2 timescalecausethermsfluctuationstoincreaseas thefirstpoweroft(flickernoisefrequencymodula- tion)[26J.Thecoefficientofthislineartermisabout

2X10~9oralmostafactorof105worsethansome

cesiumclocks.Thepresentmeansofdetermination ofETarenotadequatelyprecisetoallowdefinitive statementsaboutpossiblesystematicvariationsofET[11].

1.4.5.AtomicTime(AT)

Aswaspointedoutpreviously,thedateofan

eventrelativetotheUniversalTimeScaleis obtainedfromthenumberofcycles(andfractionsof cycles)oftheapparentsuncountedfromsome agreed-uponorigin.(Dependingontheneed,one mayhavetoapplycorrectionstoobtainUTO,UT1,or

UT2.)Similarly,atomictimescalesareobtainedby

countingthecyclesofasignalinresonancewith certainkindsofatoms.

Inthelatterpartofthe1940's,HaroldLyonsat

theNationalBureauofStandardsannouncedthe firstAtomicClock[27].Duringthe1950'sseveral laboratoriesbeganatomictimescales[28.29.30].

TheBureauInternationaldel'Heure(BIH)hasbeen

maintainingatomictimeforsomeyearsnow,and thistimescalereceivedtheofficialrecognitionas

InternationalAtomicTime(TAI)oftheGeneralCon-

ferenceofWeightsandMeasures(CGPM)inOcto- ber1971[31](seeann.l.A).Beginning1January

1972,thisatomictimescalehasbeenbroadcast

(withsomemodifications)bymostcountries(see "ThenewUTCsystem"insec.1.4.7).

Inreview,wehavediscussedthreebroadclasses

oftimescalesasillustratedinfigure1.7.TheUni- versalTimefamilyisdependentontheearth'sspin onitsaxis;EphemerisTimedependsontheorbital motionoftheearthaboutthesun;andAtomicTime, whichdependsonafundamentalpropertyofatoms, isveryuniformandprecise.Becauseofthe"slow" 7

UNIVERSALTIME4

(UTO,UT1,UT2)T

MEASUREDTO3msIN1DAY

EPHEMERISTIME^

(ET)V

MEASUREDTO50msIN9YEARS

ATOMICTIME&MEASUREDTO<0.1MsIN1minT(DIFFUSIONRATESOF0.1Fs/day

FORENSEMBLESOFCLOCKS]

Fig.1.7.Classesoftimescaleswithtypicalaccuracies.

merit[33J.UTCwassupposedtoagreewithUT2to withinViosecond(V20secondbefore1963).On occasionitwasnecessarytoresettheUTCclockby

Viosecond(V20secondbefore1963)inordertostay

withinthespecifiedtolerancesasshowninfig- ure1.8.Also,byinternationalagreement[33J.the offsetsinclockratewereconstrainedtobeaninte- gralmultipleof5partsperbillion(1partperbillion before1963).Inaddition,afewstations(e.g.,WWVB)broadcastaSteppedAtomicTime(SAT) signalwhichwasderiveddirectlyfromanatomic clock(norateoffset)butwhichwasresetperiodic- ally(moreoftenthanUTC)tomaintainSATwithin aboutViosecondofUT2[34J. orbitalmotionoftheearth(1cycleperyear),meas- urementuncertaintieslimittherealizationofaccu- rateephemeristimetoabout0.05secondfora

9-yearaverage,whileUTcanbedeterminedtoa

fewthousandthsofasecondinaday,andATtoa fewbillionthsofasecondinaminuteorless.

1.4.6.CoordinatedUniversalTime(UTC)

Priorto1972

From1960through1971manybroadcasttimesig-

nals(e.g.,MSF,WWV,CHU)werebasedonatime scalecalledCoordinatedUniversalTime(UTC)[32].

TherateofaUTCclockwascontrolledbyatomic

clockstobeasuniformaspossiblefor1year,but thisratecouldbechangedatthefirstofacalendar year.TheyearlyratewaschosenbytheBIH. Table1.1liststhefractionaloffsetsinrateoftheUTCscalerelativetoapureatomictimescale.

Table1.1.FrequencyOffsetsofUTCfrom1960to1972

Offsetrateof

YearUTCinparts

per1010

1960-150

1961-150

1962-130

1963-130

1964-150

1965-150

1966-300

1967-300

1968-300

1969-300

1970-300

1971...-300

1972^future0

TheminussignimpliesthattheUTCclockranslow

(inrate)relativetoatomictime.Theoffsetinclock ratewaschosentokeeptheUTCclockinreason- ableagreementwithUT2.However,onecouldnot exactlypredicttheearth'srotationalrateanddis- crepancieswouldaccrue.Byinternationalagree-

COORDINATEDUNIVERSALTIME(UTC)

[PRIORfO1972) YEARS

UTC-AT

UI2-AI

ff =n»(50»lO"") it=1/10sec Fig.1.8.RelationshipbetweenUTCandUT2timescales - prior to1972.

1.4.7.TheNewUTCSystem

ThefactsthattheclockrateofUTChavebeen

offset(seetable1.1)fromthecorrect(atomic)rate andthatthisoffsetchangedfromtimetotimeneces- sitatedactualchangesinequipmentandofteninter- ruptedsophisticatedsystems.Astheneedsfor reliablesynchronizationhaveincreased,theoldUTCsystembecametoocumbersome.Anewcom- promisesystemwasneededtoaccountbetterforthe ever-growingneedsofprecisetimesynchronization.AnewUTCsystemwasadoptedbytheInter- nationalRadioConsultativeCommittee(CCIR)in

GenevainFebruary1971[35,36]andbecameeffec-

tive1January1972(seeann.LB).Inthisnewsys- temallclocksrunatthecorrectrate(zerooffset).

Thisleavesusinapositionofhavingtheclockrate

notexactlycommensuratewiththelengthoftheday.

Thissituationisnotunique.Thelengthoftheyear

isnotanintegralmultipleoftheday.Thisisthe originof"leapyear."Inthiscase,yearswhichare divisibleby4haveanextraday - February29 - unlesstheyarealsodivisibleby100,andthenonly iftheyarenotdivisibleby400.Thus,theyears1968,

1972,'1976,and2000areleapyears.Theyear2100

8 willnotbealeapyear.Bythismeansourcalendar doesnotgetoutofstepwiththeseasons.

Withthisasanexample,itispossibletokeepthe

clocksinapproximatestepwiththesunbytheinfre- quentaddition(ordeletion)ofasecond - calleda "leapsecond."Thus,theremaybespecialsituations wherea"minute"contains61(or59)seconds insteadoftheconventional60seconds.Thisshould notoccurmoreoftenthanaboutonceayear.By internationalagreement,UTCwillbemaintained withinabout0.7secondofthenavigators'timescale,

UT1.Theintroductionofleapsecondsallowsa

goodclocktokeepapproximatestepwiththesun.

Becauseofthevariationsintherateofrotationof

theearth,however,theoccurrencesoftheleap secondsarenotpredictableindetail.

1.4.8.ComparisonsofTimeScales

Itisofvalueincomparingtimescalestoconsider

foursignificantattributesofsometimescales: a.accuracyandprecision, b.reliability, c.universalaccessibility, d.extension.

Intheareasofaccuracyandprecision,atomic

timescaleshaveaclearadvantageovertheirastro- nomicalcounterpart.Atomicclocksmaybeableto makeareasonableapproachtothereliabilityand accessibilityofastronomicalclocks,however,astro- nomicaltimescalesarebasedona"single"clock whichisavailabletoeveryone(i.e.,onlyonesolar systemisavailableforstudy).Also,manyatomic clockscanshowdisagreements,animpossibility withonlyoneclock.Theextensionofdatestopast events(indeed,remote,pastevents)isafeature whichatomicclockswillneverpossess.Theirutility forfutureneeds,however,isquiteanothermatter.

Theneedsofthegeneralscientificcommunityand,

inparticular,thetelecommunicationsindustriesare makingevergreaterdemandsonaccurateandpre- cisetimingcoveringlongertimeintervals.Often theseneedscannotbemetbyastronomicaltime.

However,thecontinuedmotionofthesolarsystem

givesareliabilitytoastronomicaltimescaleswhich atomicclockshavenotyetattained.

Onecanimaginesynchronizingaclockwithahy-

potheticallyidealtimescale.Sometimeafterthis synchronizationourconfidenceintheclockreading hasdeteriorated.Figure1.9showstheresultsof somestatisticalstudieswhichindicatetheprobable errorsofsomeimportantclocksaftersynchroniza- tion.Therearereallytwothingsofsignificanceto noteinfigure1.9:First,AtomicTime(stateofthe art,1964)isabout10,000timesmoreuniformthan

UniversalTime,andsecond,measurementuncer-

taintytotallylimitsanyknowledgeofstatistical fluctuationsinEphemerisTime.

PROBABLECLOCKERRORS

(NON-UNIFORMITY) Fig.1.9.Probableerrorsof3clocktypesaftersynchronization.

1.4.8.1.ReliabilityandRedundancy

Inthepast,reliableoperationofatomicfrequency

standardshasbeenasignificantproblem.Presently, however,commercialunitswithaMeanTime

BetweenFailure(MTBF)exceeding1yeararenot

uncommon[37].Finiteatomsourcelifetimepre- ventsunlimitedoperationwithoutinterruption, however.

ItistruethataMTBFexceeding1yearreflects

significantengineeringaccomplishments,butthisis farfromcomparabletothehighreliabilityofastro- nomicaltime.Theobvioussolutionistointroduce redundancyintheclocksystem.Onecanusesev- eralatomicclocksinthesytemandthisshould certainlybethebestapproachinthesenseof accuracyandreliability - itisexpensive,however.

Supposethesynthesizer-countersubsystemofa

clocksystemshouldjumpasmallamountandcause adiscontinuityinitsindicatedtime.Itispossible thatsuchatransientmalfunctioncouldoccurwith nooutwardlyapparentsignsofmalfunctionofthe apparatus.Itisalsoapparentthatifonlytwoclocks areavailableforintercomparison,itisimpossibleto decidewhichclocksufferedthetransientmalfunc- tion.Thus,threeclocks(notnecessarilyallatomic) constituteanabsoluteminimumforreliableopera- tion.Ifoneormoreofthesehasanextendedprob- abledowntime(e.g.,whiletheatomsourceis replenished)then4or5clocksbecomeamorework- ableminimum. 9

Itshouldbenotedherethatonecouldassemblea

largegroupofclocksintoonesystemandthesystemMTBFcalculatedfromthe'individualMTBF's mightextendintogeologictimeintervals.Thissys- temMTBFisundoubtedlyover-optimisticdueto neglectofthepossibilitiesofcatastrophesoropera- torerrors.Nonetheless,withvariousatomicclocks spreadovertheearth,itshouldbepossibletomain- tainanatomictimescalewithareliabilitythatcould satisfyalmostanyfuturedemand.

1.5.INTERNATIONALATOMICTIME(TAI)SCALE

InrecentyearstheGeneralConferenceofWeights

andMeasures(CGPM)hasbeenencouragedto adoptanInternationalAtomicTime(TAI)scale[38] (seeann.l.A).Forsuchascaletobeofvaluethe followingattributesarerequired: a.Itmustprovidegreateraccuracyandconven- iencethantheastronomicalcounterparts. b.Itmustbehighlyreliablewithalmostno chanceofafailureoftheclocksystem.(This canbeaccomplishedbyusingmanyclocksdis- persedovertheworldbutwhichcanbeinter- comparedaccurately.) c.Theatomictimescalemustbereadilyavailable everywhere.

Indeed,allofthesepointsappeartobemorethan

adequatelycoveredbytheatomictimescaleofthe

BIH.InOctober1971theCGPMendorsedtheBIH

atomictimescaleastheInternationalAtomicTime scale[31](seeann.l.A)definedasfollows: "InternationalAtomicTimeisthetimereferencecoordi- nateestablishedbytheBureauInternationaldel'Heureon thebasisofthereadingsofatomicclocksfunctioningin variousestablishmentsinaccordancewiththedefinitionof thesecond,theS.I.Unit(InternationalSystemofUnits)of time."

TheAtomicTime(AT)scalesmaintainedinthe

U.S.(bybothNBSandUSNO)constitute~37Ya

percentofthestablereferenceinformationusedin maintainingastableTAIscalebytheBIH[39].The questionoftheaccuracyofrateoftheTAIscaleis notnowcompletelyspecified[40].Thereisaques- tionofformalaveragingproceduresforcorrecting

TAI.AspecialmeetingoftheConsultativeCommit-

teefortheDefinitionoftheSecond(CCDS)washeld inParis,France,July1972,toconsiderthestatusof atomicfrequencystandardsandimprovedrealiza- tionoftheTAI,amongotherpertinentquestions. Recommendationsofthiscommittee(6thSessionofCCDS)aregiveninAnnexl.C.

Dr.Guinot,DirectoroftheBIH,recommendeda

newmethodofcalculationofTAI.Byusingindivid- ualclockdatainplaceoflocaltimescalesfromvar- iouslaboratories,improvedweightingofclockdata isanticipated[40].Someadvantagesoftheindivid- ualclockprocedurehepointedoutareasfollows: "1.Mostofthelocaltimescalesarebasedonasmallnum- berofclocks.IrregularitiesofTAIareduetochangesof frequenciesofcertainTA(i)whichcannotbeseenatthelocal levelwhenthenumberofstandardsineffectiveusehastobe lessthan3.Thishappensfrequently.Inaglobaltreatment, suchirregularitieswouldbevisible.

2.Isolatedstandardscouldbeemployed.Forexample,at

least12cesiumstandardsconvenientlyavailableandcom- paredtotheLoranCpulsesorTVpulsesareavailablein

Europe,notincludingthoseattheLoranCstations.

3.Thetreatmentofallthestandardswouldbeunified,

describedindetail,andunderstoodbyall.Atpresent,itis practicallyimpossibletounderstandhowTAIiscalculated sinceitisnecessarytounderstandthemethodsofeach participatinglaboratory,methodswhicharenotalways published.

4.ThedirectcalculationofTAIwouldallowacomplete

freedomtothelaboratoriesinordertoestablishtheTA(i), accordingtotheircriteria,withoutwhichtheyhavetobe preoccupiedwiththecriteriaadoptedbyTAI."

AtentativescheduleforworkoftheBIHfor

improvingTAIisgiveninAnnexl.C.Acomplete descriptionoftheconstructionofalocalatomic timescaleistreatedbyD.Allanetal.inchapter9.

TheUTCscalesoftheUSAarecoordinatedwith

UTC(BIH)towithinatoleranceofabout±10fxs.

AlloftheUTCscalesaresupposedtoagreewith

UTC(BIH)to±1millisecondbyInternational

RadioConsultativeCommittee(CCIR)agree-

ment[36].ForthosedesiringaccurateUTinforma- tion,correctionsareencodedintostandardtime broadcasts[36].Yet,evenwiththeexistenceofan

InternationalAtomicTimescale,onemustrecog-

nizethattherewillbecontinuedneedforthe astronomicaltimescales.Apersondoingcelestial navigation,forexample,mustknowearthposition (UT1).

1.6.THECONCEPTSOFFRE-QUENCYANDTIMEINTERVAL

Thefourindependentbaseunitsofmeasure-

mentcurrentlyusedinsciencearelength,mass, time,andtemperature.Itistruethat,exceptfor fieldsofsciencesuchascosmology,geology,and astronomy,timeintervalisthemostimportant concept,and(astronomical)dateisofmuchless importancetotherestofscience.Thisistruebe- causethe"basiclaws"ofphysicsaredifferential innatureandonlyinvolvesmalltimeintervals.In essence,physical"laws"donotdependuponwhen (i.e.,thedate)theyareapplied.

Basedontheselawsandextensiveexperimenta-

tion,scientistshavebeenabletodemonstratethat frequencycanbecontrolledandmeasuredwiththe smallestpercentageerrorofanyphysicalquantity.

Thefrequencyofaperiodicphenomenonisthe

numberofcyclesofthisphenomenonperunitof time(i.e.,persecond).Thenameoftheunitoffre- quencyisthehertz(Hz)andisidenticaltoacycle persecond(cps).Sincemostclocksdependupon someperiodicphenomenon(e.g.,apendulum)in orderto"keeptime,"andsinceonecanmakereli- ableelectroniccounterstocountthe"swings"of 10 theperiodicphenomenon,wecanconstructclocks withtimekeepingaccuracy(rateaccuracy)equal totheaccuracyofthefrequencystandard.

Intermsoftheadvancementoftimescales,the

historyofthedefinitionofthesecondcanbe expressedverybriefly.Priorto1956,thesecond wasdefinedasthefraction1/(86,400)ofameansolar day;from1956to1967itwastheephemerissecond dennedasthefraction1/(31556925.9747)ofthe tropicalyearatOOh00m00s31December1899,and since1967,intermsofaresonanceofthecesium atom[41](seeann.LA).Thepresentdefinition ofthesecondstates: "Thesecondisthedurationof9192631770periodsofthe radiationcorrespondingtothetransitionbetweenthetwo hyperfinelevelsofthegroundstateofthecesium - 133 atom".(13thCGPM(1967),Resolution1),[42].

Today'smostpreciseandaccurateclocksincor-

porateacesiumatomicbeamasthe"pendulum"of theclock.

1.6.1.TimeIntervalandTimeScales

Oneshouldnotesourcesofconfusionwhichcan

existinthemeasurementoftimeandintheuseof theword"second."Supposethattwoevents occurredattwodifferentdates.Forexamplethe datesofthesetwoeventswere15December1970,

15h30m00.000000sUTCand15December1970,

16h30m00.000000sUTC.Atfirstthoughtonewould

saythatthetimeintervalbetweenthesetwoevents wasexactly1hour=3600.000000seconds,butthis isnottrue.(Theactualintervalwaslongerby about0.000108seconds[3600secondsX300X10"10 ].

Seetable1.1.)RecallthattheUTCtimescale(like

alltheUTscalesandtheETscale)wasnotdefined inaccordancewiththedefinitionoftheintervalof time,thesecond.Thus,onecannotsimplysubtract thedatesoftwoeventsasassignedbytheUTC scale(oranyUTscaleortheETscale)inorderto obtaintheprecisetimeintervalbetweenthese events.Historically,thereasonbehindthisstateof affairsisthatnavigatorsneedtoknowtheearth's position(i.e.,UT1) - notthedurationofthesecond.

Yet,manyscientistsneedtoknowanexactand

reproducibletimeinterval.Notethatthismight alsobetrueofthenewUTCsystemiftheparticular timeintervalincludedoneormoreleapseconds.

Itisalsoconfusingthatthedatesassignedbythe

UT,ET,andUTCscalesinvolvethesamewordas

theunitoftimeinterval,thesecond.Foraccurate andprecisemeasurements,thisdistinctioncanbe extremelyimportant.

1.7.USESOFTIMESCALES

Thestudyoftimescalescanbedividedintothe

studyoftimescalesusedforsystemssynchroniza- tionandtimescalesusedforcelestialnavigation andastronomy.

1.7.1.TimeScalesforSystemsSynchroniza-

tionUses

Longagopeopleweresimplycontenttoletthe

sungoverntheirfives.Sunriseindicatedtimeto ariseandbeginwork;sunsetsignalledtheday'send.

Withtheadvancementofcivilization,growthof

commerceandcitylifeandtechnologicalgains, communitieswereestablishedwhichinstituted clockssettoagreeroughlywiththeapparent movementofthesun.Thusdevelopedtheideaof localtimeandeachcommunitycouldhaveitsown localtime.Clearly,whenalmostallcommunications andbusinesstransactionsoccurwithinagivencom- munityorlocale,thisisaworkablesolution.With theadventofrailroadsandhencemorerapidcom- munications,this"crazy-quilt"mazeofindividual localtimeshadtoend.Therailroadsaregenerally creditedwithunifyingthevariouslocaltimesinto timezonesinthecontinentalU.S.,resultingina muchmoreworkablenationaltimesystem.In1884 aninternationalconferencerecommendedthatthe meridianofGreenwich,Englandbethestandard referencemeridianforlongitudeandtime[43].

Longitudemeridians,each15°,represent1hour

time-zonedifferences±12hourseastandwestof

Greenwich.Figure1.10showsthestandardtime

zonesoftheworldineffecttoday.

Thisbriefhistoricalsequenceillustratesthat,as

communicationsbecomemorerapidandmorefar- reaching,thegreaterarethedemandsonanall- pervasiveandunifyingconventionofsynchronizing clockswitheachother.Thatis,thisconventionis amatterofconvenienceandthereisnothingsacred orabsoluteaboutwhatourclocksread;it'sjust importantthattheyreadthesametime(orhavea well-definedtimedifferenceasbetweenthetime zones).Inthedayswhentherailroadswerethe primarymeansoftransportationacrosstheNorth

Americancontinent,anaccuracyofafewseconds

oftimewasimportantandsufficient.Nowadays, withtheexistenceofsophisticatedtelecommunica- tionsequipmentcapableofsendingandreceiving severalmillionalphanumericcharacterseach second,therearerealneedsforclocksynchroniza- tionsataccuracylevelsofamillionthofasecond andbetter.

1.7.2.TimeScalesforCelestialNavigation

andAstronomicalUses

Aspointedoutpreviously,timeisessentialfor

celestialnavigation.Ifoneknowswhattimeitis (i.e.,solartime)atsomereferencepoint - saythe

GreenwichMeridian - andalsohislocaltimeas

indicatedbyasundial - onecanfigurehislongitude. 11 oooooooo 12 sincetheearthmakesonecompleterevolution (360°)onitsaxisinabout24hours.Forexample, noonGreenwichMeanTimeis0200HawaiianStand- ardTimeor10hoursdifferent.Thus,onecaneasily calculatethatHawaiiisabout10/24oftheway aroundtheworldfromGreenwich,England - i.e., about150°westofthePrimeMeridian.Ifthis personweretomeasuretheactualpositionofthe sunintheskyusing,say,anavigator'ssextant, thenhecouldgetaratheraccuratedetermination oflocalsolartime.Thekeyproblemisknowledge ofcorrecttimeontheGreenwichMeridian.

Nearly200yearsago,amaninEnglandnamed

Harrisonwasawarded£20,000fordesigningand

buildingachronometerwhichwouldallowthe accuratedeterminationoflongitudewhileatsea (lessthan1minuteerrorafter5monthsatsea[44]).

Untilradiosignalswereavailableintheearly1900's,

navigationatseawastotallydependentupongood clocks.Today,therearemanystandardtimebroad- caststationsintheworldwhichcanprovidetime signalsaccuratetobetterthan1secondofearth time,UT1[45].

Ifastronomicaltimecouldbemeasuredwith

sufficientaccuracyandconvenience,thenastro- nomicaltimecouldbeusedforsystemsynchroniza- tionusesalso.Inactuality,astronomicaltimeis difficulttomeasure,andaccuraciesofafew thousanthsofasecondmayberealizedonlyafter theaveragingofawholeevening'ssightingsbya sophisticatedandwell-equippedobservatory.The accuratedeterminationofUT1involvesmeasure- mentsat,atleast,twoobservatorieswidelysepa- ratedinlongitude.

1.8.CONCLUSIONS

Twoverydifferentusesfortimehavebeendis-

cussed.Thefirstisaconventionwhich,when universallyaccepted,allowsbothrapidandefficient communicationssystemstofunction.Theneeds hereareforextremelypreciseanduniformmeas- urementsoftime.Theseconduseisforcelestial navigationandastronomicalobservations.Here thereisnottheneedforhighlyprecisetime,atleast nottothesamedegreeasthefirstmentioneduse.

Becauseoftheconflictingrequirementsimposed

ontimescalesbythesetwocategoriesoftimescale users,therehasbeenagreatdealofefforttoobtain acompromisetimescalewhichadequatelyreflects therelativeimportanceofthesetwousergroups.

Asonemightwellimagine,withthegrowing

importanceandsophisticationofcommunications systemsandtheimplementationofelectronic navigationsystems(toreplacecelestialnavigation), thetrendinthecompromisetimescaleshasbeen awayfromtimescalesbasedontheearth'srotation (i.e.,astronomicaltimescales)andtowardapure atomictimescale.

Inthiscompromisescale,UTC,onefindshimself

inaratherfamiliarsituation.Thereisnotawhole numberofdaysintheyearandonedoesn'twantthe calendartogetbadlyoutofstepwiththeseasons.

Similarly,thereisnotawholenumberofseconds

inasolardayandonedoesn'twantourclocksto getbadlyoutofstepwiththesun.Thesolution (asnotedabove)isanalogoustotheleapyearwith itsextraday;wehaveanextrasecond - aleap secondwhichmustbeaddedordeletedonoccasion.

1.9.REFERENCES

[1]Needham,J.,Ling,W.,anddeSollaPrice,D.J.,Heavenly

Clockwork,254pages(TheUniversityPress,Cambridge,

London,England,1960).

[2]Jones,H.Spencer,"Themeasurementoftime,"Reportson

ProgressinPhysics,4,pp.1-26(1937)(TheUniversity

Press,Cambridge,London,England,1938).

[3]Mueller,I.I.,SphericalandPracticalAstronomyasApplied toGeodesy,pp.319-400(FrederickUngarPublishingCo.,NewYork,N.Y.10003,1969). [4]Ward,F.A.B.,TimeMeasurement,Pt.1-HistoricalReview,

60pages(H.M.S.O.,WilliamClowesandSonsLtd.,

London,England,1961).

[5|Marrison,W.A.,"Theevolutionofthequartzcrystal clock,"BellSys.Tech.J.,27,No.3,pp.510-588(July

1948).

[6]Hood,P.,HowTimeisMeasured,64pages(OxfordUni- versityPress,London,England,1955). [7]Cohn,N.,"Powersystems-timeandfrequency,"Leadsand

NorthrupTech.J.,No.7,pp.3-11(Fall1969).

[8]Lyons,H.,"Atomicclocks,"ScientificAmerican,196,

No.2,pp.71-82(February1957).

[9]Essen,L.,"Timescales,"Metrologia,4,No.4,pp.161-165 (July1969). [10]Becker,G.,"VonderAstronomischenzurAtomphysikali- schenDefinitionderSekunde,"(Fromtheastronomicalto theatomicdefinitionofthesecond.)PTB-Mitteilungen,

76,No.4,pp.315-323andNo.5,pp.415-419(August/

October1966)(inGerman).

[11]Kovalevsky,J.,"Astronomicaltime,"Metrologia,1,No.4, pp.169-180(October1965). [12]Fraser,J.T.,VoicesofTime,pp.281,296,312,401(George

Braziller,Inc.,OneParkAvenue,NewYork,N.Y.

10016,1966).

[13]Cousins,F.W.,Sundials - ASimplifiedApproachbyMeans oftheEquatorialDial,249pages(UniverseBook,Inc.,NewYork,N.Y.10016,1970). [14]Mueller,I.I.,seeRef.[3],pp.141-145. [15]Mueller,I.I.,seeRef.[3],pp.476-518. [16]Guinot,B.,Feissel,M.,andGranveaud,M.,BureauInter- nationaldeI'HeureAnnualReportfor1970,pp.37-62 (BIH,Paris,France,1971). [17]Scheibe,A.,andAdelsberger,U.,"DieTechnischen

EinrichtungenderQuarzuhrenderPhysikalisch-Tech-

nischenReichsansalt,"(Technicaldevelopmentofquartz clocksofthePTR)Hochfrequenz-technikundElektro- akustic,43,pp.37-47(February1934)(inGerman). [18]Essen,L.,Parry,J.V.L.,Markowitz,W.,andHall,R.G., "Variationinthespeedofrotationoftheearthsince1955,"

Nature{Lett.),181,No.4615,p.1054(April12,1958).

[19]Essen,L.,Parry,J.V.L.,andSteele,J.McA.,"Frequency variationsofquartzoscillatorsandtheearth'srotationin termsoftheN.P.L.cesiumstandard,"Proc.Inst.Elec.

Eng.(England),107,PartB,No.33,pp.229-234(May

1960).

[20]Brouwer,D.,"Astudyofthechangesintherateofrotationof theearth,"Astron.J.,57,No.5,pp.125-146(Septem- ber1952). 13 [21]Munk,W.H.,andMacDonald,G.D.F..TheRotationofthe

Earth,Chap.8(CambridgeUniversityPress,London,

England,1960).

[22]Sidorenkov,N.S.,"Neravnomervost'vrashscheniyazemli podannymastronomicheskikhnoblyudeniyzaperiod

1955.5-1965.0gg,"(Non-uniformityintherotationofthe

earthaccordingtothedataofastronomicobservations fortheperiod1955.5-1965.0),AstronomicheskiyJ.(USSR),

44,No.3,pp.650-662(1967-Englishtranslation,NTIS,AD667076,January1968).

[23]Blackman,R.B.,andTukey,J.W.,Th
Politique de confidentialité -Privacy policy