[PDF] 5/7/2004 CALCULUS BEYOND CALCULUS Math21a, O Knill




Loading...







[PDF] 5/7/2004 CALCULUS BEYOND CALCULUS Math21a, O Knill

7 mai 2004 · Topics beyond multi-variable calculus are usually labeled with special names like ”linear algebra”, ”ordinary differential equations”, 

[PDF] Practice Problems Developed by Jake Chipps - Beyond Calculus

Use the Fundamental Theorem of Calculus to evaluate the following expressions: Carbon-?14, how many grams are left after 2000 years?

[PDF] On Beyond Calculus - Houghton College

9 jan 2016 · On Beyond Calculus Rebekah Yates Houghton College, Houghton, NY To Infinity and Beyond Getting an Angle on the Area of Spherical 

[PDF] Leibniz â•fl Beyond The Calculus - CORE

5 jan 1991 · Grant, Hardy (1991) "Leibniz — Beyond The Calculus," Humanistic Mathematics Network Journal: Iss 6, Article 5

[PDF] 5/7/2004 CALCULUS BEYOND CALCULUS Math21a, O Knill 29272_6beyond.pdf

5/7/2004CALCULUSBEYONDCALCULUSMath21a,O.KnillINTRODUCTION.Topicsbeyondmulti-variablecalculusareusuallylabeledwithspecialnameslike"linear

algebra","ordinarydi erentialequations","numericalanalysis","partialdi erentialequations","functional

analysis"or"complexanalysis".Whereonewoulddrawthelinebetweencalculusandnon-calculustopicsis notclearbutifcalculusisaboutlearningthebasicsoflimits,di erentiation,integrationandsummation,then

multi-variablecalculusisthe"blackbelt"ofcalculus.Arethereotherwaystoplaythissport?HOWWOULDALIENSCOMPUTE?Onanotherplanet,calculusmightbetaughtinacompletelydi erent

way.Thelackoffreshideasinthecurrenttextbooko erings,whereallbooksareessentiallyclones(*)ofeach otherandwhereinnovationisfakedbyejectingneweditionseveryyear(whichofcoursehasthemainpurpose topreventtheretailofsecondhandbooks),onecouldthinkthatintherestoftheuniverse,multi-variable calculuswouldhavetobetaughtinthesameway,andwherechapter12isalwaysthechapteraboutmultiple integrals.Actually,aswewanttoshowhere,eventhehumanspecieshascomeupwithawealthofdi erent waystodealwithcalculus.Itisverylikelythatcalculustextbookswouldlookverydi erentinotherpartsof ourgalaxy.Thisweekbrokethenewsthatonehasdiscovereda5'tharmofthemilkywaygalaxy.Itis77'000 lightyearslongandshouldincreasethechancethatthereareothertextbooksinourhomegalaxy.Inthistext, wewanttogiveanideathatthecalculustopicsinthiscoursecouldbeextendedorbuiltcompletelydi erently. Actually,evennumberscanbede neddi erently.JohnConwayintroducedoncenumbersaspairsfLjRg whereLandRaresetsofnumbersde nedpreviously.Forexamplef;j;g=0andf0j;g=1,f;j0g=1,f0j1g. Theadvantageofthisconstructionisthatitallowstosee"numbers"aspartof"games".DonaldE.Knuth, (thegiantofacomputerscientist,whoalsodesigned"TeX",atypesettingsysteminwhichthistextiswritten), wroteabookcalled"surrealnumbers"inwhichtwostudents ndthemselvesonanisland.They ndastone withtheaxiomsforanewnumbersystemiswrittenanddevelopfromthatanentirelynewnumbersystem whichcontainsthereallineandmore.Thebookisauniquecase,wheremathematicaldiscoveryisdescribed asanovel.Thisissototallydi erentfromwhatweknowtraditionallyaboutnumbersthatonecouldexpect

Conwaytobeanalienhimselfiftherewerenotmanyotherproofsofhisingeniouscreativity.(*)OneofthefewexceptionsismaybethebookofMarsdenandTromba,whichisoriginal,preciseandwellwritten.

Itisunfortunatelyslightlytoomathematicalformostcalculusconsumersandsu ersfromthesamediseasethatother textbookshave:ascandalousprize.Ade nitecounterexampleisthebook"howtoacecalculus"whichisfunny, originalandcontainstheessentialstu .Anditcomesasapaperback.TogetherwithaSchaumoutlinevolume(also inpaperback),itwouldsuceasarudimentarytextbookcombination(andwouldcosttogetherhalfandweightone

fourth)ofthestandarddoorstoppers.NONSTANDARDCALCULUS.AtthetimeofLeonardEuler,peoplethoughtaboutcalculusinamoreintuitive,

butlessformalway.Forexample (1+x=n) n =e x within nitelylargenwouldbeperfectly ne.Amodern approachwhichcatchesthisspiritis"nonstandardanalysis",wherethenotionof"in nitesimal"isgivenaprecise meaning.Thesimplestapproachistoextendthelanguageandintroducein nitesimalasobjectswhichare smallerthanallstandardobjects.Wesayxyifjxyjisin nitesimal.Allnumbersaretraditionallyde ned likeorp

2are"standard".Thenotionwhichtellsthateveryboundedsequencehasanaccumulationpointis

expressedbythefactthatthereexitsa nitesetAsuchthatallx2Darein nitesimallyclosetoanelementin A.ThefactthatacontinuousfunctiononacompactsettakesitsmaximumisseenbytakingM=max a2A f(a). Whatimpressedmeasanundergraduatestudentlearningnonstandardcalculus(inaspecialcoursecompletely devotedtothatsubject)wastheeleganceofthelanguageaswellasthecompactnessinwhichtheentirecalculus storycouldbepacked.Forexample,toexpressthatafunctionfiscontinuous,onewouldsayxythen f(x)f(y).ThisismoreintuitivethantheWeierstrassde nition8>09>0jxyj<)jf(x)f(y)j< whichisunderstoodtodayprimarilybyintimidation.Toillustratethis,EdNelson,thefounderofoneof thenonstandardanalysis avors,asksthemeaningof

8>09>0jxyj<)jf(x)f(y)j<

inorderto demonstratehowunintuitivethisde nitionreallyis.Thederivativeofafunctionisde nedasthestandard partoff 0 (x)=(f(x+dx)f(x))=dx,wheredxisin nitesimal.Di erentiabilitymeansthatthisexpression is niteandindependentofthein nitesimaldxchosen.IntegrationR x a f(y)dyisde nedasthestandardpart ofP x j

2[a;x]

f(x i )dxwherex k =kdxanddxisanin nitesimal.Thefundamentaltheoremofcalculusisthe trivialityF(x+dx)F(x))=f(x)dx. Thereasonsthatpreventednonstandardcalculustogomainstreamwerelackofmarketing,badluck,being belowacertaincriticalmassandtheinitialbelievethatstudentswouldhavetoknowsomeofthefoundations ofmathematicstojustifythegame.Itisalsoquiteasharpknifeanditseasytocutthe ngertooanddoing mistakes.Thename"nonstandardcalculus"certainlywasnotfortunatetoo.Peoplecallitnow"in nitesimal calculus".Introducingthesubjectusingnameslike"hyper-reals"andusing"ultra- lters"certainlydidnothelp topromotetheideas(weusuallyalsodon'tteachcalculusbyintroducingDedekindcutsorcompleteness)but therearebookslikebyAlainRobertwhichshowthatitispossibletoteachnonstandardcalculusinanatural way. DISCRETESPACECALCULUS.Manyideasincalculusmakesenseinadiscretesetup,wherespaceisagraph, curvesarecurvesinthegraphandsurfacesarecollectionsof"plaquettes",polygonsformedbyedgesofthe graph.Onecanlookatfunctionsonthisgraph.Scalarfunctionsarefunctionsde nedontheverticesofthe graphs.Vector eldsarefunctionsde nedontheedges,othervector eldsarede nedasfunctionsde nedon plaquettes.Thegradientisafunctionde nedonanedgeasthedi erencebetweenthevaluesoffattheend points. Consideranetworkmodeledbyaplanargraphwhichformstriangles.Ascalarfunctionassignsavaluef n toeachnoden.Anareafunctionassignsvaluesf T toeachtriangleT.Avector eldassignvaluesF nm to eachedgeconnectingnodenwithnodem.Thegradientofascalarfunctionisthevector eldF nm =f n f m . Thecurlofavector eldFisattachestoeachtriangle(k;m;n)thevaluecurl(F) kmn =F km +F mn +F nk . Itisameasureforthecirculationofthe eldaroundatriangle.Acurve inourdiscreteworldisasetof pointsr j ;j=1;:::;nsuchthatnodesr j andr j+1 areadjacent.Foravector eldFandacurve ,theline integralisP n j=1 F r(j)r j+1 .AregionRintheplaneisacollectionoftrianglesT.Thedoubleintegralof anareafunctionf T isP T2R f T .Theboundaryofaregionisthesetofedgeswhichareonlysharedbyone triangle.Theorientationof isasusual.Greenstheoremisnowalmosttrivial.Summingupthecurlovera regionisthelineintegralalongtheboundary. Onecanpushthediscretisationfurtherbyassumingthatthefunctionstakevaluesina niteset.Theintegral theoremsstillworkinthatcasetoo. QUANTUMMULTIVARIABLECALCULUS.Quantumcalculusis"calculuswithouttakinglimits".Thereare indicationsthatspaceandtimelookdi erentatthemicroscopicsmall,thePlanckscaleoftheorderh.Oneof theideastodealwiththissituationistointroducequantumcalculuswhichcomesindi erenttypes.Wediscuss q-calculuswherethederivativeisde nedas D q f(x)=d q f(x)=d q (x) with d q f(x)=f(qx)f(x) .Youcan seethatD q x n =[n]x n1 ,where[n]= q n 1 q1 .Asq!1whichcorrespondstothedeformationofquantum mechanicswithh!0toclassicalmechanics,wehave[n]!n.Therearequantumversionsfordi erentiation ruleslikeD q (fg)(x)=D q f(x)g(x)+f(qx)D q g(x)butquantumcalculusismorefriendlytostudentsbecause thereisnosimplechainrule. Once,wecandi erentiate,wecantakeanti-derivatives.ItisdenotedbyRf(x)d q (x).Asweknowthederivative ofx n ,wehaveRx n dq(x)=P n a n x n+1 =[n+1]+CwithaconstantC.Theanti-derivativeofageneralfunction isaseries

Rf(x)d

q (x)=(1q)xP 1 j=0 q j f(q j x)

Forfunctionsf(x)M=x

with0 <1,theintegral isde ned.Withananti-derivative,therearede niteintegrals.Thefundamentaltheoremofq-calculusR b a f(x)d q (x)=F(b)F(a)whereFistheanti-derivativeoffstillholds.Manyresultsgeneralizetoq-calculus liketheTaylortheorem.AbookofKacandCheungisabeautifulreadaboutthat. Multivariablecalculusanddi erentialequationscanbedevelopedtoo.Ahandicapisthelackofachainrule. Forexample,tode nealineintegral,wewouldhavetode neRFd q rinsuchawaythatRrfdr q =f(r(b)) f(r(a)).Inquantumcalculus,thenaivede nitionofthelengthofacurvedependsontheparameterizationof thecurve.Surpriseswithquantumdi erentialequationsQODEd q f=fwhichisf(qx)f(x)=(q1)f(x) simpli estof(qx)=qf(x).Ithassolutionsf(x)=ax,whereaisaconstantaswellasfunctionsobtained bytakinganarbitraryfunctiong(t)ontheinterval[1;q)satisfyingf(q)=qf(1)andextendingittotheother intervals[q k ;q k+1 ]usingtherulef(q k x)=q k f(x).Thesesolutionsgrowlinearly.Wehavein nitelymany solutions. INFINITEDIMENSIONALCALCULUS.Calculusinin nitedimensionsiscalledfunctionalanalysis.Func- tionsonin nitedimensionalspaceswhicharealsocalledfunctionalsforwhichthegradientcanbede ned.The lateristheanalogueofD u f.OnedoesnotalwayshaveD u f=rfu.Anexampleofanin nitedimensional spaceisthesetXofallcontinuousfunctionsontheunitinterval.Anexampleofatwodimensionalsurfacein thatspacewouldber(u;v)=(cos(u)sin(v)x 2 +sin(u)sin(v)cos(x)+cos(v)=(1+x 2 ).Thissurfaceisactually atwodimensionalsphere.OnthisspaceXonecande neadotproductfg=Rf(x)g(x)dx. Thetheorywhichdealswiththeproblemofextremizingfunctionalsinin nitedimensionsiscalledcalculusof variations.Thereareproblemsinthis eld,whichactuallycanbeansweredwithintherealmofmultivariable calculus.Forexample:aclassicalproblemisto ndamongallclosedregionswithboundaryoflength1theone whichhasmaximalarea.Thesolutionisthecircle.Oneoftheproofswhichwasfoundmorethan100yearsago usesGreenstheorem.Onecanalsolookattheproblemto ndthepolygonwithnedgesandlength1which hasmaximalarea.ThisisaLagrangeextremizationproblemwithregularpolygonsassolutions.Inthelimit whenthenumberofpointsgotoin nity,oneobtainstheisoperimetricinequality.Otherproblemsinthe calculusofvariationsarethesearchfortheshortestpathbetweentwopointsinahillyregion.Thisshortest pathiscalledageodesic.Alsohere,onecan ndapproximatesolutionsbyconsideringpolygonsandsolving anextremizationproblembutdirectmethodsinthattheoryarebetter. GENERALIZEDCALCULUS.Inphysics,onewantstodealwithobjectswhicharemoregeneralthanfunctions.

Forexample,thevector eldF(x;y)=(y;x)=(x

2 +y 2 )hasitscurlconcentratedontheorigin(0;0).Thisis anexampleofanobjectwhichisadistribution.AnexampleofsuchaSchwartzdistributionisa"function" fwhichisin niteat0,zeroeverywhereelse,butwhichhasthepropertythatRfddx=1.Itiscalled theDiracdeltafunction.Mathematically,onede nesdistributionsasalinearmaponaspaceofsmooth "testfunctions"whichdecayfastatin nity.Onewrites(f;)forthis.Forcontinuousfunctionsonehas (f;)=R 1 1 f(x)(x)dx,fortheDiracdistributiononehas(f;)=(0).Onewouldde nethederivative ofadistributionas(f 0 ;)=f( 0 ).ForexamplefortheHeavysidefunctionH(x)=0x<0

1x>0onehas

(H;)=R 1 1 (x)dxandbecause(H; 0 )=R 1 1  0 (x)dx= 0 (0)onehas(H 0 ;)=(0)theDiracdelta function.TheDiracdeltafunctionisstillwhatonecallsameasure,anobjectwhichappearsalsoinprobability theory.However,ifwedi erentiatetheDiracdeltafunction,weobtain(D 0 ;)=(D; 0 )= 0 (0).Thisis anobjectwhichcannomorebeseenasaprobabilitydistributionandisanewtruly"generalized"function. COMPLEXCALCULUSCalculusinthecomplexiscalledcomplexanalysis.Manythingswhichareabit mysteriousintherealbecomemoretransparentwhenconsideredinthecomplex.Forexample,complexanalysis helpstosolvesomeintegrals,itallowstosolvesomeproblemsintherealplanebetter.Herearesomeplaces wherecomplexanalysiscouldhavehelpedus:to ndharmonicfunctions,onecantakeanicefunctioninthe complexlikez 4 =(x+iy) 4 =x 4 x 2 y 2 +y 4 +i(x 3 y+xy 3 )andlookatitsrealandcomplexpart.These areharmonicfunctions.Di erentiationinthecomplexisde nedasintherealbutsincethecomplexplaneis twodimensional,oneasksmore:f(z+dz)f(z)=dzhastoexistandbeequalforeverydz!0.Onewrites @ z =(@ x i@ y )=2andcomplexdi erentiationsatis esalltheknownpropertiesfromdi erentiationonthe realline.Forexampled=dzz n =nz n1 .Multivariablecalculusverymuchhelpsalsotointegratefunctions inthecomplex.Again,becausethecomplexplaneistwodimensional,onecanintegratealongpathsandthe complexintegralR C f(z)dzisactuallyalineintegral.Ifz(t)=x(t)+iy(t)isthepathandf=u+ivthen R C f(z)dz=R b a (ux 0 vy 0 )dt+iR b a (uy 0 +vx 0 )dt .Greenstheoremforexampleistheeasiestwaytoderive theCauchyintegraltheoremwhichsaysthatR C f(z)dz=0ifCistheboundaryofaregioninwhichfis di erentiable.Integrationinthecomplexisusefulforexampletocomputede niteintegrals. Onecanask,whethercalculuscanalsobedoneinothernumbersystemsbesidestherealsandthecomplex numbers.Theanswerisyes,onecandocalculususingquaternions,octonionsorover nite eldsbuteachof themhasitsowndiculty.QuaternionmultiplicationalreadydoesnomorecommuteAB6=BAandoctonions multiplicationisevennomoreassociative(AB)C6=A(BC).Inordertodocalculusin nite elds,di erentiation willhavetobereplacedbydi erences.AFinnishmathematicianKustaanheimopromotedaround1950a nite geometricalapproachwiththeaimtodorealphysicsusingaverylargeprimenumber.Theseideaswerelater mainlypickedupbyphilosophers.Itisactuallyamatteroffactthatthenaturalnumbersarethemost complexandthecomplexnumbersarethemostnatural. CALCULUSINHIGHERDIMENSIONS.Whenextendingcalculustohigherdimensions,the conceptofvector elds,functionsanddi erentiationsgrad,curl,divarereorganizedbyintroduc- ingdi erentialforms.Foraninteger0kn,de nek-formsasobjectsoftheform =P I a I dx I =P i 1 Inthreedimensions,wherewewritedx=dx 1 ;dy=dx 2 anddz=dx 3 : k=form =d =0ff x dx+f y dy+f z dz

1Mdx+Ndy+Pdz(N

x M y )dx^dy+(P x M z )dx^dz+(P y N z )dy^dz 2Adx 1 ^dx 2 +Bdx 1 ^dx 3 +Cdx 2 ^dx 3 (A z B y +C x )dx^dy^dz 3gdx 1 ^dx 2 ^dx 3 0. (ThecomputationofthecurlwasN x dx^dy+P x dx^dz+M y dy^dx+P y dy^dz+M z dz^dx+N z dz^dy= (N x M y )dx^dy+(P x M z )dx^dz+(P y N z )dy^dz.)Afteranidenti cationof0with3formsand

1with2forms(calledHodge*operation)onecanseetheexteriorderivativesasgradient,curlanddivergence:

Itisusefulalsotoclarifythenotionofasurfacebyde ningmanifolds.Manyde nitionswhichwehave seenforcurvesorsurfacescanbeextendedtomanifolds.Thedotproductcanbede nedmoregenerallyon manifoldsandleadstoatheorycalledRiemanniangeometryusedinthetheoryofgeneralrelativity.When learningrelativity,onedealswith4-dimensionalmanifoldswhichincorporatebothspaceandtime.There,the languageofdi erentialformsisalreadymandatory.Theexteriorderivativeofa1formisa2formwhichhas

6component.Anexampleofsucha2-formistheelectromagnetic eldF=dAcombining3electricand3

magneticcomponents.TheMaxwellequationsaredF=0;d 

F=I,whered

 =disde nedusingthe

Hodge*operation.Theconsequenced

 dA=Ibecomesthewaveequationd  dA=0intheabsenceofIa vectorincorporatingbothelectricchargeandcurrenti. FRACTALCALCULUS.Wehavedealtinthiscourseswith0-dimensionalobjects(points),1-dimensional objects(curves),2-dimensionalobjects(surfaces)aswellas3-dimensionalobjects(solids).Sincemorethan

100years,mathematiciansalsostudiedfractals,objectswithnon-integerdimensionarecalledfractals.An

exampleistheKochsnow akewhichisobtainedasalimitbyrepeatedstellationofanequilateraltriangleof initialarc-lengthA=3.Afteronestellation,thelengthhasincreasedbyafactor4=3.Afternsteps,thelength ofthecurveisA(4=3) n .Thedimensionislog(4=3)>1.Therearethingswhichdonomoreworkhere.For example,thelengthofthiscurveisin nite.Alsothecurvehasnode nedvelocityatallplaces.Onecanask whetheronecouldapplyGreenstheoremstillinthiscase.Insomesense,thisispossible.Afterevery nitestep ofthisconstructiononecancomputethelineintegralalongthecurveandGreenstheoremtellsthatthisisa doubleintegralofcurl(F)overtheregionenclosedbythecurve.Sinceforlargerandlargen,lessandlessregion isaddedtothecurve,theintegralRRcurl(F)dxdyisde nedinthelimit.So,onecande nethelineintegral alongthecurve.Closelyrelatedtofractaltheoryisgeometricmeasuretheory,whichisageneralization ofdi erentialgeometrytosurfaceswhicharenomoresmooth.Merginginideasfromgeneralizedfunctions anddi erentialforms,onede nescurrents,functionalsonsmoothdi erentialforms.Thetheoryisusefulfor studyingminimalsurfaces.Fractalsappearnaturallyindi erentialequationsasattractors.Themostinfamous fractalisprobablytheMandelbrotset,whichisde nedasthesetofcomplexnumberscforwhichtheiteration ofthemapf(z)=z 2 +cstartingwith0leadstoaboundedsequence0!c!c 2 +c!(c 2 +c) 2 +c:::.The boundaryoftheMandelbrotsetisactuallynotafractal.Itissowigglythatitsdimensionisactually2.One canmodifytheKochsnow aketogetdimension2too.Ifoneaddsnewtriangleseachtimesothatthelength ofthenewcurveisdoubledeachtime,thenthedimensionoftheKochcurveis2too. THEFOUNDATIONSOFCALCULUS.Woulditbepossiblethatalienssomewhereelsewouldbuildup mathematicsradicallydi erent,bystartingwithadi erentaxiomsystem?Itislikely.Thereasonisthat alreadyweknowthatthereisnotasinglewaytobuildupmathematicaltruth.Wehavesomechoice:it cameasashockaroundthemiddleofthelastcenturythatforanystrongenoughmathematicaltheory,one can ndstatementswhicharenotprovablewithinthatsystemandwhichonecaneitheracceptasanew axiomoracceptthenegationasanewaxiom.Evensomeoftherespectedaxiomsarealreadyindependent ofmoreelementaryones.OneofthemistheaxiomofchoicewhichsaysthatforanycollectionCof nonemptyset,onecanchoosefromeachsetanelementandformanewset.Aconsequenceofthisaxiom whichisclosetocalculusisa"compactnessproperty"forfunctionsontheinterval.Ifwetakethedistance d(f;g)=max(f(x)g(x))betweentwofunctionsandtakeasequenceofdi erentiablefunctionssatisfying jf n (x)jMandjf 0n (x)jMthenthereexistsasubsequencef n k whichconvergestoacontinuousfunction. ArathercounterintuitiveconsequenceoftheAxiomofchoiceisthatonecandecomposetheunitballinto

5piecesE

i ,movethosepiecesusingrotationsandtranslationsandreassemblethemtoformtwocopiesof theunitball.WecannotintegrateRRR E i dVoverthisregions:thesumoftheirvolumeswouldbeeither

4=3or8=3dependingonwhetherweintegratebeforeorafterthearrangement.Thisissuchaparadoxical

constructionthatonecallsitaparadox:theBanach-Taskiparadox. Anotheraxiomforwhichisnotclear,whetheritmattersincalculusisthecontinuumhypothesiswhichtellsthat thereisnocardinalitybetweenthe"in nity"ofthenaturalnumbers@ 0 andthe"in nity"oftherealnumbers 1 .

Ithadbeenrealizedinthe19'thcenturybyCantor

thatthesetwoin nitiesaredi erent.Cantorsar- gumentistoassumethatonecouldenumerateall numbersbetween0and1:thenlookatthediagonal number,inwhicheachdigitisaltered.Forexample: x=0:35285:::: .Thisrealnumberxdisagreeswith allthenumbersinthelistandwasthereforenotac- countedforinthecounting.10: 2

4231423412341234134:::

20:3 4

4223498273413904173:::

30:69
1

4341074147346738874:::

40:999

7

4283382464200104131:::

50:3620

4

4747389238934211147:::

Thepossibilitiestoquestionoralterthemathematicalbuildupdoesnotstoponthesettheoreticallevel. Peopleeventriedtochangelogic.Amongthingswhichhavebeenproposedarefuzzylogic,wheretruthcan takeavaluebetween0and1orquantumlogicoralogicinwhichonehasthreepossibilities,true,nottrueor "undecided". Onenotonlyhasthepossibilitytoextendmathematicsdi erently.Aratherrichplaygroundcanbecovered byrestrictingtools.Onecanforexampleask,whatpartofcalculuscanstillbedoneinwithouttheaxiom ofchoice.Onecanalsoaskthatoneonlyisallowedtotalkaboutobjectswhichcanbeconstructedexplicitly. Therewerepeople,strict nitists,whowentevenfurtherandsuggestedtodisqualifytoolargenumberslike 10 10 10 .Calculusteachershaveeventogofurtherandproduceproblemssothattheansweris1or0oror

1=3.Problemsin nalexams,wheretheansweris1234=12isunthinkable.Thephilosophicaldirectionteachers

areforcedtofollowiscalledultrastrict nitism...
Politique de confidentialité -Privacy policy