[PDF] The Relevance of Flow Cytometry for Biochemical Analysis




Loading...







[PDF] The Clinical Biochemistry Laboratory the use and the requirements

There is analytical variation and also biological variation Laboratory analytical performance A number of terms describe biochemical results these include: • 

[PDF] Laboratory Procedure Manual: Biochemistry Profile

The analyses are performed with a Hitachi Model 917 multichannel analyzer (Roche Diagnostics, Indianapolis, IN) Each analyte is described separately within 

[PDF] BIOCHEMISTRY REVIEW Overview of Biomolecules

Biochemistry is the study of the chemistry of cells and organisms Thus it is concerned with the types of molecules found in biological systems, 

[PDF] 1 - The clinical biochemistry laboratory - Amazon AWS

analysis are blood and urine, largely reflecting the relative ease measure, or both, and are not performed in every biochemistry laboratory

[PDF] The Relevance of Flow Cytometry for Biochemical Analysis

biochemical assays to improve sensitivity of abnormal cell iden- culties when performing adequate functional analysis by FCM,

[PDF] Medical Biochemistry - The Carter Center

Contemporary Biochemistry plays a crucial role in the Medical field, be it is based on inhibiting the activity of enzymes, analysis of enzyme reactions 

[PDF] The Relevance of Flow Cytometry for Biochemical Analysis 30063_7IUBMB.pdf

IUBMBLife,51:231-239,2001

Copyrightc°2001IUBMB

1521-6543/01$12.00+.00

CriticalReview

TheRelevanceofFlowCytometryforBiochemical

Analysis

Jos´e-EnriqueO"Connor,1RobertC.Callaghan,2MartaEscudero,1Guadalupe Herrera,1AliciaMart´õnez,1Mar´õa-do-C´euMonteiro,3andHilarioMontol´õu1

1CentrodeCitometr´õa,DepartamentodeBioqu´õmicayBiolog´õaMolecular,FacultaddeMedicina,

UniversidaddeValencia,Valencia,Spain

2DepartamentodePatolog´õa,FacultaddeMedicina,UniversidaddeValencia,Valencia,Spain

3DepartamentodeBioqu´õmica,InstitutoSuperiordeCiˆenciasdaSa´ude-Norte,GˆandraPRD,Portugal

Summary

Flowcytometry(FCM)allowsthesimultaneousmeasurement ofmultiple?uorescencesandlightscatterinducedbyillumination ofsinglecellsormicroscopicparticlesinsuspension,asthey?ow rapidlythroughasensingarea.Insomesystems,individualcells orparticlesmaybesortedaccordingtothepropertiesexhibited. Byusingappropriate?uorescentmarkers,FCMisuniqueinthat multiplestructuralandfunctionalparameterscanbequanti?edsi- multaneouslyonasingle-particlebasis,whereasuptothousandsof biologicalparticlespersecondmaybeexamined.FCMisincreas- inglyusedforbasic,clinical,biotechnological,andenvironmental studiesofbiochemicalrelevance.Inthiscriticalreview,wesumma- rizethemainadvantagesandlimitationsofFCMforbiochemical studiesanddiscussbrie?ythemostrelevantparametersandana- lyticalstrategies.Graphicalexamplesofthebiologicalinformation providedbymultiparametricFCMarepresented.Also,thisreview containsspeci?csectionson?owcytoenzymology,FCManalysisof isolatedsubcellularorganelles,andcell-freeFCM.

IUBMBLife,51:231-239,2001

KeywordsCellfunction;cellsorting;?owcytometry;?uorescence; ?uorochromes;isolatedsubcellularelements;multiplexed assay.

INTRODUCTION

Flowcytometry(FCM)allowsthesimultaneousmeasure-

mentofmultiple?uorescencesandlightscatterinducedbyillu- minationofsinglecellsormicroscopicparticlesinsuspension,

Accepted24May2001.

AddresscorrespondencetoDr.Jos´e-EnriqueO"Connor,Centrode Citometr´õa,DepartamentodeBioqu´õmicayBiolog´õaMolecular,Facul- taddeMedicina,Avda.BlascoIb´a˜nez,17.46010-Valencia.Fax:+34-

963-864186.E-mail:jose.e.oconnor@uv.es

asthey?owrapidlythroughasensingarea(1,2).Insomesys- tems(cellsorters),individualcellsorparticlesmaybephysically separatedaccordingtotheirproperties(Fig.1).Thus,FCMis uniqueinthatmultiplebiologicalparameterscanbequanti?ed simultaneouslyonasingle-particlebasis,whileuptothousands ofeventspersecondmaybeexamined.Asaresult,largeand heterogeneouscellpopulationsaredescribedbasedonthebio- metricpropertiesoftheirindividuals(Table1). Becauseofitshistoricaldevelopment(1)anditsimportant clinicalimplications,thelargestbodyofcurrentapplicationsis diagnostic/prognostic,basedonimmunophenotypingandDNA contentassays(3,4).However,FCMisnowachoicemethodol- ogyinbasicandappliedstudies,includingcellularandmolec- ularbiology(5,6),biotechnology(7),toxicology(8),microbi- ology(9),plantphysiology(10),andoceanography/limnology (11).Ontheotherhand,clinicalFCMincreasinglyimplements biochemicalassaystoimprovesensitivityofabnormalcelliden- ti?cation(12)andtoprovidefunctionalinformationaboutpatho- geneticmechanismsinvolvedindiseaseconditions(13).

FCMAnalysisofCellBiochemistry:Parameters

andProbes Individualcells,bearingmultiplemarkersontheirsurface, containintracellularcompartmentswiththeirownmetabolic environment.Functionalintegrityofmembranesisnecessary fortheregulationofsuchcompartmentsthat,inturn,condition metabolicpathwayswithinthem.Inmanycases,homeostasisof cellcompartmentsrequiresregulatedtransportacrosscellmem- branes.Ontheotherhand,plasmamembraneisdeeplyinvolved inbiochemicalresponsesthatmediatecellactivationtriggered bymultiplestimuli.Manyoftheseresponsesaredependenton speci?creceptorsandtriggerconsistentchangesinionicstatus andenzymeactivitiesinsignaltransductionpathways,leading 231

232O"CONNORETAL.

Figure1.Schematicsofatypical?owcytometry/cellsortinginstrument.Theschemeshowshowcellsareforcedtocrossalaserbeamatthe?owchamber.Multiple?uorescenceandlightscattersignalsarecollectedanddirectedthroughthe?uorescencecollectinglensand?lterassembly.Separatephotomultipliersorphotodiodesamplifythesignalsaccordinglyandtheinstrumentelectronicsprocessesandclassi?esthepulsesgeneratedbysinglecellsorparticles.Insomesystems(Cellsorters)cellsmaybeseparatedbyelectrostaticchargingdevicesafterbreakingthe?owintomicroscopicindividualdropletscontainingsinglecells.Theinterfacedcomputerreceivestheprocessedsignalsinrealtimeandallowsthecontrolofinstrumentalsettingsforanalysis(cytosettings)andcellsorting(sortsettings),aswellasprede?nitionoftheprotocolformultiparameterdataacquisition.TheresultsofanalysisareformattedasFCS?les(FlowCytometryStandard)andmaybedisplayedasdifferentgraphicrepresentationsofcellpopulationdistribution(univariatehistogramsormultivariatedotplots)whereuser-de?nednumericalandstatisticalanalysisisperformedbydedicatedsoftware.Datamaybestoredasnoncorrelateddatamatrixforeachsinglecell(listmode?les)inawaypermittingtoreproducevirtuallyandinstantlythedataacquisitionprocess,whilekeepingorchangingasdesiredsomefeaturesoftheanalysis,suchasgatede?nition,parametercorrelation,typeofdisplay,andsoon.FCS?lesmaybesharedandtransferedbyphysicalsupportsystems(?oppydisks,CDdisks)orbylocalorglobalnetworkstootherindependentcomputerstoproceedtofurtherdataanalysis,includingtheuseofthird-partysoftwareforFCMapplications.

FLOWCYTOMETRYINBIOCHEMICALANALYSIS233

Table1

Biochemicalassaysby?owcytometry:samples

andprobes

Typeofbiologicalsamples

²Pluricellularorganisms²Isolatednuclei

²Cellspheroids²Subcellularelements

²Hybridomas²Chromosomes

²Cellfusions²Liposomes

²Humancells²Mallorybodies

²Animalcells²Amyloidplaque?bers

²Plantprotoplasts²Membranefractions

²Prokaryoticcells²Viralparticles

²Yeasts²Solubleantigens1

²Microalgae²DNAsequences1

Typeof?uorochromesand?uorescentmarkers

²Fluorochromesreacting²FluorescentpHindicators withspeci?cchemical²Fluorescentionchelators groups²Membrane-potential

²Fluorochromepairsforsensitivedistribution

resonanceenergytransfer?uorescentdyes ²Fluorescentantibodies²Fluorogenicsubstratesof

²Fluorescentlectinsintracellularenzymes

²Fluorescentnucleicacid²Fluorescentmacromolecules sequences²Fluorescentsynthetic

²Fluorescentlipidsparticles

²Endogenous?uorescent

molecules

1Using?uorescentmicrospheresascapturereagentsand?uores-

centligandsasreportermolecules. ultimatelytoregulationofgeneexpression,celldiferentiation, and/orproliferation.

FCMisappliedsuccessfullytostudyeachstepofthisvast

complexityofcellularbiochemistry.Formostapplications,cells mustbestainedwith?uorescentmarkersofde?nedopticaland biologicalproperties(Table1),butFCMtakesalsoadvantage ofendogenous?uorochromesrelatedtointracellularfunctions (1).Inthisway,assummarizedinTable2,therangeofparam- etersavailablefortheFCMevaluationofcellbiochemistryhas beenextendedfrombroadassessmentofcellbehaviourtoquan- ti?cationofsinglemoleculesundergoingorregulatingspeci?c biochemicalreactions. Asigni?cantpartofFCMstudiesinvolvesanalysisofthese parametersinrelationtocellactivation(14,15)andprolifera- tion(16),cellsensitivity(17,18)orresistancetodrugaction (19),andcelldeathbyapoptosisornecrosisinawiderangeof experimentalsettings(20-22).Althoughmostofthesestudies fallwithinthescopeofbasicresearch,thedevelopmentofsim- pleassaysfortheseparametershasallowedtheirapplicationto differentclinicalsituations(3,23).

Speci?cFeatures,StrategiesandLimitations

ofFunctionalFCM

BecauseoftheuniquefeatureofFCM,i.e.,themultipara-

metricexamination(andphysicalseparation)ofsinglecellsor particlesatveryfastrate,thisparticulartechniqueofbiochem- icalanalysishasevidentadvantagesoverotherconventional methodologies.Thus,thelargenumberofcellsanalyzedand theinstrumentalsettingsofcurrentcytometersprovidemulti- plestrategiestoobtainprimaryinformation,andallowalarge numberofgeneralapplications,asTable3attemptstocover.

Fromapracticalpointofview,themainassetsofFCMcanbe

summarizedasfollows: MultiparametricDataAcquisition.Moststandardbiochem- icalproceduresdetermineasingleparameterperassayandare notsensitiveenoughforsingle-cellanalysis.FCMinstruments allowroutinelytwomorphology-relatedparameters(forward- andside-lightscatter)and3-5?uorescencesignalspersingle particle.Inthisway,inasingle-tubeassay,oneormoreparam- etersmaybeusedtoidentifyandselect("gatedanalysis")cell subsetsinheterogeneouspopulations(e.g.,live,apoptotic,or necroticcells;cellsofdifferentoriginorlineage;cellsindif- ferentcellcyclestageandsoon),whereasothersignalsmay beassignedtoanalyzespeci?cstructuresorfunctionsinthese selectedpopulations.Anexampleofthisconceptisillustrated inthesingle-tubeassayshowninFig.2.Thenumberofavail- ableparameterspersinglecellincreaseswhenmultiple-lasercy- tometersareused.Obviously,theanalysisofmultiplealiquots persampleallowstoexpandinde?nitelythenumberofparam- etersbycombiningseparately?uorescentmarkersofdifferent biologicalpropertiesbutsimilaropticalproperties.Anexample ofthisconceptisillustratedintheintegratedanalysisshown inFig.3.ThistypeofFCManalysis(panelanalysis)isthe hallmarkofimmunohematology,wheretypicallymorethan20 ?uorescentmonoclonalantibodiesagainstepitopesinleukocyte plasmamembranemaybeusedfortypingleukemiasandlym- phomas(4,24).

MultivariateDataAnalysis.Duetothehardwareandsoft-

waredesignofmoderncytometers,multiparametricacquisition isinterfacedtomultivariatedataanalysis.Inthisway,acell populationisnotdescribedbymereenumerationoftheindivid- ualpropertiesmeasuredbutbytheircorrelationonasingle-cell basis,thusincreasingthediscriminatingpower.Moreover,the possibilityofstoringFCMdataasanuncorrelateddatamatrixfor eachanalyzedcell("listmode?les")allowsonetode?ne,ifnec- essary,newparametriccorrelationsandpopulationselectionby replaying(off-line)thoseelectronic?les.Thisisaninvaluable toolespeciallywhensmallorinfrequentsamplesarestudied.

FastAnalysisofLargeNumberofLiveCells.FCMmaybe

performedonalargevarietyofbiologicalmaterialindifferent conditionsofvitality(e.g.,intactfreshcells,?xedand/orper- meabilizedcells),asindicatedinTable3.Theuseoflivecells allowsonetoprobemultiplebiochemicalparametersinmini- mallyperturbedintracellularenvironments,aswellasinnear- physiologicalextracellularconditions.

234O"CONNORETAL.

Table2

Biochemicalassaysby?owcytometry:parameters

CellsurfaceparametersCytosolicparametersNuclearparametersSubcellularelements MembraneintegrityGeneralproteinDNAcontentNormalmitochondria MembranepotentialMitochondrialactivityRNAcontentMegamitochondria MembranerecyclingMitochondriacontentNucleartotalproteinsCis-Golgivesicles ReceptorexpressionCytosolicpHNuclearspeci?cproteinsTrans-Golgivesicles ReceptorinteractionsLysosomalpHChromatinconformationEndosomes ReceptormodulationTyrosinephosphorylationCyclinsandCDksPhagosomes SurfaceglycoconjugatesCytosolicCa2CProliferation-relatedantigensChloroplasts LigandbindingtosurfacereceptorsROSandNOSDNAsynthesisThylakoids Cell-celladhesionEnzymeactivity:DNAstrandbreaksExtracellularanalytes

Membrane?uidityOxidasesDNAoxidation

CholesterolcontentDehydrogenasesDNArepair

LossoflipidassimetryEsterasesNuclearreceptors

Permeabilityto?uorescentprobesProteasesGeneexpression

MembraneperoxidationTransferasesGenereporting

MembranesheddingProteinmodi?cation

EndocytosisFreesolublethiols

PhagocytosisGlutathione

PynocytosisProteinthiols

Ef?uxpumpsNonpolarlipids

BacterialcellwallPolarlipids

YeastcellwallCytoskeletalproteins

Granulecontent

Thefastrateofdataacquisitionandthepossibilityofex- aminingmillionsofindividualparticlesinareasonabletime allowsthedetectionandaccurateanalysisofinfrequentorrare cells,downto1eventper108cells(25).Suchapossibilityisin contrastwithbulkstandard?uorimetricdeterminationsinwhich millionsofcells(ortheirextracts)areanalyzedatthesametime, yieldingasinglemeanconcentrationvalue.

IndividualCellSorting.SomeFCMsystemsareableto

separatephysicallyindividualcellorparticlesaccordingtotheir cytometricproperties.Themostadvancedcellsortersarebased onelectromagneticde?ectionofindividualdropletsgenerated byhigh-frequencyvibrationofthe?owchamber(1).Insuch systems,uptofourdifferentsubpopulationscanbesortedsimul- taneouslyor,ontheotherhand,onesinglecellcanbedeposited inagivenpositionofamicrowellarray.Cellsortingallowsthe combinationoftheintrinsiccapabilitiesofFCMresultswith informationobtainedbyimage(conventionalandconfocalmi- croscopy)andmolecular(polymerasechainreaction,insituhy- bridization)techniques,andprovidesapreparativetoolforrapid isolationoflivingrarecellsofbiochemicalrelevance,suchas stemcells(26),transfectants(27),orhybridomasproducinga givenantibody(1).Itisworthmentioningthecontributionof ?owsortingofchromosomestothesequencingofthehuman genome(28,29). AsindicatedinTable4,therearealsocriticalpointsanddif?- cultieswhenperformingadequatefunctionalanalysisbyFCM, whichmostlydependonthemaintenanceofadequateviability ormetaboliccapacityofcellsandsubcellularelementsaswell asavoidingtheinterferenceof?uorescentprobeswithcellular functions.

FCMApproachtoClassicBiochemistry:

FlowCytoenzymology

Currently,awiderangeof?uorescentsubstratesortheir?uo- rogenicprecursorsareavailableforFCManalysis(1,2,30).On theotherhand,?owcytometersincorporatetimeasaparameter tofollowthekineticsof?uorescencevariationsonthespeci?c modi?cationofsubstrates(14,31).Forthesereasons,?owcy- toenzymology(30)appearsasapromisingapplicationofFCM foranalysisofmetabolism.Flowcytoenzymologyisappliedto agrowingnumberofenzymaticactivitiesinmultiplebiochem- icalpathways(32-34)andthesestudiesmayhaveadirectclin- icalimpact(35,36).Thus,theyarecurrentlyappliedtoassess leukocytefunction,tocorrelatecellmetabolismandmalignant capacityinfreshtumorcells,andtoevaluatedrugmetabolism andtherapymonitorizationinpharmacologicalstudies(37).

FlowCytometricAnalysisofIsolated

SubcellularCompartments

Theuseof?owcytometerstoanalyzefunctionalpropertiesof isolatedsubcellularparticlesislessfrequentthanitsapplication

FLOWCYTOMETRYINBIOCHEMICALANALYSIS235

Table3

Biochemicalassaysby?owcytometry:strategies,information,andapplications AssaystrategiesPrimaryinformationMaingeneralapplications a)Accordingtothebiological material:

²Assaysusingfreshcells

²Assaysusing?xedcells

²Assaysusingsubcellularelements

²Multiplexedassays

b)Accordingtospeci?ccellselection:

²Nongatedassays

²Gatedassays

c)Accordingtoassayduration:

²Singleend-pointassays

²Sequentialend-pointassays

²Kineticassayswithunperturbed

cells

²Kineticassaysfollowingcell

stimulationwithligands d)Accordingtodataanalysis:

²On-lineanalysis(realtime)

²Off-line(Listmodeanalysis)

²Intensityofexpressionofmultiple²Identi?cation/characterizationof parameterswithinhomogeneouscellsbaseduponmultiple cellpopulationsbiochemicalparameters ²Heterogeneityofexpressionofmultiple²Diagnosticapplications,including parametersincellsubpopulationsdetectionofrarepathologicalcells ²Correlationbetweendifferentparameters²Analysisofcellactivation, incellpopulationsincludingreceptorbiologyand ²Ratiobetweenmultipleparameterssignaltransduction insinglecells²Analysisofgeneexpression, ²Evolutionoffastand/ortransientincludinggeneengineering dynamicparameters²Analysisofcellcycleand ²Evolutionofslowand/orsustainedproliferation-relatedevents dynamicparameters²Analysisofdifferentiation ²Detectionandanalysisofrare²Flowcytoenzymology cells/particles²Analysisofcellviability ²Correlationwithparametersanalyzedandcelldeath,including withothertechniquesfollowingapoptosisandnecrosis cellsorting²Analysisofmicrobialbiochemistry, includingsensitivitytodrugs

²Controlofbiotechnological

processes,includinggrowth conditionsandproductivity

²Environmentalbiochemistry

inwholecellstudies.However,mostcurrentinstrumentsare adequatelysensitiveforsubcellularanalyses,whichhavealways beenahallmarkofbiochemistry. Somemethodologicalaspectsbecomecriticalwhenanalyz- ingsinglesubcellularparticlesbyFCMbecauseoftheirsmall size,thedifferentpermeabilityoruptakerateofdyesbyiso- latedorganelles,andtheirusuallyincreasedlability.However, FCManalysisofisolatedorganellesprovidesinsightofsubcel-

Table4

Biochemicalassaysby?owcytometry:dif?culties

Criticalpoints

²Preparationofsingle-cellsuspensionsfromadherentcell populations ²Maintenanceofcellviabilityalongtheexperimentalperiod ²Isolationofsubcellularelementsfromcellsandtissues

²Readjustingconditionsforsubcellularanalysis

²Identi?cationofsmallcellsandparticlesfrombackground noise ²Adequateaccessofprobestointracellularsitesorprocesses

²Adequateretentionofsubstratesandprobes

²Noninterferenceofprobeswithcellfunctions

²Adequateselectionoftime-windowsforkineticassays ²Assaycalibrationfordataexpressioninabsoluteunits lularfunctionsandstructuresinexperimentalmodelswherea higherdegreeofmetaboliccontrolcanbeachieved(Table1and

Table2).

Rhodamine123andothermembrane-potential(MP)-sensitive dyes(15,31,38)havebeenusedforfunctionalanalysisofiso- latedmitochondria,whereasotherMP-independentmito- chondrialdyescanbeappliedtodeterminethemitochondrial contentinwholecells(39).Manipulationofmembranepotential inisolatedmitochondriainducedpredictablechangesinRh123 ?uorescenceandrevealedmitochondrialheterogeneityinliver cellsandheterogeneousresponsestophysiologicaland nutritionalconditions(40,41).Isolatedmitochondriahavebeen usedalsofortoxicologicalandpharmacologicalstudies,which yieldeddatacomplementarytothoseobtainedusingwholecells (42).

FCMhasbeenappliedalsotoanalyzethebindingof?uo-

rescentlectinstoisolatedchloroplasts(43)andGolgivesicles (44)forthestudyoftheiroligosaccharidecontent.Thedatathus obtainedmaybeofrelevancetothestudyofthenormaland alteredmechanismsofglycoproteinmaturationandsorting.

Cell-FreeCytometry:QuantifyingSolubleAnalytes

FCMisnotlimitedtotheanalysisofbiochemicalcompo-

nentsinsuspensionsofcellularorsubcellularparticles.Onthe contrary,arecentlydevelopedstrategyknownasmultiplexed

236O"CONNORETAL.

Figure2.Exampleofthemultiparametricdataacquisitionandmultivariatedataanalysisinasingle-tubeFCMbiochemicalassay.First,25ⁱL-samplesofhumanwholebloodwereincubatedwith5ⁱLofpan-leukocyteantibodyCD45-PCy5for15minanddilutedto1mLwithRPMImedium.Then,5ⁱLofpH-indicator,1mMBCECF-AM,wereaddedandthesampleincubatedfor15minat37±Cinthedarkinthepresenceorabsenceof4ⁱMethyl-isopropyl-amyloride(EIPA),aNaC/HCantiportinhibitor.SampleswererunonanEPICSXL-MCL?owcytometerandthefollowingparametersacquired:Forwardscatter(FS,anestimationofcellsize),sidescatter(SS,anestimationofcellgranularity),LogFL1(BCECF-AMgreen?uorescence),Log-FL2(BCECF-AMyellow?uorescence),LogFL4(CD45-PCy5red?uorescence),RatioFL2/FL1(theratiobetweenBCECF-AMyellowandgreen?uorescences),anestimationofintracellularpH(pHi),andTime(thex-axisscalerepresents300s).Samplewasrunfor10s,thenpaused,and50ⁱLof100mMpropionicacid(ProH)added(arrow).Dataacquisitionwasre-startedtoshowinducedacidi?cationasadecreaseintheratioFL2/FL1.Analysisofwholeblooddoesnotdistinguishleukocytes(WBC)fromerythrocytes(RBC)basedinscatterparameters(A).However,gatingonCD45showsclearlyleukocytesubpopulations(B)andtheirtypicalmorphology(C).AnalysisofBCECFFL1andFL2separately(D)doesnotprovideinformation.However,bivariateplotofFL2/FL1ratiovsSS(E)showsthatleukocytesubpopulationsdifferinrestingpHi,granulocytesbeingmorealkaline.KineticanalysisofpHifollowingacidi?cationwithProHshowsheterogeneityinWBC(F).Selectionofspeci?csubpopulationsondotplot(C)showsthatlymphocytesdonotrecoverpHi(G),whereasmonocytes(H)andgranulocyte(I)returnrapidlytorestingpHi.TheparticipationofNaC/HCantiportiscon?rmedbytheinhibitoryeffectofEIPAinasecondtuberuninthesameconditions(J).

FLOWCYTOMETRYINBIOCHEMICALANALYSIS237

Figure3.Exampleofanintegrated(multipletubes)?owcytometricassayofbiochemicalparameters:Studyofplateletactivationinwholeblood.(A)Plateletsareidenti?edinwholebloodwithanantibodyspeci?cforglycoproteincomplexgpIIb-IIIa(CD41-PE).(B)RiseincytoplasmicCaCCdetectedbythegreen?uorescentchelatorFluo-3AMfollowingplateletactivationwithADP.(C)Rapiddegranulationresponseuponplateletactivationfollowedbykineticanalysisoflossofthecomplexity-dependentsignalSS.(D)Rearrangementofcytoskeleton(changeofactinGtoactinF)usingFITC-labelledphalloidininplatelets?xedfollowingadditionofADP.ThebiochemicaleventsdepictedinpanelsB-Dareconsideredveryearlyeventsinthefunctionalchangesinducedinplateletbyactivatingagonists.ThesurfaceexpressionofphosphatidylserinecanbeanalyzedkineticallywithFITC-labelledannexinVfollowingadditionofcalciumionophoreA23187,anexperimentalmodelofinductionofplateletpro-coagulantsurface(E).Undertheseexperimentalconditions,plateletsreleasemembranemicroparticles,asevidencedbythelossofconstitutivemembraneglycoproteinCD41(F).DatainthisgraphareobtainedbydisplayingCD41?uorescenceinannexinV-positivecellsatthelastofthetimeslicesde?nedintheplotofpanelD.Theoverexpressiononplateletsurfaceofthe®-granuleproteingmp140(CD62-P)isoneofthelatestsequentialbiochemicalchangesfollowingpseudophysiologicalplateletactivationwithADP(G).

238O"CONNORETAL.

analysisallowssimultaneousquanti?cationofmultipleanalytes insolution.Thebasisforeachmeasurementconsistsofasetof microspheresidenti?ablebyembedded?uorophores.Individual setsofmicrospheresaremodi?edwithreactivecomponentssuch asantigens,antibodies,oroligonucleotides,andthenmixedto allowmultipleindependentreactionstobeanalyzedsimultane- ously.Theuseofmicrosphereswithdifferentratiosofredand orange?uorescenceprovidesthemultiplexedformat,andFCM analysissimultaneouslyidenti?esboththemicrospheretypeand the?uorescentgreensignal,revealingthecaptureofthepartic- ularanalyte(45).Thismeasurementsystemcananalyzeupto

64analytesinasinglesample.

Withthemicrosphere-associatedtechnology,theapplica- tionsforbasicandclinical?owcytometryinthefutureare enormous.Forinstance,thesystemhasbeenusedtoperform simultaneousdetectionofmultiplex-ampli?edhumanimmu- node?ciencyvirustype1RNA,hepatitisCvirusRNA,and hepatitisBvirusDNA(46).Thisapproachhasbeenfound tobemoreaccurate,sensitive,andreproduciblethanthecon- ventionalmicrotitreELISAforqualitativeandquantitative immunoassaysforseveralproteins.Forinstance,thisassaycan accuratelyquantitate15cytokinesin100ⁱL-samples,whereas thesameanalysisbyELISArequires1.5mL(100ⁱLfor eachcytokineassay)(47).Also,multiplexed?owcytometric analyseshavebeendevelopedtomeasuresimultaneously cytokinereceptorexpression,internalcytokineexpression, andcytokinesecretionbyactivatedT-cellsinvitro(48),thus openinganinterestingapproachtothestudyofcellactivation responses. Aseriesofnovelapplicationsillustratesthepotentialofge- nomicanalysiswithmicrospherearraysandFCMusingsub- nanomolarconcentrationsofsampleinsmallvolumesatrates ofonesampleperminuteorfaster,withoutawashstep.Thus,the systemhasbeenusedtoperformDNAsequenceanalysisbymul- tiplexedcompetitivehybridizationofsequence-speci?coligonu- cleotideprobes(49)andformultiplexedanalysisofdozensof singlenucleotidepolimor?sms(50).Theseresultsdemonstrate thesensitivityandaccuracyof?owcytometry-basedminise- quencing,apowerfulnewtoolforgenome-andglobal-scale

SNPanalysis.

Thereisasigni?cantnumberofwebsitesdedicatedtoba-

sicFCMthatshouldbevisitedtoobtainfurtherinformationas wellasrelatedlinksandFCMfreeware.Forthesakeofbrevity, readersareencouragedtobookmarkhttp://www.biochem.mpg. de/valet/cytorel.html(Cytorelay,Max-PlanckInstitutforBio- chemistry);http://?owcyt.cyto.purdue.edu/(PurdueUniversity CytometryLaboratories),andhttp://www.bio.umass.edu/ mcbfacs/?owhome.html(FlowCytometryFacility,University ofMassachussetsatAmherst).

ACKNOWLEDGMENTS

TheresultsofFigs.2and3areunpublisheddatafromresearch projectssponsoredbytheEuropeanCommission(15348-1999-

10FIEDISPES),theGeneralitatValenciana(GV-D-VS-22-148-

96),PRODEP,andIzasa,S.A.

REFERENCES

1.Shapiro,H.M.(1995)PracticalFlowCytometry,3rded.WileyLiss,

NewYork.

2.Ormerod,M.G.(2000)FlowCytometry:aPracticalApproach,3rded.

OxfordUnivPress,Oxford.

3.David,S.,andHudnall,M.D.(eds.)(2000)IntroductiontoDiagnosticFlow

Cytometry:anIntegratedCase-BasedApproach(PathologyandLaboratory

Medicine).HumanaPress,NewJersey.

4.Owens,M.A.,andLoken,M.R.(1995)FlowCytometry:Principlesfor

ClinicalLaboratoryPractice.Wiley-Liss,NewYork.

5.Darzynkiewicz,Z.,Robinson,J.P.,andCrissman,H.A.(2000)Methodsin

CellBiology:Cytometry,3rded.AcademicPress,SanDiego.

6.Jaroszeski,M.J.,andHeller,R.(eds.)(1998)FlowCytometryProtocols

(MethodsinMolecularBiology,No91).HumanaPress,NewJersey.

7.Valdivia,R.H.,andFalkow,S.(1996)Bacterialgeneticsby?owcytometry:

rapidisolationofSalmonellatyphimuriumacid-induciblepromotersby differential?uorescenceinduction.Mol.Microbiol.22,367-378.

8.Burchiel,S.W.,Lauer,F.T.,Gurul´e,D.,Mounho,B.J.,andSalas,V.M.

(1999)Usesandfutureapplicationsof?owcytometryinimmunotoxicity testing.Methods19,28-35.

9.Alvarez-Barrientos,A.M.,Arroyo,J.,Cant´on,R.,Nombela,C.,and

S´anchez-P´erez,M.(2000)Applicationsof?owcytometrytoclinicalmi- crobiology.Clin.Microbiol.Rev.13,167-195.

10.Moukadiri,O.,DemingJ.,O"Connor,J.E.,andCornejoM.J.(1999)Phe-

notypiccharacterizationoftheprogeniesofthericeplantsderivedfrom cryopreservedcalli.PlantPhysiol.Reports18,625-632.

11.Jonker,R.R.,Meulemans,J.T.M.,Dubelaar,G.B.J.,Wilkins,M.F.,

andRingelberg,J.(1995)Flowcytometry:Apowerfultoolinanalysisof biomassdistributionsinphytoplankton.WaterSci.Technol.32,177-182.

12.Forn´as,O.,Garc´õa,J.,andPetriz,J.(2000)Flowcytometrycountingof

CD34Ccellsinwholeblood.NatureMed.6,833-836.

13.Lorincz,M.,Herzenberg,L.A.,Diwu,Z.,Barranger,J.A.,andKerr,W.G.

(1997)Detectionandisolationofgene-correctedcellsinGaucherdiseasevia a?uorescence-activatedcellsorterassayforlysosomalglucocerebrosidase activity.Blood89,3412-3420.

14.Monteiro,M.C.,Sansonetty,F.,Gon¸calves,M.J.,O"Connor,J.E.(1999)

A?owcytometrickineticassayofplateletactivationinwholebloodusing

Fluo-3andCD41.Cytometry35,302-310.

15.Mathur,A.,Hong,Y.,Kemp,B.K.,Alvarez-Barrientos,A.,and

Erusalimsky,J.D.(2000)Evaluationof?uorescentdyesforthedetection ofmitochondrialmembranepotentialchangesinculturedcardiomyocytes.

CardiovascularRes.46,126-138.

16.Hsieh,T.C.,Juan,G.,Darzynkiewicz,Z.,andWu,J.M.(1999)Resver-

atrolincreasesnitricoxidesynthase,inducesaccumulationofp53and p21(WAF1/CIP1),andsuppressesculturedbovinepulmonaryarteryen- dothelialcellproliferationbyperturbingprogressionthroughSandG2.

CancerRes.59,2596-2601.

17.vandeWater,B.,Zoeteweij,J.P.,deBont,H.J.,Mulder,G.J.,and

Nagelkerke,J.F.(1994)RoleofmitochondrialCa2Cintheoxidativestress- induceddissipationofthemitochondrialmembranepotential.Studiesin isolatedproximaltubularcellsusingthenephrotoxin1,2-dichlorovinyl-L- cysteine.J.Biol.Chem.269,14546-14552.

18.Novo,D.J.,Perlmutter,N.G.,Hunt,R.H.,andShapiro,H.M.(2000)

Multiparameter?owcytometricanalysisofantbioticeffectsonmembrane potential,membranepermeability,andbacterialcountsofStaphylococcus aureusandMicrococcusluteus.Antimicrob.AgentsChemother.44,827- 834.

19.Lehne,G.,Mørkrid,L.,denBoer,M.,andRugstad,H.E.(2000)Diverse

effectsofP-glycoproteininhibitoryagentsonhumanleukemiacellsex- pressingthemultidrugresistanceprotein(MRP).Int.J.Clin.Pharmacol.

Ther.38,187-195.

FLOWCYTOMETRYINBIOCHEMICALANALYSIS239

20.Darzynkiewicz,D.,Juan,G.,Li,X.,Gorczyca,W.,Murakami,T.,and

Traganos,F.(1997)Cytometryincellnecrobiology:analysisofapopto- sisandaccidentalcelldeath(necrosis).Cytometry27,1-20.

21.Gal´an,A.,O"Connor,J.E.,Valbuena,D.,Herrer,R.,Remoh´õ,J.,Pampfer,

S.,Pellicer,A.,andSim´on,C.(2000)Thehumanblastocystregulatesen- dometrialepithelialapoptosisinembryonicadhesion.Biol.Reprod.63,

430-439.

22.Banki,K.,Hutter,E.,Gonchoroff,N.J.,andPerl,A.(1999)Elevationof

mitochondrialtransmembranepotentialandreactiveoxygenintermediate areearlyeventsandoccurindependentlyfromactivationofcaspasesinFas signalling.J.Immunol.162,1466-1479.

23.Campos,L.,Sabido,O.,Viallet,A.,Vasselon,C.,andGuyotat,D.(1999)

Expressionofapoptosis-controllingproteinsinacuteleukemiacells.Leuk.

Lymphoma33,499-509.

24.Stewart,C.C.,andNicholson,J.K.A.(eds.)(2000)Immunophenotyping.

Wiley,NewYork.

25.Gross,H.J.,Verwer,B.,Houck,D.,andRecktenwald,D.(1993)Detection

ofrarecellsatafrequencyofonepermillionby?owcytometry.Cytometry

14,519-526.

26.Saitoh,K.,Miura,I.,Takahashi,N.,andMiura,A.B.(1998)Fluorescence

insituhybridizationofprogenitorcellsobtainedby?uorescence-activated cellsortingforthedetectionofcellsaffectedbychromosomeabnormality trisomy8inpatientswithmyelodysplasticsyndromes.Blood92,2886- 2892.

27.Meng,Y.G.,Liang,J.,Wong,W.L.,andChisholm,V.(2000)Green?uo-

rescentproteinasasecondselectablemarkerforselectionofhighproducing clonesfromtransfectedCHOcells.Gene242,201-207.

28.VanDevanter,D.R.,Choongkittaworn,N.M.,Dyer,K.A.,Aten,J.,Otto,P.,

Behler,C.,Bryant,E.M.,andRabinovitch,P.S.(1994)Purechromosome- speci?cPCRlibrariesfromsinglesortedchromosomes.Proc.Natl.Acad.

Sci.U.S.A.91,5858-5862.

29.InternationalHumanGenomeSequencingConsortium.(2001)Initialse-

quencingandanalysisofthehumangenome.Nature409,860-921.

30.Watson,J.V.,andDive,C.(1994)Enzymekinetics.MethodsCell.Biol.41,

469-507.

31.Juan,G.,Callaghan,R.C.,Gil-Benso,R.,andO"Connor,J.E.(1996)

Oxidativemetabolisminrathepatomaandisolatedhepatocytes:acom- parative?owcytometricstudy.Hepatology24,385-390.

32.O"Connor,J.E.,Herrera,G.Y.,andCorrochano,V.(1998)Flowversus?ux:

functionalassaysby?owcytometry.InFluorescenceandFluorescent ProbesII(Slav´õk,J.,ed.).pp.47-54.PlenumPress,NewYork.

33.Severin,E.,andSeidler,E.(1992)Calibrationofa?owcytometricas-

sayofglucose-6-phosphatedehydrogenaseactivity.Cytometry13,322- 326.

34.Nolan,J.P.,Shen,B.,Park,M.S.,andSklar,L.A.(1996)Kineticanalysis

ofhuman?apendonuclease-1by?owcytometry.Biochemistry35,11668-

11676.

35.Nguyen,P.L.,Olszak,I.,Harris,N.L.,andPreffer,F.I.(1998)Myeloper-

oxidasedetectionbythree-color?owcytometryandbyenzymecytochem- istryintheclassi?cationofacuteleukemia.Am.J.Clin.Pathol.110,163- 169.

36.Glander,H.J.,andSchaller,J.(1999)Localisationofenzymesinlivesper-

matozoabyCellProbereagents(preliminaryresults).Andrologia31,37-42.

37.Pallis,M.,Turzanski,J.,Harrison,G.,Wheatley,K.,Langabeer,S.,Burnett,

A.K.,andRussell,N.H.(1999)Useofstandardized?owcytometricdeter- minantsofmultidrugresistancetoanalyseresponsetoremissioninduction chemotherapyinpatientswithacutemyeloblasticleukaemia.Br.J.Haema- tol.104,307-312.

38.Salvioli,S.,Maseroli,R.,Pazienza,T.L.,Bobyleva,V.,andCossarizza,A.

(1998)Useof?owcytometryasatooltostudymitochondrialmembrane potentialinisolated,livinghepatocytes.Biochemistry(Moscow)63,235- 258.

39.Poot,M.,andPierce,R.H.(1999)Detectionofchangesinmitochondrial

functionduringapoptosisbysimultaneousstainingwithmultiple?uores- centdyesandcorrelatedmultiparameter?owcytometry.Cytometry35,

311-317.

40.O"Connor,J.E.,Vargas,J.L.,Kimler,B.F.,Hern´andez-Yago,J.,and

Grisol´õa,S.(1988)Useofrhodamine-123toinvestigatealterationsinmito- chondrialactivityinisolatedmouselivermitochondria.Biochem.Biophys.

Res.Commun.151,568-573.

41.Petit,P.X.,O"Connor,J.E.,Gr¨unwald,D.,andBrown,S.C.(1990)Analysis

ofthemembranepotentialofrat-andmouse-livermitochondriaby?ow cytometryandpossibleapplications.Eur.J.Biochem.194,389-397.

42.Wakabayashi,T.,Teranishi,M.A.,Karbowski,M.,Nishizawa,Y.,Usukura,

J.,Kurono,C.,andSoji,T.(2000)Functionalaspectsofmegamitochondria isolatedfromhydrazine-andethanol-treatedratlivers.Pathol.Int.50,20- 33.

43.Schroder,W.P.,andPetit,P.X.(1992)Flowcytometryofspinachchloro-

plasts.Determinationofintactnessandlectin-bindingpropertiesoftheen- velopeandthethylakoidmembranes.PlantPhysiol.100,1092-1102.

44.Guasch,R.M.,Guerri,C.,andO"Connor,J.E.(1995)Studyofsurface

carbohydratesonisolatedGolgisubfractionsby?uorescent-lectinbinding and?owcytometry.Cytometry19,112-118.

45.Kettman,J.R.,Davies,T.,Chandler,D.,Oliver,K.G.,andFulton,R.J.

(1998)Classi?cationandpropertiesof64multiplexedmicrospheresets.

Cytometry33,234-243.

46.Defoort,J.P.,Martin,M.,Casano,B.,Prato,S.,Camilla,C.,andFert,

V.(2000)Simultaneousdetectionofmultiplex-ampli?edhumanimmuno- de?ciencyvirustype1RNA,hepatitisCvirusRNA,andhepatitisBvirus DNAusinga?owcytometermicrosphere-basedhybridizationassay.J.Clin

Microbiol.38,1066-1071.

47.Carson,R.T.,andVignali,D.A.(1999)Simultaneousquantitationof15

cytokinesusingamultiplexed?owcytometricassay.Immunol.Methods

227,41-52.

48.Collins,D.P.,Luebering,B.J.,andShaut,D.M.(1998)T-lymphocyte

functionalityassessedbyanalysisofcytokinereceptorexpression,intracel- lularcytokineexpression,andfemtomolardetectionofcytokinesecretion byquantitative?owcytometry.Cytometry33,249-255.

49.Cai,H.,White,P.S.,Torney,D.,Deshpande,A.,Wang,Z.,Marrone,B.,and

Nolan,J.P.(2000)Flowcytometry-basedminisequencing:anewplatform forhigh-throughputsingle-nucleotidepolymorphismscoring.Genomics66,

135-143.

50.Iannone,M.A.,Taylor,J.D.,Chen,J.,Li,M.S.,Rivers,P.,Slentz-Kesler,

K.A.,andWeiner,M.P.(2000)Multiplexedsinglenucleotidepolymor- phismgenotypingbyoligonucleotideligationand?owcytometry.Cytom- etry39,131-140.
Politique de confidentialité -Privacy policy