[PDF] La polarité de la liaison covalente





Previous PDF Next PDF



Quest-ce quune assemblée datomes froids ? Comment produire

bre d'atomes suffisant pour qu'une ap - proche statistique (thermodynamique) soit pertinente. Plus quantitativement la température est proportionnelle à la.



4.4a – La lumière à léchelle du nanomètre.

d'objets plus petits que la longueur d'onde c'est-à-dire quelques centaines de nanomètres



livret-atome.pdf

Qu'est-ce qu'un atome ? 6. Diamètres atomiques et nucléaires. 7. Volume masse et masse volumique. 7. Charge électrique. 8. Éléments chimiques et isotopes.



À SAVOIR DÉFINITION À SAVOIR

Qu'est-ce que le nanomonde ? Le nanomètre c'est un milliardième de mètre (10-9 m)



1 1. Quest-ce que leau? Atome d___ oxygène Atomes d

Qu'est-ce que l'eau? Dans le film tu as découvert la composition chimique de l'eau. • Légende le dessin de molécule d'eau ci-dessous.



Quest-ce quune particule élémentaire?

(électrons + noyau) + (forces électromagnétiques) = (atome). Le modèle de Bohr donne une explication statisi aisante de nom- breuses propriétés des atomes ; 



La Lumière

De même qu'une onde sonore est une variation de la matière nous prouve que la lumière n'est pas ... qu'un atome peut émettre ou absorber doit être.



1.6 – Histoire des nanos

Peu après d'ailleurs Loschmidt montre que l'atome si il existe mesure à peu près 1 Et dans les années 1930 on a une bonne vision de ce qu'est un atome ...



La polarité de la liaison covalente

Nous savons que l'énergie d'une liaison est l'énergie (chaleur et travail) L'atome le plus électronégatif d'une liaison polaire attire plutôt vers lui ...



Corrigé

a 2 électrons célibataires dans l'atome de titane. C'est la règle de Hund qui précise que : « Lorsque des électrons doivent occuper les OA d'un même niveau 



[PDF] Livret pédagogique Latome - CEA

Qu'est-ce qu'un atome ? 6 Diamètres atomiques et nucléaires 7 Volume masse et masse volumique 7 Charge électrique 8 Éléments chimiques et isotopes



[PDF] Chapitre I – Structure des atomes

Atome : un atome est une entité neutre définie par une valeur de Z et de A Isotopes : atomes qui ne diffèrent que par le nombre de neutrons



[PDF] Chapitre Chimie N°4 : Le modèle de latome

Définition Un atome est constitué d'un noyau chargé positivement autour duquel gravite des électrons chargés négativement Un atome est électriquement neutre



[PDF] Latome - le site de sciences physiques

Un atome est une particule électriquement neutre comprenant deux parties : Il existe une centaine d'atomes de structure complexe que l'on représente par 



[PDF] CHAPITRE I : STRUCTURE DE LA MATIERE

- Les atomes sont constitués d'un noyau très dense chargé positivement entouré d'électrons (charge électrique négative) - Le noyau est constitué de deux 



[PDF] CHIMIE : Latome 1-QUEST-CE QUUN ATOME

1-QU'EST-CE QU'UN ATOME ? En quatrième on retiendra qu'un atome est la plus petite particule de matière considérée comme chimiquement indivisible



[PDF] Chapitre 2 - Constitution de la matière - Lycée dAdultes

Les atomes se différencient par le nombre de particule (protons neutrons et électrons) qu'ils comportent Exemple L'atome d'hydrogène est composées d'1 



[PDF] Chapitre 3 : Structure de latome - Lycée dAdultes

Un atome est électriquement neutre : il y a donc autant de protons que d'électrons La charge Q du noyau est celle de l'ensemble des protons soit Q = Ze 3 1 4 



L'atome est un ensemble électriquement neutre comportant une partie centrale, le noyau (protons + neutrons), où est centrée pratiquement toute sa masse, et autour duquel se trouvent des électrons.
  • Comment définir l'atome ?

    ? atome. 1. Constituant fondamental de la matière dont les mouvements et les combinaisons rendent compte de l'essentiel des propriétés macroscopiques de celle-ci. (Un corps constitué d'atomes de même esp? est appelé corps simple ou élément chimique.)
  • Quels sont les 4 constituants d'un atome ?

    L'atome est le constituant de base de la matière.
    Dans le noyau de l'atome se trouvent les protons (chargés positivement) et les neutrons (non chargés), tandis que les électrons (chargés négativement) sont localisés autour du noyau.
  • Quels sont les constituants d'un atome PDF ?

    UN ATOME EST CONSTITUÉ D'UN NOYAU DE PROTONS ET DE NEUTRONS, ET D'UN NUAGE D'ÉLECTRONS.
  • Tu connais pour l'instant 4 types d'atomes : les atomes de carbone, d'oxygène, d'hydrogène et d'azote, mais il en existe beaucoup d'autres. Au total, on en dénombre plus d'une centaine Cette grande famille composée de plus de 100 cousins, est regroupée dans la classification périodique, ci-dessous.

AdM 1

La polarité de la liaison covalente

Electronégativité (E.n.) :

Nous savons que l'énergie d'une liaison est l'énergie (chaleur et travail) qu'il faut pour

rompre une mole de telles liaisons. Plus l'énergie de liaison est élevée, plus la liaison est

stable. Voici trois énergies de liaison :

Liaison E. de liaison

(kcal/mol)

O-O 33,2

F-F 36,6

O-F 44,2

Naïvement, on s'attendrait que l'énergie de la liaison O-F corresponde à la moyenne (p.ex. géométrique) des énergies de liaison O-O et F-F. =

6.36.2.33 = 34,8 kcal/mol

Elle est cependant beaucoup plus élevée !

On a trouvé que la différence

44,2 - 34,8 = 9,4 kcal/mol correspond à un gain de stabilité

supplémentaire qu'acquiert la liaison O-F du fait que le fluor attire plus fortement vers lui les électrons de la liaison covalente que l'oxygène. mesure donc la différence entre pouvoirs

d'attraction du fluor et de l'oxygène vis-à-vis de leurs électrons engagés dans une liaison

covalente simple. Cependant, le prix Nobel Linus Pauling a cru bon, pour des raisons pratiques, de caractériser ce pouvoir d'attraction par des nombres plus simples . Electronégativité d'un atome = nombre mesurant le pouvoir d'attraction de cet atome vis-à-vis de ses électrons engagés dans une liaison covalente simple.

Dans le but d'avoir des E.n. entre 0 et 4 , Pauling définit les électronégativités par les deux

règles suivantes : Electronégativité du fluor = 4,0 (maximum fixé arbitrairement) Différence d'électronégativité entre deux atomes = 30/ p. ex : E.n. (O) = 4,0 - 30/4,9 = 3,5 (source : Paul Arnaud. Cours de Chimie physique)

AdM 2

Liaisons polaires :

Une liaison covalente est polaire, si la différence des électronégativités des deux atomes formant

la liaison n'est pas nulle .

Exemples : H-O, C-F, N-O sont polaires

H-H, C-I, N-Cl ne sont pas polaires

L'atome le plus électronégatif d'une liaison polaire attire plutôt vers lui les électrons de la liaison

covalente. Il en résulte l'apparition de charges dans une telle molécule :

Puisque les deux électrons de la liaison covalente se trouvent plutôt du côté de l'atome le plus

électronégatif, celui-ci a gagné des électrons, il est chargé négativement . Cependant, il n'a pas

gagné une charge élémentaire négative entière, puisqu'il n'arrive pas à capter entièrement

l'électron supplémentaire. Voilà pourquoi on désigne sa charge par - , le signifiant entre 0 et 1 (incrément de charge).

Par contre, l'atome le moins électronégatif acquiert par le même mécanisme un incrément de

charge positive +.

Il est clair que les charges partielles s'approchent d'autant plus de l'unité que la différence des

électronégativités est élevée. A la limite, il y aura rupture de la liaison covalente et formation

d'une liaison ionique . ( Exemple : pas de liaison covalente K-F, mais liaison ionique K F

AdM 3

Dipôles :

Deux charges opposées situées à une distance donnée forment un dipôle. Chaque dipôle peut être

représenté par un vecteur dont le sens va de la charge positive vers la charge négative et dont

l'intensité dépend de l'intensité de la charge et de la distance entre les charges.

Exemple :

Les dipôles d'une molécule s'ajoutent par addition vectorielle pour former un dipôle résultant :

Exemple :

AdM 4

Prévision de la structure des molécules : Modèle VSEPR

1) On compte les groupes d'électrons autour de l'atome central. Un " groupe » est

a)Soit un doublet non apparié b) soit une simple liaison c) soit une double liaison d) soit une triple liaison

Molécul

e Atome central Nombre de groupes H 2

O O 4

CH 4 C 4 PF 5 P 5 COCl 2

C 3 (!)

Ces "groupes" se distribuent suivant la géométrie suivante:.

Nombre de groupes Distribution Exemple

2 linéaire BeH

2

3 trigonale planaire COCl

2

4 tetrahédrique CH

4

5 trigonal

bipyramidale PF 5

6 octahédrique SF

6 P

our établir la structure des molécules, il faut se rappeler que les doublets non appariés ne fixent

pas d'atomes.

AdM 5 (1) (2) (3) (4)

(1) : du tétraèdre (4 groupes) il reste seulement la structure " coudée » (2) : 4 broupes fixant des atomes, donc tétraèdre (3) : 3 groupes fixant des atomes, donc trigonal planaire (4) : 5 groupes fixant des atomes, donc bipyramide trigonale

Substances polaires et non polaires :

Une substance polaire possède des molécules à dipôle résultant non nul. Une substance non polaire possède des molécules à dipôle résultant nul.

Exemples :

H 2 non polaire, car même électronégativité de H et H CS 2 non polaire car même électronégativité de C et S CO 2 non polaire car dipôles s'annullent (structure linéaire) O=C=O CH 4 non polaire car dipôles s'annullent (structure tétraédrique) HCl polaire, car électronégativités différentes de H et Cl H 2 O polaire, car dipôle résultant non nul (molécule coudée) NH 3 polaire, car dipôle résultant non nul (structure de pyramide aplatie, N au sommet)

Le méthane CH

4 a un dipôle résultant nul

Les molécules polaires se comportent souvent

comme si formées d'un unique dipôle, le dipôle résultant

AdM 6

Polarité et températures de fusion et d'ébullition des substances :

Les molécules polaires tiennent ensemble par leurs dipôles (loi de Coulomb, attraction entre + et

Cette attraction électrostatique est d'autant plus forte que les charges partielles + et - sont

élevées ( forts dipôles) et que la distance de ces charges est petite (atomes petits) . C'est surtout

dans le cas où une charge + réside sur un atome d'hydrogène (très petit !) que l'attraction est

considérable (on parle de " pont » hydrogène ou " liaison » hydrogène), p.ex :

H-F ... H-F ... H-F ... H-F : des molécules de fluorure d'hydrogène s'associent fortement pour

former des "pseudo"-molécules beaucoup plus grandes, le pointillé indique une attraction

électrostatique et non des électrons !

En général les températures d'ébullition des substances augmentent avec leur masse molaire,

parce que des molécules plus grosses possèdent plus d'inertie et sont plus difficiles à faire bouger

ou à projeter en phase gazeuse. Dans le diagramme suivant, on remarque les températures

d'ébullition anormalement élevées dues à la polarité des petites molécules polaires et aux ponts

H:

C'est à cause de la polarité que notre planète est bleue ! (que l'eau est liquide et non gazeux)

(source : H.-R. Christen Chimie Généraley)

AdM 7

Polarité et vie :

L'image représente une petite protéine animale. Les protéines, ces admirables machines ne fonctionnent que si chaque atome est maintenu à sa place bien déterminée. Les ponts H entre atome d'hydrogène d'un groupe N-H et atome d'oxygène d'un groupe C=O déterminent la géométrie spatiale des protéines.

Sans polarité, pas de vie !

AdM 8

Polarité et miscibilité :

Expérience :

Conclusion :

Des substances polaires (un liquide au moins) sont miscibles Des substances non polaires (un liquide au moins) sont miscibles Des substances non polaires et polaires ne sont pas miscibles entre elles

Interprétation :

L'attraction mutuelle des molécules polaires

empêche les molécules non polaires de pénétrer entre elles Les molécules des deux substances polaires s'attirent mutuellement et s'interpénètrent Sans polarité, pas de vin ! (L'alcool est polaire) polaire non polaire polaire non polaire CH 4 O CCl 4 H 2 O CS 2 CH 4

O miscible non

miscible miscible non miscible CCl 4 miscible non miscible miscible H 2

O miscible non

miscible CS 2 miscible

AdM 9

Polarité, hydratation et dissolution des substances ioniques dans les solvants polaires : Le dessin montre un cristal ionique (p.ex. Na+Cl-) en train de se dissoudre dans l'eau. Les molécules d'eau polaires se fixent autour des anions et cations, on dit qu'elles hydratent les ions.

Les ions hydratés peuvent pénétrer facilement dans l'eau à cause de la polarité des molécules

d'eau d'hydratation.

Les ions hydratés ont souvent une couleur différente des ions correspondants non hydratés, p.ex

Cu 2+ aq est bleu, Cu 2+ anhydre est blanc.

Souvent, les cations métalliques cristallisent ensemble avec leurs molécules d'eau d'hydratation,

exemple CuSO 4 .5H 2 O où les 5 molécules d'eau entourent l'ion Cu 2+

Sans polarité la soupe est fade !

AdM 10 Polarité et complexes

Définitions :

Les cations de petite taille peuvent s'entourer de molécules polaires ou d'anions pour former des

ions complexes, par exemple (source : L. Pauling, General Chemistry)

L'ions cobalt(III) Co

3+ s'est entouré ici de trois molécules d'ammoniaque (polaires, car de structure pyramidale aplatie, - sur N ) ainsi que de deux ions chlorure Cl Co 3+ est appelé ion central NH 3 et Cl sont les ligands

L'ion [Co Cl

2 (NH 3 4 s'appelle ion complexe

Les 4 NH

3 et les deux Cl forment la sphère de coordination

Le nombre de coordination est 6

Nature des ligands :

Expérience : Le sulfate de nickel pur est jaunâtre. Introduit dans l'eau, il se dissout pour former

une solution verte. En ajoutant progressivement de l'ammoniaque dilué, puis concentré, la couleur de la solution passe du vert au bleu clair, puis au bleu profond violacé.

Interprétation :

Ni 2+ eau [Ni(H 2 O) 6 2+ (vert) ammoniaque [Ni(NH 3 )(H 2 O) 5 2+ ammoniaque [Ni(NH 3 2 (H 2 O) 4 21
2+ ammoniaque [Ni(NH 3 3 (H 2 O) 3 2+ ammoniaque [Ni(NH 3 4 (H 2 O) 2 2+ ammoniaque [Ni(NH 3 5 (H 2 O) ] 2+ ammoniaque [Ni(NH 3 6 2+ (bleu violacé) Il y a remplacement progressif de l'eau d'hydratation par le ligand ammoniac La couleur d'un complexe dépend de la nature et du nombre de ligands.

Certains ligands (comme NH

3 ) sont plus " forts » que d'autres (comme H 2 O)

AdM 11

Noms des complexes :

1) L'ion central a le nom de l'élément, si le complexe est positif ou

neutre, le nom indiqué dans le deuxième tableau dans le cas contraire.

2) Les préfixes di, tri, tetra, penta, hexa, etc.. indiquent le nombre de

chacun des ligands. Si le ligand renferme déjà ces préfixes, on utilise bis, tris, tétrakis,..

3) Un chiffre romain entre parenthèses est utilisé pour indiquer le

nombre d'oxydation de l'atome métallique central.

4) Les ligands sont écrits par ordre alphabétique dans le nom, les

anions précèdent dans la formule. Ions: [Co Cl 2 (NH 3 4 tétramminedichlorocobalt(III) [Ni(NH 3 5 (H 2 O)] 2+ pentammineaquanickel(II) [Cu(CN) 4 2- tétracyanocuprate(II)

Sels :

[Co Cl 2 (NH 3 4 ]Cl chlorure de dichlorotetramminecobalt(III) [Co Cl (NH 3 5 ]Cl 2 chlorure de chloropentamminecobalt(III) K 3 [Co(NO 2 6 ], hexanitritocobaltate(III) de potassium (sel de Fischer) [Pt Cl (NH 3 3 2 [PtCl 4 ] tétrachloroplatinate(II) de di(monochlorotriammineplatine(II)) (sel rose de Magnus) NH 4 [Cr(SCN) 4 (NH 3 2 ]tétrathiocyanatodiamminechromate(III) d'ammonium (sel de Reinecke) [Pt(NH 3 6 ]Cl 4 chlorure d'hexammineplatine(IV) (sel de Drechsel) K[Cl 3 Pt(NH 3 )] trichloroammineplatinate(II) de potassium (premier sel de Cossa) K[Cl 5 Pt(NH 3 )] pentachloroammineplatinate(IV) de potassium (deuxième sel de Cossa) H 2

O aqua

OH hydroxo O 2- oxo NH 3 ammine CN cyano SCN thiocyano NO 2- nitro

NO nitrosyl

Br bromo I iodo F fluoro SO 42-
sulfato SO 32-
sulfito S 2 O 32-
thiosulfato CO 32-
carbonato CH 3 COO acetato C 2 O 42-
oxalato S 22-
thio

CO carbonyl

Pb plombate

Cu cuprate

Au aurate

Al aluminate

Ag argentate

Fe ferrate

Zn zincate

Ni nickelate

Co cobaltate

Hg mercurate

Sn stannate

L'ion hexamminecobalt(III)

(source : Dr Blume

AdM 12

Chélates :

Certains ligands possèdent plusieurs points

d'attache (partiellement) négatifs. Ils peuvent insérer le cation central comme le homard dans ses pinces (chélicères):

Exemples:

1) Le 1,2-diaminoéthane (éthylènediamine) H

quotesdbs_dbs35.pdfusesText_40
[PDF] énantiomère diastéréoisomère terminale s

[PDF] optiquement actif ou inactif

[PDF] diastéréoisomère exemple

[PDF] optiquement actif définition

[PDF] mélange racémique

[PDF] énantiomère diastéréoisomère

[PDF] raisonnement par implication

[PDF] raisonnement par équivalence définition

[PDF] raisonnement par l'absurde exercices

[PDF] fiche de revision geographie 3eme

[PDF] polarité des molécules exercice

[PDF] exercice polarité 1s

[PDF] hcl polaire ou apolaire

[PDF] molécule polaire exercice corrigé

[PDF] exemple de raisonnement par analogie