[PDF] Atomes & molécules CORRIGE 31 janv. 2019 Le monoxyde





Previous PDF Next PDF



Atomes & molécules CORRIGE

31 janv. 2019 Le monoxyde de carbone de formule brute CO



Modèle de Lewis Modèle de Lewis

27 oct. 2017 a - Proposer une représentation de Lewis de chaque espèce sachant qu'aucune d'entre elles ne fait intervenir de liaison O?O. 1.b - NO et NO2 ...



Structure électronique des molécules

Ecrire les formules de Lewis des espèces suivantes 2- Donner deux formules de Lewis du dioxyde d'azote NO2 où l'azote est l'atome central et justifier ...



UNIVERSITE P

1 janv. 2002 3-1 Ecrire les formules de Lewis de NO2. - NO2 et NO . Quelle est la particularité commune aux deux derniers? Dans NO2.



Séance de TD N°5

Montrer à partir de cette valeur expérimentale de l'angle de liaison que seule la structure de Lewis A de la molécule NO2 peut correspondre à la molécule réelle 



1 Théorie de Lewis

Représentation de Lewis trons a été formulée par Lewis en 1916 : ... Cas de NO2 : Ne =5+2 × 6 = 17 ce qui donne 8 doublets et.



Travaux dirigés de Chimie n° 2

Ecrire la formule de Lewis des ions suivants ; leur atome central est représenté en Donner deux formules de Lewis du dioxyde d'azote NO2 où l'azote est ...



L1S1-CHIM 110 - « ATOMES ET MOLECULES » - SEANCE de TD

Son moment dipolaire mesuré est de 1633 D. La longueur de liaison expérimentale pour les deux liaisons SO est de 1



Travaux dirigés de Chimie n° 4

Ecrire la formule de Lewis des ions suivants ; leur atome central est représenté en gras Donner deux formules de Lewis du dioxyde d'azote NO2 (électron ...



Molécules et solvants - Quentin De Muynck

Donner une formule de Lewis du dioxyde d'azote NO2 (dans lequel le noyau N est central). Justifier qu'il se dimérise facilement en N2O4 dont on donner une 



Chapitre 8 : Structure des composés organiques

La formule de Lewis consiste à représenter toutes les liaisons entre atomes ainsi que les doublets non liants Elle permet de se rendre de compte de la manière dont sont liés les atomes



Searches related to formule de lewis no2 PDF

Modèle de Lewis Exercices Exercice1:SchémasdeLewisexemplessimples [ ] Construire les schémas de Lewis des entités suivantes Utilisez si besoin le tableau périodique distribué avec le chapitreAM2 1 - DichlorométhaneCH 2 Cl 2 2 - SiliceSiO 2 3 - MéthylamineCH 3 NH 2 4 - ÉthaneC 2 H 6 5 - ÉthèneC 2 H 4 6 - MéthanalH 2 CO 7

  • Total Valence Electrons Pairs

    Total valance electrons pairs = ? bonds + ? bonds + lone pairs at valence shells Total electron pairs are determined by dividing the number total valence electrons by two. For, NO2-, there are 18 valence electrons pairs, so total pairs of electrons are 9.

  • Center Atom of NO2-

    To be the center atom, ability of having greater valance is important. Therefore nitrogen has the more chance to be the center atom (See the figure). So, now we can build a sketch of NO2-ion.

What is the Lewis structure of NO2-?

Draw the resonance structure of NO2-. Draw the resonance structure of N O? 2 N O 2 ? . A Lewis structure describes the arrangement of all bonding (shared) and non-bonding valence electrons present in a given covalent molecule. Many molecules contain double or even triple bonds (i.e. pi bonds) in their Lewis structure.

How to draw No 2 Lewis structure?

Following steps are required to draw NO 2- lewis structure and they are explained in detail in this tutorial. Find total number of electrons of the valance shells of nitrogen and oxygen atoms and charge of the anion Stability of lewis structure - Check the stability and minimize charges on atoms by converting lone pairs to bonds.

How many valence electrons are in NO2?

Once we know how many valence electrons there are in NO2 - we can distribute them around the central atom with the goal of filling the outer shells of each atom. In the Lewis structure of NO2 - structure there are a total of 18 valence electrons. NO2 - is also called Nitrite ion.

Why is the drawn structure of NO2 not a stable one?

The drawn structure for NO 2- is not a stable one because both oxygen atoms and nitrogen atoms have charges. Now, we should try to minimize charges by converting lone pair (s) which exist on oxygen atoms to bonds. So we convert one lone pair of one oxygen atom as a N-H bond. Now there is a double bond between nitrogen and one oxygen atom.

PCSI Devoir Surveillé 4 Jeudi31janvier2019Atomes&moléculesCORRIGEL'usagedescalculatricesestautorisé.Laduréedudevoirest2h00AVERTISSEMENTLaprésentation,lalisibilité,l'orthographe,laqualitédelarédaction,laclartédesraisonnementsentrerontencomptedansl'appréciationdescopies.

Ilestrappeléauxcandidat(e)squelesexplicationsqualitativesdesphénomènesinterviennentdanslanotationaumêmetitrequelescalculs;Les exercices qui vous sont proposés cet après-midi sont consacrés aux interactions de faibles énergie, au chlore Clet à deux " petites » molécules : NOet CO. EXERCICE1:INTERACTIONSDEFAIBLESÉNERGIESOndonnelesnumérosatomiquessuivant:H:1P:15S:16OnétudielesdeuxmoléculesPH3etH2S.I.1-Températuresd'ébullition1. Représenterlesdeuxmoléculesdansl'espaceenutilisantlaméthodeV.S.E.P.R.Ppossède5électronsdevalenceetSenpossède6.LesdeuxschémasdeLewissontdonc:PH3estdoncdetypeAX3E1autourdePetH2SdetypeAX2E2autourdeS.Complétonscepetittableau:PH3H2S4doubletsàrépartir4doubletsàrépartirAX3E1AX2E2Géométriepyramidaleàbasetriangulaireavecunangledeliaisonα<109°28'Géométriecoudéeavecunangledeliaisonα<109°28'2. Représenterlemomentdipolairetotaldechacuned'entreelles.

Lesmomentsdipolairesvalent0,55DpourPH3et0,97DpourH2S.3. Justifierl'évolutiondestempératuresd'ébullitionobservée:ComposéPH3H2STéb/K185212Lesdeuxmoléculessontpolaires,doncnousavonsdesinteractionsdipôlepermanent-dipôlepermanent,regroupéessousl'appellation"interactionsdeKeesom».DanscecasilyaussidesinteractionsdeDebyeetdeLondon,cesdernièresétantgénérales,présentesmêmelorsquedesmoléculessontapolaires.CommelamoléculedeH2Sestpluspolaire,lesinteractionsvontêtreplusfortesdanssoncas.Silesinter actionssontplus fortes,ilfautalors plusd'énergie pour lesvaincre,etobserverlechangementd'état.Ainsi:latempératured'ébullitiondeH2SestpluélevéequecelledePH3:Téb(H2S)>Téb(PH3)EXERCICE2:LAMOLECULECOLe monoxyde de carbone, de for mule br ute CO, est à l' état gaze ux dans les conditions normales de température et de pression. Il s'agit d'un gaz incolore, inodore et très toxique pour les mammifères. Che z l'être humain, il est la cause d'intoxi cations domest iques fréquentes, parfois mortelles. Son émanation provient d'une combustion incomplète de composés carbonés, accentuée par une mauvaise alimentation en air frais ou une mauvaise évacuation des produits de c ombustion. Il apparaî t comme un gaz impli qué de faç on majeure dans les effets néfast es de la pollution atmosphérique. Cependant, à l'échelle industrielle, plusieurs centaines de mil lions de tonnes de monoxyde de c arbone sont produites chaque année dans le monde, destinées à être utilisées comme réactif de synthèses variées telles que celle du phosgène ou celle d'aldéhydes par réaction d'hydroformylation.

PartieI-ToxicitédumonoxydedecarboneI.1-Fixationdumonoxydedecarboneparl'hémoglobine4. Donnerlaconfigurat ionélect roniquedesatomesdecarboneetd'oxygène etyrepérerlesélectronsdevalence.C:1s22s22p2/2s22p2:4électronsdevalenceO:1s22s22p4/2s22p4:6électronsdevalence5. Proposerdeuxformulesmésomèrespourlemonoxydedecarbone(attention,ilestrappeléqu'unschémadeLewisn'estcorrectquesileschargesformellesyapparaissentlorsquecertainsatomesenportent).LalongueurdelaliaisonCOdanslemonoxydedecarbonevaut113pm.Commentercettevaleur,etindiquerquelleestlaformequicontribueleplusàladescriptiondelamoléculeCO.Ilya10électronsdevalence,quenousdistribuersouslaformede5doublets:Silalon gueurde laliaisonestvoisinede 113pm,c elaveut direquelaformemésomèrequidécritlem ieuxlamoléculedemon oxydedecarbon eestlapremière,car113pm,c'esttrèsprochede112pm,donnédansl'énoncé.Cequiestremarquable,c'estquedanscettef ormémésomère,ladi stributiond eschargesformellesn'estpasenaccordaveclesdifférencesd'électronégativité.6. Ladistri butiondeschargesformellesest-elleenaccordavecl esdifférences d'électronégativité?Non,ellenel'estpascarOestplusélectronégatifqueC.Cetterépartitionestassezsingulière,etdoitdoncêtrerelevée.OnmesurelanormedumomentdipolairedelamoléculeCO:µ=0,146D.7. Représenterlemomentdipolaire delamolé culeCOaveclesconv entionshabituelles.Calculerlachargeqou-qportéeparchaqueatome,enlanotantsouslaformed'unefractionα delachargeélémentairee:q=α.e.

µ=0,146Dsoitµ=0,146x(1/3).10-29=4,87.10-31C.mCommed=113pm=113.10-12m,onendéduitq=4,31.10-21C.Soitα=q/e=0,027Noussommesbienloindeladistributiondeschargesformelles,nousvoyonsqueOexerceuneffettrèsattracteurd'électron:ilportecertestoujoursunecharged=,maistrèspetite.8. Calculerlepourcentaged'ionicitédelaliaisonCO.NotonsIcepourcentaged'ionicité:í µ= í µí µÃ©í µí µí µí µí µí µí µí µí µí µ= í µ,í µí µ.í µí µ!í µí µí µ,í µ.í µí µ!í µí µÃ—í µí µí µ.í µí µ!í µí µÃ—í µí µí µí µ= í µ,í µLepourcentageioniqueestvraimenttrèstrèsfaible!Document1-Fixationdudioxygèneetdumonoxydedecarboneparl'hémoglobineL'hémoglobineestforméedequatresousunitéspolypeptidiquesassociéeschacuneàuncofacteurlié:l'hè me.L'hèmeestconstit uéd'unatomedef er(II)compl exéparuneporphyrine.L'atomedefer(II)e stfixéa ucentrede laporphyrine grâceàl'i nteractionavec lesatomesd'azote.C'estàcetionquesefixeledioxygènelorsdel'oxygénationdusang.Lorsdesintoxicationsaumonoxydedecarbone,cederniersefixeàl'atomedefer(II),empêchantlafixationdudi oxygène. Lescomplexesobtenuslors delafix ationdudioxygèneetdumonoxydedecarbonesontreprésentésdefaçonsimplifiéeci-dessous:NN

NN OH O OH O Fe II

complexehémoglobine-O2complexehémoglobine-COPoursimplifierl'étude,onneconsidèrequel'interactionentrel'atomedefer(II)etlemonoxydedecarboneCO.9. Danschacundescomplexesreprésentésdansledocument1,justifierparlathéorieV.S.E.P.R.lesgéométriesobservéesauniveaudel'atomeduligand(O2ouCO)quiestdirectementliéauferetestimerl'anglevalencielcorrespondant.Auniveaudel'atomedeOdeO2:Lagéométrieestdonccoudéedanscecas,avecunanglevoisinde120°AuniveaudeCdeCO:Lagéométrieestdonclinéairedanscecas,avecunanglede180°10. Laquelledesinteractionsfer(II)-COoufer(II)-O2est-elleapriorilaplusforte?Silemonoxydedecarboneempêchelafixationdudioxygène,c'estqu'ilestfortementliéaufer:lesinteractionsfer(II)-COsontdoncplusfortesquelesinteractionsfer(II)-O2.11. L'ioncyanureCN-sefixes url'hémoglobin edefaçons imilaireaumonoxydedecarbonerendantainsil'ionCN-toxique.Justifier.Ilsefi xefacile mentparceque l'ioncyanureetlemonoxyded ecarbonesontNN

NN OH O OH O Fe II O O NN NN OH O OH O Fe II C O

isoélectroniques:Numéros atomiques Élément C N O Z 6 7 8 Longueurs de liaison covalente en pm Liaison C-O C=O C≡O Longueur d (pm) 143 122 112 Charge élémentaire : e = 1,6.10-19 C Unités des moments dipolaires : 1 D = (1/3).10-29 C.m EXERCICE3:AUTOURDEL'ELEMENTCHLORELe dichlore Cl2 a été synthétisé pour la première fois par le chimiste suédois C.W. Scheele en 1774. Ce dernier le prit pour un corps composé et l'appela " air acide mari n déphlogistiqué ». En 1810, le chimiste anglais Sir H. Davy identifia ce gaz comme un corps simple et l'appela "chlore» en raison de sa couleur vert-jaune (du grec chloros vert). Le gaz dichlore est fortement toxique et très irritant pour les poumons. Numéros atomiques Élément C N O P S Cl I Z 6 7 8 15 16 17 53 1. L'élément et l'atome 1.1Quelquesdéfinitions12. Quellegrandeurcaractériseunélémentchimique?Quereprésente-t-elle?Oùestsituél'élémentchloredanslaclassificationpériodique?C'estlenuméroatomiqueZquicaractériseunélémentchimique.

Zestlenombredeprotonsquecontientlenoyaudel'atome.Lechloreestdansl'avantdernièrecolonne,celledeshalogènes.13. Àquellefamilleappartient-il?Lechloreestledeuxièmeélémentdelafamilledeshalogènes.14. Citerdeuxautresélémentsdecettefamille.Nouspouvonsciterlefluor,lechlore,l'iode,lebrome,l'astate,etletennesse.1.2L'atome15. Établirlaconfigurationélectroniquedel'atomedechloredanssonétatfondamental.Configurationélectroniquefondamentale:1s22s22p63s23p516. Quelssontlesélectronsdevalencedel'atomedechlore?Lechlorepossède7électronsdevalence:3s23p52. Étude de quelques composés contenant l'atome de chlore 2.1.LamoléculededichloreCl217. ReprésenterleschémadeLewisdelamoléculededichlore.18. Laphotoci -dessousmontreuneampoule scelléecontenan tdudichlo reliquide(ampouleenhaut).18.1. Lamoléculededichloreest-ellepolaireouapolaire?

Lamoléculededichloreestapolaire.18.2. Indiquerleplusprécisémentpossiblel'interactionresponsabledelacohésiondesmoléculesdedichloreàl'étatliquide,etindiquerl'ordredegrandeurdecetteinteraction,enkJ.mol-1.Lamolécul eestapolaire,lesseu lesinteract ionsresponsablesdelacohé siondesmoléculesàl'étatliquidesontlesinteractionsdeLondon,interactionsdeVanderWaalsquisontduesàdesinteractionsdipôlesinstantanés/dipôle sinstantanés.L'ordredegrandeurdel'énergiedecesinteractionsestquelqueskJ.mol-1.2.2.Étudedequelquescomposéschlorés19. ÉtablirlareprésentationdeLewisdesespècespolyatomiquessuivantesdontl'atomecentralestreprésenté engrasetd ontlaformuleestécritedefaç onàtrad uirel'enchaînement:19.1. lechloruredethionyleOSCl2(a);OetClsontliésàl'atomecentralS19.2. lechloruredesulfuryleO2SCl2(b);OetClsontliésàl'atomecentralS19.3. letrichlorured'iodeICl3(c).LesatomesClsontliésàl'atomecentralIOSCl2O2SCl2ICl36+6+2*7=26é.valence26/2=13doublets2*6+6+2*7=32é.valence32/2=16doublets7+3*7=28é.valence28/2=14doublets20. Déterminer,àl'aidedelaméthodeVSEPR,lagéométriedesédifices(a)et(b)auniveaudel'atomedesoufrecentral.

OSCl2O2SCl2AX3E1AX4E0PyramidaleàbasetriangulaireTétraédrique21. Déterminerlafigurederépuls ioncorre spondàcelledel'édifice(c).Indiquezlagéométriedelamoléculesachantquelesdoubletslibressontenpositionéquatoriale.Lafigurederépulsionestunebipyramideàbasetriangulaire:Silesdeuxdoubletslibressontenpositionéquatoriale,alorslamoléculeauneformedeT:soitaussi: 22. Dansl'édifice(c),peut-onremplacerl'atomed'iodeparunatomedefluor?Justifierlaréponse.

Non,carlefluorn'estpashypervalent:ilnepossèdepasd'OA"d»susceptiblesd'accueillirdesélectrons.23. Écrirelesformulesmésomèreslespluscontributivesdel'ionchloriteClO2-etdel'ionchlorateClO3-.Danslesformulesdecesions,l'atomecentralestreprésentéengras.Ionchlorite:Ionchlorate:24. Pourquoilesdistanceschlore-oxygènesont-ellesidentiquesdansl'ionchlorite?Cettedistanceseranotéed1.Ellessontidentiquescarl'écrituredesformesmésomèresmontrequelesélectronssontdélocalisés(4électrons),etquelesliaisonsClOontuncaractèreidentiquedeliaisonentreliaisondoubleetliaisonsimple.25. Pourquoilesdistanceschlore-oxygènesont-ellesidentiquesdansl'ionchlorate?Cettedistanceseranotéed2.Demême,ellessontidentiquescarl'écrituredesformesmésomèresmontrequelesélectronssontdélocalisés (6électrons),et quelesliaisonsClOont uncara ctèreidentiquedeliaisonentreliaisondoubleetliaisonsimple.26. Comparerleslongueursdesliaisonschlore-oxygèned1etd2.Justifier.

Dansl'ionchlorite,lesdeuxformesmésomèresmontrentquedans1forme,laliaisonClOestdoubleetdans1autreforme,laliaisonestsimple.Caractèredesimpleliaison:50%-caractèrededoubleliaison:50%Dansl'ionchlorate,lestroisformesmésomèresmontrentquedans2formes,laliaisonClOestdoubleetdans1autreforme,laliaisonestsimple.Caractèredesimpleliaison:1/3-caractèrededoubleliaison:2/3Conclusion:lecaractèrededoubleliaisonestplusimportantdansl'ionchloratequ'ilnel'estdansl'ionchlorite.Conclusion:LaliaisonClOestpluscourtedansl'ionl'ionchlorate:d2 P Cl Cl Cl Cl Cl et P Cl Cl Cl Cl

Ces deux édifices sont de type AX5E0 et AX4E1, donc dérivent tous les deux de la même figure de géométrie, celle de type AX5E0, et c'est une bipyramide à base triangulaire.28. DessinerlamoléculePCl5etindiquerlavaleurendegrésdesanglesClPClsurledessin.29. LamoléculePCl5est-ellepolaire?Justifierclairementvotreréponse.TouteslesliaisonsPClsontpolariséesmaislasommedes3momentsdipolairesdansleplanéquatorialdonnelevecteurnuletlasommedes2momentsdipolairesaxiauxaussi,donclasommeestnulle.Conclusion:lamoléculePCl5estapolaire.30. Enfonctiondelapositiondudoubletnonliantdanslabipyramide,montrerquel'onpeutàpriorienvisagerdeuxstéréo-isomèresdel'ionPCl4-.Lesdessiner.

31. Lestéréo-isomèreleplusstableparmilesdeuxprécédentsestceluioùledoubletnonliantestsituéenpositionéquatoriale:quelestcestéréo-isomère?Proposeruneinterprétationpourlaplusgrandestabilitédecetisomère.Onpeutpenserquecettedispositionestplusstableparcequeledoubletlibrenesubitque2interactionsrépulsivesà90°,tandisqu'enpositionaxiale,ilensubit3.Toutcecisupposedoncquelesinteractionsà120°sontnégligées,parcequel'angleentrelesdoubletsestimportant.4 - Étude d'un gaz lacrymogène chloré Le2-chlorobenzylidènemalonitrileougazCSestlegazl acrymogèn edeformuledeformuleClC6H4CH=C(CN)2.Ung azlacry mogèneestun composéchimique(souventproduitparuneréactiondecombustion),quichezl'Homme,produitimmédiatementunlarmoiement,uneirritationdelapeauetd esmuqueu sesengénér al.Les gazlacrymogènescorrespondentàunegrandevariétédedifférentscomposésmoléculaires.

legazlacrymogèneCS2-chlorobenzylidènemalonitrile32. Développerlegroupe mentCN(enfaisantdoncapparaître tou slesdoubletsd'électrons;pourrappel:lesnumérosatomiquesdeCetNsont6et7),etindiquerlagéométrieautourdel'atomedecarbonedecegroupeCNdanslamolécule.EXERCICE4:LAMOLECULENONommée"moleculeofthe year1992»par lacélèbre revueScience,lemonox yded'azote(NO),initialementréputépoursaprésencenéfastedanslafuméedecigaretteetlesgazd'échappement,estaussiunmessagercellulairedepremièreimportancechezlesmammifères.Soni mplicationdansdenombreuxpro cessusbiologiques,telsquelessystèmescardiovasculaire,nerveuxcentraletpériphériqueouencoreimmunitaireaétédémontréedepuislesannées1980. Lemonoxyded'azot epeutag ircommeneurotransmetteur,vasodilatateur,ouagentcytostatiqueetcytotoxique.Ladécouvertedesespropriétésbiologiquesnombreusesetinattenduesjustifieletitrede"Moléculedel'année»en1992!Ceproblè mes'intéresseà lastruct uredumonoxy ded'azote,àsesdériv ésd'oxydo-réductionetàsaréactivitéinvitro(PartieA)puisàsaformationinvivogrâceauxenzymesNO-synthasesetàdifférentscofacteurs(PartieB)etenfinàsonactionentantqu'agentvasodilatateuroutoxique(PartieC).Nombred'oxydationd'unélémentauseind'uneentitépolyatomique:Lenombre(oudegré)d'oxydationd'unélémentauseind'unédificepolyatomiqueestdéfinicommeétantlachargeformellequeportecetélémentlorsqu'onattribuelesdeuxélectronsdechaqueliaisoncovalenteàl'atomeleplusélectronégatifimpliquédanslaliaison.Cenombresenoteenchiffreromain.Parexemple,danslecasdelamoléculed'eauH2O,l'électronégativitédeOétantsupérieureàcelledeH,leschargesformellesdeHetdeOsontH+etO2-.Lesnombresd'oxydationsontdonc(+I)pourHet(-II)pourO.Parext ension,lenomb red'oxyd ationd'unélémentausein d'union monoatomiquecorrespondàlachargedecetatome.

1 - Étude de NO in vitro Structureetréactivitédumonoxyded'azoteetdesesdérivésSelonl'environnement,NOpeutsetrouversousdesformesplusoumoinsréduitesouoxydées,etsousformededimèresoudemonomères.LesstructuresdeLewisdecesespècespeuventcomporte rdesélectronsnon-appariés(aussiappelés électronscélibataires),quiserontreprésentésparunpoint.33. Lemonoxyded'azoteNOréagitavecledioxygènedissoutpourformerledioxyded'azoteNO2.Ecrirel'équationdelaréaction.NO(g)+½O2(g)=NO2(g)Ou2NO(g)+O2(g)=2NO2(g)34. ProposerunestructuredeLewisdeNOetunedeNO2faisantchacuneapparaîtreunélectronnon-appariésurl'atomed'azote.StructuredeNO(5+6=11 électrons deva lencedonc5doublets+ 1élect roncélibataire):StructuredeNO2(5+2*6=17 électrons deva lencedonc8doublets+ 1élect roncélibataire):35. Donnerlenombred'oxydationdel'atomed'azotedanslesmoléculesdeNOetdeNO2.CommeχP(O)>χP(N),onattribuelesélectronsdesliaisonsNOàO:Oestaudegréd'oxydation-IIdansNOetdansNO2.DansNO,Nestaunombred»oxydation+II,etdansNO2,Ncèdedonc3électronsetilluienmanqu aitdéjà 1(1chargeformelleposit ive),doncNestaunombred'oxydation+IV.Ledioxyde d'azoteNO2existeaussiensolutionaqueuseso usformededimère:letétraoxydedediazoteN2O4.Cedernierpeutsedismuterenionsnitrate(NO3-)etnitrite(NO2-),ouréagiravecNOpourformerdutrioxydedediazote(N2O3).36. ProposerunestructuredeLewispourchacundesionsNO3-etNO2-.

Ion nitrate : Ion nitrite : 37. DonnerlagéométriedeNO3-etcelledeNO2-,enlesjustifiantdanslecadredelathéorieVSEPR.L'angleONOestde120°dansNO3-et115°dansNO2-.Commentercesvaleurs.NO2-:detyp eAX2E1doncanglede liaisonde120° maiscomme lesrépulsionsimpliquantledoubletlibresontplusfortes,lamoléculeatendanceàserefermer:l'angleestinférieurà120°,d'oùlavaleur115.NO3-:detypeAX3E0doncangledeliaisonde120°etcommetouteslesrépulsionsimpliquantlesdoubletsdesliaisonssontsemblables,lamoléculepossèdedesanglesdeliaisonquivalentvraiment120°.38. LaliaisonNOestpluslonguedansNO3-quedansNO2-.Expliquer.Elleestpluslongueparcequ'elleauncaractèredesimpleliaisonplusimportant(2formesmésomèressurles3fontapparaîtreuneliaisonsimple,alorsqueladernièreformefaitapparaîtreuneliaisondouble).Dansl'ionnitrite,c'estuncaractèredeliaisonsimpleetdeliaisondoublequiapparaîtdelamêmefaçon.DonclaliaisonNOestpluscourtedansl'ionnitrite,oupluslonguedoncl'ionnitrate.

2 - Formation de N2O3 Lorsdelacombinaisond'unemoléculedeNOavecunemoléculedeNO2,ilexistequatrepossibilités.CesquatreassemblagespossiblessontindiquéssurlaFigure1.Laliaisonforméeestreprésentéeengras.Figure1-Différentsassemblagespossibleslorsdelaformationd'uneliaisonentreNOetNO2.39. ProposerunschémadeLewispourchacundesquatreisomèresA,B,CetDissusdesassemblagesprésentéssurlaFigure1. Npossède5électronsdevalenceetOenpossède6:2x5+3x6=28électronsdevalenceautotalet28/2=14doubletsàrépartirentrelesatomes.ABCD 3 - Cinétique de réaction de NO avec le dioxygène in vitro NOestoxydéenionnitriteNO2-parledioxygènedissout,ensolutionaqueuseaérobie(c'est-à-direexposéeàl'air)tamponnéeàpH=7,4.Laréactionestsupposéetotale.2NO(aq)+1/2O2(aq)+H2O(l)=2NO2-(aq)+2H+(aq)Ons'intéressedansunpremiertempsàlavitesseinitialedecetteréaction,notéev0,définieendébutderéaction.Lesconcentrationsdesréactifssontalorségalesàleursvaleursinitiales.Onsupposeraquela réactionadmetdanscesconditions unordre,appeléordreinitial.Lestableauxci-dessousdonnentlavitesseinitialev0delaréactiond'oxydationdeNOdansdifférentesconditionsexpérimentales:

1èreséried'expériences:[O2]0=3,0x10-5mol.L-1[NO]0(mol.L-1)3,0x10-51,0x10-53,0x10-61,0x10-63,0x10-7v0(mol.L-1.s-1)1,35x10-71,50x10-81,35x10-91,50x10-101,35x10-112èmeséried'expériences:[NO]0=3,5x10-5mol.L-1[O2]0(mol.L-1)2,0x10-51,0x10-52,0x10-61,0x10-62,0x10-7v0(mol.L-1.s-1)1,22x10-76,10x10-81,22x10-86,10x10-91,22x10-940. Envousaidantdecesdeuxsériesd'expériences,donner,enlajustifiant,l'expressiondev0enfonctionde[NO]0,[O2]0etd'uneconstantedevitessek.Utilisons la méthode différenti elle en t raçant Ln(v0) = f (ln([NO]0) dans la premi ère expérience : en effet, il est bien dit que la réaction admet un ordre initial donc la vitesse est de la forme : v0 = k. [NO]0a[O2]0b Ln(v0) = Ln[k. [NO]0a[O2]0b] Ln(v0) = Ln(k) + Ln([NO]0a) + Ln([O2]0b) Ln(v0) = Ln(k) + a.Ln([NO]0) + b.Ln([O2]0) Première expérience : Ln(v0) = Cste + a.Ln([NO]0) Seconde expérience : Ln(v0) = Cste' + b.Ln([O2]0) Traçons donc les deux courbes : [NO]0/mol-1v0/mol-1.L.s-1Ln([NO]0)Ln(v0)3.00E-051.35E-07-10.41-15.821.00E-051.50E-08-11.51-18.023.00E-061.35E-09-12.72-20.421.00E-061.50E-10-13.82-22.623.00E-071.35E-11-15.02-25.03

On en déduit donc que : a = 2 Et de même : [O2]0/mol-1v0/mol-1.L.s-1Ln([O2]0)Ln(v0)2.00E-051.22E-07-10.82-15.921.00E-056.10E-08-11.51-16.612.00E-061.22E-08-13.12-18.221.00E-066.10E-09-13.82-18.912.00E-071.22E-09-15.42-20.52 On en déduit donc que : b = 1

Y Y

YLinéaire(Y)

La loi de vitesse est donc : v0 = k.[NO]02[O2]01 41. Déterminerunevaleurapprochéedeketprécisersonunité.Estimonskàpartirdequelquesrésultatsexpérimentaux:[O2]0/mol-1[NO]0/mol-1v0/mol-1.L.s-1k2.00E-053.50E-051.22E-074979591.841.00E-053.50E-056.10E-084979591.842.00E-063.50E-051.22E-084979591.841.00E-063.50E-056.10E-094979591.842.00E-073.50E-051.22E-094979591.84[O2]0/mol-1[NO]0/mol-1v0/mol-1.L.s-1k3.00E-053.00E-051.35E-075000000.003.00E-051.00E-051.50E-085000000.003.00E-053.00E-061.35E-095000000.003.00E-051.00E-061.50E-105000000.003.00E-053.00E-071.35E-115000000.00Cequido nnedoncune mêmevaleurdek bienentend u:k=5.106mol-2.L2.s-1(attentionàl'unité»carlaréactionestd'ordreglobal3).4 - Thermodynamique de l'intoxication au NO Unphénomèned'into xicationaumonoxyded'azotees tobservéparéchangedu dioxygèneO2del'hémoglobineHbparlemonoxyded'azoteNOselonlaréaction(1)(figure1).L'apportendioxygèneestrestreintetpeutalorsentraînerdegravestroublesphysiologiques.(1) Hb-O2(aq)+NO(aq)=Hb-NO(aq)+O2(aq)K°1Leseuil d'intoxicationau monoxyded'azoteestatteint,à300K,lors quelerapport !"!!"!"!!!=7×10-2.Ondonneà300K:K°1=3,4.10442. Calculerlavaleurdurapportminimum[O2]/[NO]permettantladésintoxicationaumonoxyded'azote.Conclure.Ilny'apasd'intoxicationsilerapportesttelque:í µí µ-í µí µí µí µ-í µ!<7.10!!

Or: í µÂ°!=í µí µ-í µí µí µ!í µí µ-í µ!í µí µ=3,4.10!Alors:í µí µ-í µí µí µí µ-í µ!=í µÂ°!.í µí µí µ!Doncnoussouhaitonsqueí µÂ°!.í µí µí µ!<7.10!!Soit:í µ!í µí µ>í µÂ°!7.10!!í µí µí µí µ>í µ,í µ.í µí µí µIlfaut doncsoumettrel apersonneint oxiquéeàunetrèsfortec oncentrat iondedioxygène,afinque, pardéplace mentd'équilibre,ledioxygènepr ennelaplacedumonoxydedecarbone.43. L'UNESCOadéclaré"2019,annéeinternationale»...maisquecélèbre-t-ondonccetteannée?C'estl'annéeinternationaledutableaupériodiquedesélémentschimiques!

quotesdbs_dbs35.pdfusesText_40
[PDF] representation de lewis cours pdf

[PDF] volume formulaire

[PDF] rapport de stage elevage bovin

[PDF] moment dipolaire co2

[PDF] rapport de stage 3eme agricole

[PDF] rapport de stage bts production animale

[PDF] rapport de stage bprea agricole

[PDF] rapport de stage agricole bac pro

[PDF] rapport de stage vache laitière

[PDF] lexique de philosophie

[PDF] exemple dossier bprea

[PDF] rapport de stage agricole exemple

[PDF] séquelles intoxication monoxyde de carbone

[PDF] rapport de stage maraichage

[PDF] oliver twist résumé court