[PDF] NOMBRES COMPLEXES i = j. On peut en





Previous PDF Next PDF



Nombres complexes. Écriture algébrique. Conjugué.

Nombres complexes. Écriture algébrique. Conjugué. Exercice. On pose j=?. 1. 2. +i. ?3. 2 . 1. (a) Donner j2 et j3 sous forme algébrique.





Asie-Juin-2015.

Déterminer le module et un argument du nombre complexe j puis donner sa forme exponentielle. 3. Démontrer les égalités suivantes : a. j3. =1 b. j2. =?1?j.



Nombres complexes 1 Forme cartésienne forme polaire

Quotient du nombre complexe de module 2 et d'argument ?/3 par le nombre complexe Résoudre z3 = 1 et montrer que les racines s'écrivent 1 j



NOMBRES COMPLEXES - Chamilo

NOMBRES COMPLEXES. 3. I. DEFINITIONS D'UN NOMBRE COMPLEXE. 1. Forme algébrique. Soient x et y deux nombres réels et soit j un nombre appelé "imaginaire" 



Nombres complexes

Calculer les racines carrées de 1 i



NOMBRES COMPLEXES

i = j. On peut en déduire j3 = j x j2 = j x j =



cours nombres complexes.pdf

Page 2/14. 2- Partie réelle et partie imaginaire. Un nombre complexe possède une partie réelle et une partie imaginaire : {. { j. 3.



LES NOMBRES COMPLEXES..

j. 3. 2. Z imaginaire partie réelle partie. ×. +. = j est le nombre imaginaire unité. Remarques : ? Un nombre réel est un nombre complexe qui n'a pas de 



Rappel sur les nombres complexes

Un nombre complexe est composé d'une partie réelle et une partie imaginaire. 3. Exemples. Soient deux nombres complexes: X = -0.5 + j3= 3.041e.



Complex Numbers and the Complex Exponential - Madison

For any complex number w= c+dithe number c?diis called its complex conjugate Notation: w= c+ di w¯ = c?di A frequently used property of the complex conjugate is the following formula (2) ww¯ = (c+ di)(c? di) = c2 ? (di)2 = c2 + d2 The following notation is used for the real and imaginary parts of a complex number z If z= a+ bithen



Complex Numbers and the Complex Exponential

2 + j 3 2j = (2 + j)(3 + 2j) (3 2j)(3 + 2j) = 4 + 7j 32 + 22 = 4 13 + 7 13 j: 5 3 The polar form of complex numbers (3 2 53 2 6) Just as with points (x;y) complex numbers can be represented in polar coor-dinates: we can describe a complex number z= x+ jyby its distance rfrom the origin and its angle with the origin We’ve already seen that



MATHEMATICS FOR ENGINEERING TUTORIAL 6 – COMPLEX NUMBERS

TUTORIAL 6 – COMPLEX NUMBERS This tutorial is essential pre-requisite material for anyone studying mechanical and electrical engineering It follows on from tutorial 5 on vectors This tutorial uses the principle of learning by example The approach is practical rather than purely mathematical



University of California Irvine

University of California Irvine



COMPLEX NUMBERS - NUMBER THEORY

COMPLEX NUMBERS 5 1 Constructing the complex numbers One way of introducing the ?eld C of complex numbers is via the arithmetic of 2×2 matrices DEFINITION 5 1 1 A complex number is a matrix of the form x ?y y x where x and y are real numbers Complex numbers of the form x 0 0 x are scalar matrices and are called



Searches related to j^3 complexe PDF

Let Abe a square real or complex matrix Then (1) 1 GeoMult( ) AlgMult( ): In addition there are the following relationships between the Jordan form J and algebraic and geometric multiplicities GeoMult( ) Equals the number of Jordan blocks in Jwith eigen-value AlgMult( ) Equals the number of times is repeated along the diagonal of J

What is the formula for a complex conjugate?

A frequently used property of the complex conjugate is the following formula (2) ww¯ = (c+ di)(c? di) = c2? (di)2= c2+ d2. The following notation is used for the real and imaginary parts of a complex number z. If z= a+ bithen a= the Real Part of z= Re(z), b= the Imaginary Part of z= Im(z). Note that both Rezand Imzare real numbers.

How to introduce the field C of complex numbers?

One way of introducing the ?eld C of complex numbers is via the arithmetic of 2×2 matrices. DEFINITION 5.1.1 A complex number is a matrix of the form x ?y y x , where x and y are real numbers. Complex numbers of the form x 0 0 x are scalar matrices and are called real complex numbers and are denoted by the symbol {x}.

What is a complex number x 0 0?

Complex numbers of the form x 0 0 x are scalar matrices and are called real complex numbers and are denoted by the symbol {x}. The real complex numbers {x} and {y} are respectively called the real part and imaginary part of the complex number x ?y y x . The complex number 0 ?1 1 0 is denoted by the symbol i.

What is a complex conjugate w=c+di?

For any complex number w= c+dithe number c?diis called its complex conjugate. Notation: w= c+ di, w¯ = c?di. A frequently used property of the complex conjugate is the following formula (2) ww¯ = (c+ di)(c? di) = c2? (di)2= c2+ d2. The following notation is used for the real and imaginary parts of a complex number z.

NOMBRES COMPLEXES

Ch4 : Nombres complexes (TS)

- 1/18 -

NOMBRES COMPLEXES

I. INTRODUCTION ET DEFINITION

Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et -3 et 2 a pour racine2 et -2.

Par contre, aucun réel négatif n"a de racine (réelle). C"est pour pallier à cette discrimination que furent créer les nombres complexes.

Le nombre i :

On appelle

i un nombre dont le carré est -1. On décrète que i est la racine de -1. Ainsi : i2 = -1

De plus, son opposé -

i a aussi pour carré -1. En effet : (-i)2 = [(-1) × i]2 = (-1)2 × i2 = -1 Conclusion : Les deux racines de -1 sont deux nombres irréels i et -i.

Le nombre

i est appelé nombre imaginaire. L forme factorisée de x2 + 1 est (x + i) . (x - i)

Un peu d"histoire : le nombre i a longtemps été noté -1 pour la raison évidente que i a pour carré -1.

La notation i fut introduite par Euler en 1777, puis reprise par Gauss au début du XIXème siècle. Cependant le premier

à parler de nombre imaginaire fut le très cartésien Descartes en 1637.

Remarques

· IN est l"ensemble des entiers naturels. C"est l"ensemble des entiers positifs ou nuls. Dans IN l"équation x + 1 = 0 n"a pas de solution. Cette équation a une solution notée -1 , élément de l"ensemble ZZ .

· ZZ est l"ensemble des entiers relatifs. C"est l"ensemble des entiers positifs, négatifs ou nuls.

IN est contenu dans ZZ , ce que l"on note IN Ì ZZ . Dans ZZ l"équation 2x = 1 n"a pas de solution.

Cette équation a une solution notée

1 2 , élément de l"ensemble QI .

· QI est l"ensemble des nombres rationnels

C"est l"ensemble de tous les nombres de la forme

p q avec p Î ZZ et q Î ZZ * . QI contient ZZ . On a donc IN Ì ZZ Ì QI .

Dans QI l"équation x

2 = 2 n"a pas de solutions.

Cette équation a deux solutions notées

2 et -2 , éléments de l"ensemble IR.

· IR est l"ensemble des nombres réels. C"est l"ensemble des abscisses de tous les points d"une droite.

IR contient QI . On a donc IN Ì ZZ Ì QI Ì IR .

Dans IR l"équation x

2 = -1 n"a pas de solutions.

Cette équation a deux solutions notées i et -i , solutions de l"ensemble CI .

· CI est l"ensemble des nombres complexes.

C"est l"ensemble des nombres de la forme a + ib avec a Î IR et b Î IR. CI contient IR . On a donc IN Ì ZZ Ì QI Ì IR Ì CI .

Ch4 : Nombres complexes (TS)

- 2/18 -

Définition

On appelle corps des nombres complexes, et on note CI un ensemble contenant IR tel que : · Il existe dans CI un élément noté i tel que i 2 = -1. · Tout élément de CI s"écrit sous la forme a + ib , où a et b sont des réels.

· CI est muni d"une addition et d"une multiplication qui suivent les mêmes règles de calcul que celles

connues dans ô Un nombre complexe sera souvent représenté par la lettre z.

Nombres complexes particuliers

Soit un nombre complexe z = a + ib avec a Î IR et b Î IR . · si b = 0 , on a z = a , z est un réel.

· si a = 0 , on a z = ib , on dit que z est un imaginaire pur (on dit parfois simplement imaginaire).

Remarques

· IR correspond à l"ensemble des points sur une droite. Un nombre réel x correspond au point d"abscisse x sur la droite. On peut donc toujours comparer deux nombres réels.

· CI , ensemble des nombres a + ib avec a Î IR et b Î IR correspond à l"ensemble des points d"un plan.

Un nombre complexe a + ib avec a Î IR et b Î IR correspond au point du plan de coordonnées (a ; b).

On ne peut donc pas comparer deux nombres complexes : il n"y a pas de relation d"ordre dans CI .

On ne peut donc pas dire qu"un nombre complexe z est inférieur à un nombre complexe z" ou qu"un

nombre complexe z est positif (c"est-à-dire supérieur à 0).

Définition :

Soit un nombre complexe z .

L"écriture z = a + ib , où a et b sont des réels, est appelée forme algébrique du nombre complexe z.

a est appelé partie réelle de z, et b partie imaginaire de z : on note a = Re(z) et b = Im(z).

Remarque

· La partie réelle de z et la partie imaginaire de z sont des nombres réels.

Propriété :

Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire.

C"est-à-dire que si a, b, a", b" sont des réels, on a a + ib = a" + ib" Û (a ; b) = (a" ; b") Û ??? a = a"b = b"

Exercice 01

Soit z = 2 + 3i ; z" = i - 5.

Calculer et écrire sous la forme algébrique z + z" ; z - z" ; 2z - 3z" ; zz" ; z

2 z + z" = 2 + 3i + i - 5 = -3 + 4i z - z" = 2 + 3i - (i - 5) = 2 + 3i - i + 5 = 7 + 2i

2z - 3z" = 2(2 + 3i) - 3(i - 5) = 4 + 6i - 3i + 15 = 19 + 3i

zz" = (2 + 3i)(i - 5) = 2i - 10 + 3i

2 - 15i = 2i - 10 - 3 - 15i = - 13 - 13i

z

2 = (2 + 3i)2 = 22 + 2 x 2 x 3i + (3i)2 = 4 + 12i + 9i2 = 4 + 12i - 9 = -5 + 12i

Exercice 02

1°) Calculer (3 + 2i)(3 - 2i). En déduire la forme algébrique de 1

3 + 2i

(utiliser l"expression conjuguée).

2°) Déterminer la forme algébrique des nombres complexes : 1

1 + i ; 1

3 - i ; 1

i

1°) (3 + 2i)(3 - 2i) = (3)

2 - -(2i)2 = 9 - (-4) = 9 + 4 = 13

Ch4 : Nombres complexes (TS)

- 3/18 -

La forme algébrique de 1

3 + 2i est 3

13 - 2

13 i

2°) La forme algébrique de

1 1 + i est 1 2 - 1 2 i

La forme algébrique de

1 3 - i est 3

10 + 1

10 i

La forme algébrique de

1 i est - i

II. REPRESENTATION GRAPHIQUE

Un nombre complexe est formé de deux nombres réels. Or deux nombres réels forment un couple de

coordonnées. Ainsi, si le plan est muni d"un repère orthonormé on peut repérer tout point par un nombre

complexe. a) Affixe

Définition :

On se place dans le plan rapporté à un repère orthonormal direct (O;®u,®v) . ■ Au point M de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a +i b est l"affixe de M

■ Au vecteur ¾®V de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a + ib est l"affixe de ¾®V

■ Lorsqu"on repère un point ou un vecteur par son affixe dans un repère orthonormal direct, on dit qu"on se

place dans le plan complexe.

Exercice 03

Placer dans le plan complexe, les points d"affixes : z

1 = 2 + 3i ; z2 = 3 + i ; z3 = -1 + 2i ; z4 = 2 - i ; z5 = i

z

6 = -i ; z7 = 1 ; z8 = -i - 3 ; z9 = 2z1 - 3z2 ; z10 = z3(z4 - z2)

Propriétés

Si M a pour affixe z = a + ib et si M" a pour affixe z" = a" + ib" , avec a, b, a", b" réels, alors

· le vecteur ¾®MM" a pour affixe z" - z = (a" - a) + (b" - b)i

· OM = ||¾®OM|| = a2 + b2

· MM" = ||¾®MM"|| = (a" - a)2 + (b" - b)2 · le milieu I de [MM"] a pour affixe zI = z + z" 2 Si

¾®V a pour affixe z et

¾®V " pour affixe z", alors

¾®V +

¾®V " a pour affixe z + z".

Si k est un réel, alors k¾®V a pour affixe k z. b) Conjugué

Définition

Soit z un nombre complexe de forme algébrique a + ib. On appelle conjugué de z le nombre complexe noté -z tel que -z = a - ib.

Remarque

Si M est le point d"affixe z, le point M" d"affixe ¾z est symétrique de M par rapport à l"axe des abscisses.

Ch4 : Nombres complexes (TS)

- 4/18 -

Exercice 04

Étant donné un point M d"affixe z = a + ib , avec a et b réels. Placer ···· le point M" d"affixe z" = a - ib , ···· le point M" d"affixe z" = -a + ib , ···· le point M"" d"affixe z"" = -a - ib = - z .

Exercice 05

Soit z = 3 + 5i et z" = -2 + 3i.

Calculer

¾¾¾¾z ; ¾¾¾¾z" ; ¾¾¾¾z + ¾¾¾¾z" ; z + z" ; z + z" ; ¾¾¾¾z.¾¾¾¾z" ; zz" ; zz" .

-z = 3 - 5i -z" = -2 - 3i -z + -z" = 3 - 5i - 2 - 3i = 1 - 8i z + z" = 3 + 5i - 2 + 3i = 1 + 8i z + z" = 1 + 8i = 1 - 8i ¾z.¾z" = (3 - 5i)(-2 - 3i) = -6 - 9i + 10i +15i2 = -6 + i - 15 = -21 + i zz" = (3 + 5i)(-2 + 3i) = -6 + 9i - 10i +15i

2 = -6 - i - 15 = -21 - i

zz" = -21 - i = -21 + i

Propriétés

Pour tous nombres complexes z et z", on a :

· ¾z = z

· z.¾z est un réel positif

· z + z" = ¾z + ¾z" ; z - z" = ¾z - ¾z" ; zz" = ¾z.¾z"

· Si z" ¹ 0 (())

1 z" = 1 z" ; (()) z z" = ¾z z"

· Re(z) = z +

¾z

2 ; Im(z) = z -

¾z 2i · z est réel Û z = ¾z ; z est imaginaire pur Û z = - ¾z

Démonstrations :

Soient les nombres complexes écrits sous la forme algébrique : z = a + ibi et z" = a" + ib".

· -z = a - ib donc ¾z = a + ib = z

· z.

¾z = (a + ib)(a - ib) = a2 - (ib)2 = a2 - (-b2) = a2 + b2 donc z.¾z est un réel positif .

· z + z" = a + ib + a" + ib" = (a+a") + i(b+b") comme (a+a") et (b+b") sont des réels, on obtient z + z" = (a+a") - i(b+b") = a - ib + a" - ib" = ¾z + ¾z" · zz" = (a + ib)(a" + ib") = aa" + iab" + ia"b + bb"i

2 = (aa" - bb") + i(ab" + a"b)

comme (aa" - bb") et (ab" + a"b) sont des réels, on obtient zz" = (aa" - bb") - i(ab" + a"b).

D"autre part

¾z.¾z" = (a - ib)(a" - ib") = aa" - iab" - ia"b + bb"i 2 = (aa" - bb") - i(ab" + a"b) donc zz" = ¾z.¾z"

· Si z" # 0 1

z" = 1 a" + b"i = a" - b"i (a" + b"i)(a" - b"i) = a" - b"i a"2 + b"2 = a" a"2 + b"2 +i - b" a"2 + b"2 Comme a" a"

2 + b"2 et - b"

a"2 + b"2 sont des réels, on en déduit (()) 1 z" = a" a"2 + b"2 + ib" a"2 + b"2

D"autre part

¾z" = a" - ib", donc 1

¾z" = 1

a" - b"i = a" + b"i (a" - b"i)(a" + b"i) = a" + b"i a"2 + b"2 = a" a"

2 + b"2 + ib"

a"2 + b"2 Donc 1 z" = 1 z"

Ch4 : Nombres complexes (TS)

- 5/18 -

· Si z" # 0 (())

z z" = (())z x 1 z" = -z x (()) 1 z" (d"après la propriété sur le produit) -z x 1 z" (d"après la propriété précédente) ¾z z"

· z +

¾z

2 = a + bi + a - bi

2 = 2a

2 = a = Re(z) ; z -

¾z

2i = a + bi - (a - bi)

2i = 2bi

2i = b = Im(z)

· z =

¾z Û a + ib = a - ib Û a + ib - a + ib = 0 Û 2ib = 0 Û b = 0 Û Im(z) = 0 Û z réel

· z = -¾z Û a + ib = -a + ib Û 2a = 0 Û a = 0 Û Re(z) = 0 Û z imaginaire pur

Exercice 06

1°) Écrire sous la forme algébrique les nombres complexes suivants :

1

2 + 7i

; 43 - i ; 2 - i

5 + 3i ; i

1 - 3i ; 2 + i

i

2°) Écrire plus simplement le nombre complexe

7 + 5i

2

7 - 2i + 27 - 2i

7 + 5i

1°)

1

2 + 7i

= 2 - 7i (2 + 7i)(2 - 7i) = 2 - 7i

22 - (7i)2 = 2 - 7i

4 + 49 = 2

53 - 7

53 i
4

3 - i = 4(3 + i)

3 - i)(3 + i) = 4(3 + i)

3 2 - i 2 = 4(3 + i)

3 + 1 = 4(3 + i)

4 = 3 + i

2 - i

5 + 3i

= (2 - i)(5 - 3i) (5 + 3i)(5 - 3i) = 10 - 6i - 5i + 3i 2

52 - (3i)2 = 10 - 11i - 3

25 + 9 = 7

34 - 11

34 i
i

1 - 3i

= i(1 + 3i) (1 - 3i)(1 + 3i) = i - 3i 2

12 - (3i)2 = i + 3

1 + 9 = 3

10 + 1

10 i 2 + i i = (2 + i)(i) i

2 = 2i - 1

-1 = 1 - 2i

2°) 7 + 5i

2

7 - 2i + 27 - 2i

7 + 5i = (7 + 5i)(27 + 2i)

(2

7 - 2i)(27 + 2i) + (27 - 2i)(7 - 5i)

7 + 5i)(7 - 5i)

= 14 + 2

7 i + 107 i - 10

28 + 4 + 14 - 107 i - 27 i - 10

7 + 25

= 4 + 12 7 i

32 + 4 - 127 i

quotesdbs_dbs30.pdfusesText_36
[PDF] tfe représentations sociales et soin

[PDF] stéréotype infirmière

[PDF] j²

[PDF] image infirmiere

[PDF] image infirmière humour

[PDF] histoire de la profession infirmière

[PDF] les avantages des études dans la vie

[PDF] la motivation en classe de langue

[PDF] importance du français au travail

[PDF] motivation pour apprendre une langue étrangère

[PDF] la motivation de l'apprenant

[PDF] motivation apprentissage langue étrangère

[PDF] la langue française dans le monde 2016

[PDF] la motivation dans l'apprentissage du français viau

[PDF] memoire fle master 2