[PDF] Relations dordre relation d'ordre strict) quand





Previous PDF Next PDF



Chapitre3 : Relations dordre

Ainsi se donner une relation binaire ? sur E



Relation

Exemples : Quel que soit l'ensemble la relation d'égalité = est réflexive. Sur N? la relation a divise b





1. Relations binaires 2. Relations déquivalence 3. Relations dordre

Définition. Une relation binaire est une relation d'équivalence si et seulement si elle est réflexive symétrique et transitive. Exemples 



Relations dordre

relation d'ordre strict) quand elle est irréflexive et transitive. exemple. 1.6 Diagramme de Hasse d'un ensemble ordonné.



Relations binaires. Relations déquivalence et dordre

Aug 20 2017 Par exemple si ? est la relation < sur R : si l'on a x < y on n'a pas y < x. Exemples : Les relations que l'on utilise couramment en ...



Relation dordre et ordre partiel

préférence soit une relation d'ordre. Par exemple soient trois types de sucreries : UOH - Psychométrie et Statistique en L1 https://uohpsy.univ-tlse2.fr/ 



Ann´ee 2019/2020 Relation binaire relation dordre

http://jl.baril.u-bourgogne.fr/courstreillis.pdf



RELATIONS BINAIRES

Exemple Vous connaissez depuis toujours certaines relations binaires : Exemple La relation de divisibilité





X Relations dordre et déquivalence.

Sep 22 2021 — L'égalité est l'exemple le plus courant de relation binaire. — Soit f : R ? R. On peut définir pour tous x



1 Relations d’ordre - univ-amufr

Exemples - Dans l’ensemble des nombres r eels l’in egalit e large x y est une relation d’ordre - Dans l’ensemble des nombres naturels la relation a divise b not ee ajb est une relation d’ordre - Dans l’ensemble des parties d’un ensemble la relation A ˆB est une relation d’ordre Remarques



CHAPITRE Relations d’ordre I1 Ordre et ordre strict

Relations d’ordre Ce chapitre traite des relations d’ordre Apr`es des rappels de notions abord´ees l’an dernier on s’int´eresse plus particuli`erement aux “ordres bien fond´es” qui permettent de g´en´eraliser le principe de r´ecurrence I 1 Ordre et ordre strict D´e?nition (relation binaire) Soit E un ensemble



Chapitre 4 Relations d’ordre - EPFL

Il y a de nombreux exemples d’ensembles partiellements ordonnes que vous connaissez d´ ej´ `a En voici une petite liste : Exemple 4 2 1 L’ensemble Z muni de l’ordre naturel est totalement ordonn´e 2 L’ensemble N est partiellement ordonn´e par la relation de divisibilit e On note ce poset par´ (N) 3



Relations binaires Relations d’équivalence et d’ordre

3 RELATION D’ORDRE Exemples : • Les relations 6 >sur R sont des relations d’ordre tandis que < et > ne le sont pas par manque de ré?exivité • La relation de divisibilité est une relation d’ordre sur N? (mais pas sur Z?) : – ?n ? N? nn donc est ré?exive – nn? et n?n ?kk ??N?



Searches related to relation d+ordre exemple PDF

D´e?nition (ordre) Une relation binaire est un ordre (ou une relation d’ordre) quand elle est r´e?exive antisym´etrique et transitive D´e?nition (ensemble ordonn´e) Soit E un ensemble et une relation d’ordre sur E On dit que (E ) est un ensemble ordonn´e

  • Cours

    Définition

  • Exemples

    Voici quelques exemples de relation d’ordre 1. L’ordre lexicographique qui est l’ordre “du dictionnaire”. 2. La relation classique ? sur les entiers ou les réels. 3. La relation

Comment définir une relation d’ordre?

Relation d’ordre De?nition:´ Une relation sur X ? qui est re?exive´ , antisymetrique et´ transitive est appelee une relation d’ordre.´ On dit alors que X est partiellement ordonnee´ et on note ? a` la place de ?. Si (x,y) ? X2, x et y seront comparables si x ? y ou y ? x.

Comment savoir si une relation d’ordre est totale ?

Cette page a pour but de présenter les relations d’ordre à l’aide d’une partie cours et de quelques exercices corrigés. Une relation ? sur un ensemble E est une relation d’ordre sur E si elle vérifie ces trois propriété : Si pour tout couple, on a x ? y ou y ? x, on dit que le relation d’ordre est totale.

Comment définir une relation d’ordre sur un ensemble ?

Une relation ? sur un ensemble E est une relation d’ordre sur E si elle vérifie ces trois propriété : Si pour tout couple, on a x ? y ou y ? x, on dit que le relation d’ordre est totale. On définit une relation d’équivalence sur l’ensemble des entiers naturels par Elle est bien réflexive. On a bien : D’où x = y.

Comment calculer les relations d’ordre et d’équivalence ?

TD2 : Relations d’ordre et d’équivalence (avec corrigé) Exercice 1: (a) Prouvez que la relation surZ aRb ? a ?b est un multiple de 5 est une relation d’équivalence. Solution:On véri?e les 3 conditions : — Ré?exivité : Soit x ?Z. On veut prouver xRx, c’est à dire x? est un multiple de 5.On a x ? x = 0 = 5 ×0.

Chapter 1

Relations d"ordre

Ce chapitre traite des relations d"ordre. Apr`es des rappels de notions abord´ees l"an dernier, on s"int´eresse plus particuli`erement aux "ordres bien fond´es" qui permettent de g´en´eraliser le principe de r´ecurrence.

1.1 Ordre et ordre strict

D´efinition (relation binaire).SoitEun ensemble. Unerelation binaire RsurEest un sous-ensemble deE×E. On notexRypour signifier que (x,y)? RetxR/ ypour signifier que (x,y)/? R. D´efinition (classification).SoitRune relation binaire surE. On dit que

Rest•r´eflexivequand?x?E,xRx;•irr´eflexivequand?x?E,xR/ x;•sym´etriquequand?x,y?E,xRy?yRx;•antisym´etriquequand?x,y?E,xRyetyRx?x=y;•transitivequand?x,y,z?E,xRyetyRz?xRz.

D´efinition (ordre).Une relation binaire est unordre(ou unerelation d"ordre) quand elle est r´eflexive, antisym´etrique et transitive. D´efinition (ensemble ordonn´e).SoitEun ensemble et?une relation d"ordre surE. On dit que (E,?) est unensemble ordonn´e. Remarque: Attention, les d´efinitions ci-dessus correspondent `a l"ordre large mais pas `a l"ordre strict : (IR,<) o`u2CHAPTER 1. RELATIONS D"ORDRED´efinition (ordre strict)Une relation binaire est unordre strict(ou une relation d"ordre strict) quand elle est irr´eflexive et transitive. D´efinition (ensemble strictement ordonn´e)SoitEun ensemble et? une relation d"ordre strict surE. On dit que (E,?) est unensemble stricte- ment ordonn´e.Th´eor`eme 1.1Un ordre strict est toujours antisym´etrique. D´efinition (´el´ements incomparables)Soit (E,?) un ensemble ordonn´e. Deux ´el´ementxetydeEsont ditsincomparablesquand on a nix?y, ni y?x. D´efinition (ordre total)Un ordre?surEest dittotalsi deux ´el´ements sont toujours comparables :?x,y?E, x?youy?x. Un ordre qui n"est pas total est ditpartiel. D´efinition (ordre strict total)Un ordre strict?surEest ditstrict total si deux ´el´ements diff´erents sont toujours comparables :?x,y?E, x?=y? x?youy?x. Remarque: Sans surprise, on peut toujours passer d"un ordre `a un ordre strict et r´eciproquement. Si (E,?) est un ensemble ordonn´e, la relation? d´efinie parx?yssi (x?=yetx?y) est un ordre strict. R´eciproquement, si (E,?) est un ensemble strictement ordonn´e, la relation?d´efinie parx?y ssi (x=youx?y) est une relation d"ordre.

1.2 Minorants, majorants, minimaux et maximaux

D´efinition (minorant, plus petit ´el´ement)Soit (E,?) un ensemble ordonn´e etFune partie (c"est-`a-dire un sous-ensemble) non vide deE. On dit quex?Eest unminorantdeFsi tout ´el´ement deFest plus grand que xpour?:?y?F,x?y. Si le minorant deFest un ´el´ement deFon dit que c"estle plus petit ´el´ementdeF. D´efinition (majorant, plus grand ´el´ement).Soit (E,?) un ensemble ordonn´e etFune partie non vide deE. On dit quex?Eest unmajorant deFsi tout ´el´ement deFest plus petit quexpour?:?y?F,y?x. Si le majorant deFest un ´el´ement deFon dit que c"estle plus grand ´el´ement deF. Remarque: Il n"y a pas toujours un minorant ou un majorant : si l"ensemble c"estZet la partiePl"ensemble des entiers relatifs divisibles par 2, il n"y a ni minorant ni majorant.Th´eor`eme 1.2Soit(E,?)un ensemble ordonn´e etFune partie non vide deE.Fa au plus un plus petit ´el´ement et au plus un plus grand ´el´ement.

1.3. PRODUIT D"ORDRES3D´efinition (´el´ement minimal).Soit (E,?) un ensemble ordonn´e etF

une partie non vide deE. Un ´el´ementx?Fest un´el´ement minimalde Fquand aucun ´el´ement deFn"est strictement plus petit, pour?, quex: ?y?F,y?x?y=x. D´efinition (´el´ement maximal).Soit (E,?) un ensemble ordonn´e etF une partie non vide deE. Un ´el´ementx?Fest un´el´ement maximalde Fquand aucun ´el´ement deFn"est strictement plus grand, pour?, quex: ?y?F,x?y?y=x.

1.3 Produit d"ordres

D´efinition (ordre produit simple).Soit (E,?E) et (F,?F) deux en- sembles ordonn´es. On d´efinit l"ordre produit simple?prodsurE×Fpar D´efinition (ordre produit lexicographique).Soit (E,?E) et (F,?F) deux ensembles ordonn´es. On d´efinit l"ordre produit lexicographique?lexsur E×Fpar, on notant?Eet?Fles ordres stricts associ´es `a?Eet?F, ?x?Ex? ou x=x?ety?Fy?. Remarque: Si?Eet?Fsont des ordres totaux,?lexest aussi un ordre total; ce n"est pas vrai pour?prod.

1.4 Ordre bien fond´e

D´efinition (ordre bien fond´e)Soit (E,?) un ensemble ordonn´e. On dit que?estbien fond´equand il n"existe pas de suite infinie strictement d´ecroissante d"´el´ements deE. Remarque: L"ordre usuel surNest bien fond´e, mais pas celui surZ, ni celui sur IR +.Th´eor`eme 1.3(caract´erisation des ordres bien fond´es)Soit(E,?) un ensemble ordonn´e. L"ordre?est bien fond´e si et seulement si tout partie

non videFdeEadmet au moins un ´el´ement minimal.Th´eor`eme 1.4Le produit lexicographique de deux ordres bien fond´es est

bien fond´e.

4CHAPTER 1. RELATIONS D"ORDRE1.5 Application `a la terminaison de programmes

Si on consid`ere le programme suivant, o`u les entiersmetnsont strictements positifs avant de commencer, on montre facilement qu"ils restent tout le temps strictement positifs.while (m != n) { if (m > n) m = m - n; else n = n - m; La question est: est-ce que cette boucle s"arrˆete toujours, pour n"importe quel choix demetndansN?? la r´eponse et oui et on peut le montrer grˆace `a l"ordre lexicographique: si on consid`ere l"ordre lexicographique naturel sur N ?×N?, on s"aper¸coit qu"`a chaque it´eration le couple (m,n) est strictement inf´erieur `a celui d"avant. Comme l"ordre lexicographique surN?×N?est bien fond´e (d"apr`es le th´eor`eme pr´ec´edent), on ne peut effectuer qu"un nombre fini d"it´erations dans le programme. Le proc´ed´e se g´en´eralise aux fonctions r´ecursives, quand on veut prouver qu"elle termine. Il suffit de trouver un ordre bien fond´e sur les entr´ees, et de montrer que lors d"un appel `a la fonction, on ne lance des appels r´ecursif que sur des donn´ees plus petites pour l"ordre consid´er´e. Voir le TD pour un exemple.

1.6 Diagramme de Hasse d"un ensemble ordonn´e

fini Quand (E,?) est un ensemble fini ordonn´e, on peut le repr´esenter graphique- ment par sondiagramme de Hasse, qui est un graphe non-orient´e avec les

contraintes suivantes :•les sommets sont les ´el´ements deE;•six?yon placexplus bas queysur le diagramme;•six?yet qu"il n"y a pas dez?Etel quex?z?y, on met une

arˆete entrexety. Exemple: Le diagramme de Hasse pour l"ordre?surE={1,2,3}est :

1.7. ORDRES SUR LES MOTS5{1,2,3}{2,3}{1,3}{1,2}{3}{2}{1}∅

Th´eor`eme 1.5Soit(E,?)un ensemble fini ordonn´e. L"ordre?est bien fond´e surE.

1.7 Ordres sur les mots

On se donne un ordre strict?sur l"alphabet. Dans cette partie on rappelle juste les deux ordres sur les mots vus l"an dernier. D´efinition (ordre lexicographique sur les mots).SoitAun alphabet ?uest pr´efixe dev ou ?w,s,t?A?,?a,b?A,a?betu=wasetv=wbt D´efinition (ordre militaire sur les mots).SoitAun alphabet fini. On ?|u|<|v| ou l"ordre lexicographique. ATTENTION :ne pas confondre l"ordre lexicographique produit et l"ordre lexicographique sur les mots.quotesdbs_dbs35.pdfusesText_40