[PDF] DROITES ET PLANS DE LESPACE Propriété : Deux plans sont





Previous PDF Next PDF



PRODUIT SCALAIRE DANS LESPACE

Les vecteurs et ne sont pas orthogonaux. II. Vecteur normal à un plan. 1) Définition et propriétés. Définition : Un vecteur non nul de l'espace est normal à 



Terminale S - Produit scalaire dans lespace

Si ?? et ?? sont deux vecteurs non nuls de l'espace on a alors : montrer qu'il est orthogonal à deux vecteurs du plan non colinéaires.



PRODUIT SCALAIRE DANS LESPACE

Remarque : Dans un tétraèdre régulier deux arêtes quelconques opposés sont orthogonales. III. Vecteur normal à un plan. 1) Définition et propriétés. Définition 



VECTEURS DROITES ET PLANS DE LESPACE

Propriété : Deux droites de l'espace sont soit coplanaires (dans un même plan) soit Méthode : Démontrer que des droites sont orthogonales.



Produit scalaire dans lespace - Lycée Pierre Gilles de Gennes

D Démontrer qu'une droite est orthogonale Deux vecteurs #»u et #»v sont orthogonaux si et seulement si #»u · #»v = 0. Propriété 2.



1 METHODES DE GEOMETRIE ANALYTIQUE DANS LESPACE

Il faut montrer que ces points définissent deux vecteurs non colinéaires est orthogonal à et à qui sont deux vecteurs non colinéaires de (ABC) donc est.



VECTEURS DROITES ET PLANS DE LESPACE

P et P' n'ont aucun point en commun et sont donc parallèles. Conséquence : Pour démontrer que deux plans sont parallèles il suffit de montrer que deux vecteurs 



DROITES ET PLANS DE LESPACE

Propriété : Deux plans sont perpendiculaires lorsque l'un contient une droite orthogonale de l'autre. Méthode : Démontrer que des droites sont orthogonales.



Méthode pour démontrer en géométrie dans lespace 1) Incidence

? avec les vecteurs pour montrer que deux droites sont parallèles



1 Vecteurs de l'espace Lelivrescolairefr

Exercices : Orthogonalité dans l’espace 3 3Orthogonalité I Exercice 13 On se place dans un repère orthonormé (O;~i;~j;~k) On considère les points A(2;5;1) B(3;2;3) et C(3;6;2) 1 Calculer les coordonnées des vecteurs! AB et! AC 2 Montrer que les droites (AB) et (AC) sont perpendiculaires I Exercice 14 On se place dans un cube ABCDEFGH



PRODUIT SCALAIRE DANS L'ESPACE - maths et tiques

Définition : Deux droites de l'espace sont orthogonales lorsque leurs parallèles passant par un point quelconque sont perpendiculaires Yvan Monka – Académie de Strasbourg – www maths-et-tiques



Searches related to montrer que deux vecteurs sont orthogonaux dans l+espace PDF

2 Orthogonalité de vecteurs • Deux vecteurs ~u et ~v de l’espace sont orthogonaux lorsque ~u·~v = 0 • ~u·~v = 0 si et seulement si ~u = ?? 0 ou ~v = ?? 0 ou (~u~v) = ? 2 [?] • Deux droites sont orthogonales si et seulement si leurs vecteurs directeurs respectifs sont orthogonaux Dé?nition et propriétés Exemple

Quelle est la propriété des vecteurs dans l'espace?

Soient u et v deux vecteurs de l'espace. u et v sont colinéaires lorsqu'il existe un nombre réel ? non nul tel que u = ?v ou v = ?u . Le vecteur nul est colinéaire à tout vecteur. Soient A, B et C trois points de l'espace deux à deux distincts. Les points A, B et C sont alignés si, et seulement si, les vecteurs AB et AC sont colinéaires.

Comment déterminer si deux vecteurs sont orthogonaux ?

?Utiliser le produit scalaire pour déterminer si deux vecteurs sont orthogonaux. Deux vecteurs sont dits orthogonaux si leurs directions sont perpendiculaires. Exemple : Sur le schéma ci-dessous, AB est un représentant du vecteur u et AC est un représentant du vecteur v.

Comment savoir si un vecteur est orthogonal ?

Comme les droites (AB) et (AC) sont perpendiculaires, les vecteurs u et v sont orthogonaux. Vous devez disposer d'une connexion internet pour accéder à cette ressource. Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ? v = 0. Remarque : 0 est orthogonal à tout vecteur.

Comment pouvez-vous savoir si trois vecteurs forment une base de l'espace ?

Pour montrer que les vecteurs sont linéairement indépendants, on résout le système associé à l'équation vectorielle au + bv + cw = 0 : on doit obtenir a = b = c = 0. Les vecteurs étant linéairement indépendants, ils forment une base de l'espace.

1

DROITES ET PLANS DE L'ESPACE

I. Positions relatives de droites et de plans

1) Positions relatives de deux droites

Propriété : Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires. d 1 et d 2 sont coplanaires d 1 et d 2 sont sécantes d 1 et d 2 sont parallèles d 1 et d 2 sont strictement parallèles d 1 et d 2 sont confondus 2 d 1 et d 2 sont non coplanaires

Exemple :

ABCDEFGH est un cube.

- Les droites (EG) et (FG) appartiennent au même plan (EFG) et sont sécantes en G. - Les droites (AD) et (FG) appartiennent au même plan (ADG) et sont parallèles. - Les droites (AD) et (CG) sont non coplanaires.

2) Positions relatives de deux plans

Propriété : Deux plans de l'espace sont soit sécants soit parallèles. P 1 et P 2 sont sécants P 1 et P 2 sont sécants suivant la droite d 3 P 1 et P 2 sont parallèles P 1 et P 2 sont strictement parallèles P 1 et P 2 sont confondus

Exemple :

ABCDEFGH est un parallélépipède

rectangle. - Les plans (BCG) et (BCE) sont sécants suivant la droite (BC). - Les plans (ABC) et (EFG) sont parallèles

3) Positions relatives d'une droite et d'un plan

Propriété : Une droite et un plan de l'espace sont soit sécants soit parallèles. 4 d et P sont sécants d et P sont sécants en un point I d et P sont parallèles d est incluse dans P d et P sont strictement parallèles

Exemple :

ABCDEFGH est un cube.

- La droite (GI) et le plan (ABC) sont sécants en I. - La droite (EG) est incluse dans le plan (EFG). - La droite (EG) et le plan (ABC) sont parallèles. 5

II. Parallélisme

1) Parallélisme d'une droite avec un plan

Propriété : Une droite d est parallèle à un plan P s'il existe une droite d' de P parallèle à d.

2) Parallélisme de deux plans

Propriété : Si un plan P contient deux droites sécantes d et d' parallèles à un plan P'

alors les plans P et P' sont parallèles.

2) Parallélisme de deux droites

Propriété : Si deux plans sont parallèles alors tout plan sécant à l'un est sécant à

l'autre et leurs intersections sont deux droites parallèles. 6

Méthode : Tracer l'intersection de deux plans

Vidéo https://youtu.be/4y00KbuCpsc

Construire l'intersection du plan (IMJ) avec le

cube ABCDEFGH. On construit la parallèle à (IJ) passant par M. En effet, les faces ABFE et DCGH sont parallèles donc le plan (IMJ) sécant à la face ABFE coupe la face DCGH en une droite parallèle à (IJ). De même, on trace la parallèle à (IM) passant par J. On obtient les points K et L et ainsi l'intersection cherchée.

Théorème du toit : P

1 et P 2 sont deux plans sécants.

Si une droite d

1 de P 1 est parallèle à une droite d 2 de P 2 alors la droite d'intersection de P 1 et P 2 est parallèle à d 1 et d 2 D 7

Méthode : Appliquer le théorème du toit

Vidéo https://youtu.be/TG-bVLDmAX4

ABCD est une pyramide. Le segment [FG]

est parallèle à l'arête [BC].

E est un point du plan (ABC).

Construire l'intersection du plan (EFG) avec

la pyramide. (BC) est une droite du plan (ABC) et (FG) est une droite du plan (EFG). Les droites (FG) et (BC) étant parallèles, on peut appliquer le théorème du toit pour en déduire que les plans (ABC) et (EFG) se coupent suivant une droite d passant par E et parallèle à (FG) et (BC). Cette droite coupe [AC] en H et [AB] en I. Il suffit enfin de tracer le quadrilatère FGHI : intersection du plan (EFG) avec la pyramide.

III. Orthogonalité

1) Orthogonalité de deux droites

Définition : Deux droites de l'espace sont orthogonales lorsque leurs parallèles passant par un point quelconque sont perpendiculaires. 8

Exemple :

ABCDEFGH est un cube.

- Les droites (EH) et (EF) sont perpendiculaires. - Les droites (BC) et (EF) sont orthogonales.

Remarques :

- Deux droites perpendiculaires sont coplanaires et sécantes. - Deux droites perpendiculaires sont orthogonales. La réciproque n'est pas vraie car deux droites orthogonales ne sont pas nécessairement coplanaires et sécantes.

2) Orthogonalité d'une droite et d'un plan

Propriété : Une droite d est orthogonale à un plan P si elle est orthogonale à deux droites sécantes de P. Propriété : Si une droite d est orthogonale à un plan P alors elle est orthogonale à toutes les droites de P. Démonstrations (exigible BAC) : Ces deux propriétés seront démontrées avec les outils vectoriels dans le chapitre "Produit scalaire dans l'espace".

Exemple :

ABCDEFGH est un cube.

(AE) est perpendiculaire aux droites (AD) et (AB). (AB) et (AD) sont sécantes et définissent le plan (ABC).

Donc (AE) est orthogonal au plan

(ABC). 9

3) Orthogonalité de deux plans

Propriété : Deux plans sont perpendiculaires lorsque l'un contient une droite orthogonale de l'autre. Méthode : Démontrer que des droites sont orthogonales

Vidéo https://youtu.be/qKWghhaQJUs

ABC est un triangle équilatéral. E est le point d'intersection de ses médianes. La droite d passant par E est orthogonale au plan (ABC). La pyramide ABCD est telle que D soit un point de la droite d.

Démontrer que les droites (BD) et (AC) sont

orthogonales.

La droite d est orthogonale au plan (ABC).

Comme la droite (AC) appartient au plan (ABC), la droite (AC) est orthogonale à la droite d. Par ailleurs, la droite (AC) est perpendiculaire à la droite (BE) car dans un triangle équilatéral, les médianes et les hauteurs sont confondues. Ainsi, (AC) est orthogonale à deux droites sécantes du plan (BED) : (BE) et d.

Donc (AC) est orthogonale au plan (BED).

La droite (BD) appartient au plan (BED) donc la droite (AC) est orthogonale à la droite (BD).quotesdbs_dbs35.pdfusesText_40
[PDF] économie et démographie economie approfondie

[PDF] deux vecteurs orthogonaux produit scalaire

[PDF] arg(zd-zc/zb-za)

[PDF] vecteur complexe

[PDF] calculer un argument

[PDF] nombres complexes montrer que deux droites sont parallèles

[PDF] argument de 1 i

[PDF] complexe droite perpendiculaire

[PDF] compensation de masse définition

[PDF] cercle trigo

[PDF] l'art et la réalité dissertation

[PDF] l'art nous détourne t il de la réalité intro

[PDF] l'art nous éloigne t il de la réalité plan

[PDF] figure acrosport

[PDF] l art modifie t il notre rapport ? la réalité plan