[PDF] Exercices : cinétique macroscopique corrigés





Previous PDF Next PDF



Ch.9. Exercices. CINETIQUE ET CATALYSE

Temps et évolution chimique : cinétique et catalyse. Ch.9. Exercices. Donc les ions H+ sont catalyseurs de cette réaction ... Exercice p : 245 n°15 .



SMARTCOURS

TS – CINETIQUE ET CATALYSE – EXERCICES. QUESTIONS DE COURS. ENZYME. 1. Donner la définition d'une enzyme ? Une enzyme est une protéine qui catalyse une 



Exercices : cinétique macroscopique corrigés

On étudie ici la décomposition d'un pesticide (la fénamidone ci-contre) catalysée par la lumière sur support solide. La concentration de la fénamidone présente 



Polycopié de Cinétique Chimique Cours et Exercices Corrigés

Le catalyseur acide (HA) agit avec le substrat (C12H22O11) pour donner un équilibre instantané suivi d'une réaction lente. Page 50. Chapitre V. Catalyse. 41 a) 



Cours de chimie-physique (1). Thermodynamique et cinétique

Cet ouvrage sur la thermodynamique et la Cinétique chimiques est le Signalons en outre que les «Exercices Corrigés» déjà.



M1. Chimie des biomolécules (2021) Cinétique enzymatique

4.8 Catalyse réversible : l'équation de Haldane (1930) . Les exercices marqués d'une étoile “*” seront corrigés en TD en priorité.



Physique-chimie chapitre 16 Cinétique et catalyse – Séance 1

Cinétique et catalyse – Séance 1. Remarque Correction des exercices du chapitre 16 (début) ... Les réactifs sont gazeux le catalyseur est solide :.



Thème : Cinétique chimique Fiche 5 : Vitesse de réaction

Fiche Corrigés. Thème : Cinétique chimique Exercice n°1 ... d'une réaction donc c'est dans la première situation que le catalyseur est présent.



TD de Catalyse Chimique L3 Chimie 2016-2017 Enseignants: M.-C

Catalyse homogène. Exercice 1 : effet d'un catalyseur sur un équilibre cinétique. Soit le mécanisme constitué de n réactions élémentaires numérotées de 1 à 



Le corrigé

TROISIEME EXERCICE. OXYDATION DU GLUCOSE. Cinétique de la réaction d'oxydation du glucose catalysée par la glucose oxydase. Les enzymes sont des catalyseurs 

Chapitre 3 Exercices : cinŽtique macroscopique corrigŽs

Exercice 1 : diverses lois de vitesse "#$%&'("#$)*+)('+,-%"#).)/0+12)3)40+12)5)0+126)))7)8+(-%()&9$)*"%$)&9):%-9$$9)";-9#<9$)8+()*='-<&9)9>8'(%?9#-+*9@)8(',%$9()$%),9--9)('+,-%"#)+&?9-)<#)"(&(9),"<(+#-)"<)#"#)A)" :)B)C6D/E)#$%&'" :)B)C6D/E6DE&&#$%&()*&+,$*&--./&+-&.0.1+,.&).,$%&23$4.&-5)6%74&$678&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&)6,9*5."&,2 :)B)C6D/E6D4E&&#$%/&.6&,&-5)6%74&*$%6&,&,7%&2.&:436&;7<<)&2 :)B)C6D/E6D4EF6DG3E)#$%)92 :)B)[][]

.AB k AC

&=#=) Exercice 2 : dŽtermination dÕun ordre ˆ lÕaide de la mŽthode diffŽrentielle )H#)+&?9-)1<9)*+)('+,-%"#)&9)&',"?8"$%-%"#)&<)89#-+">I&9)&9)&%+J"-9)KFHL)&M'1<+-%"#).))KFHL)0N2)5))KFHO)0N2)3)0PQF2)HF)0N2))+&?9-)<#)"(&(96)R'-9(?%#9(),9-)"(&(96))H#)+)";-9#<)S)FTU)V@)*9$)('$<*-+-$)$<%:+#-$).)))DKFHLE)0PWXO)?"*6YXP2)F@WW)O@WW)Z@WW)U@WW)PW@W):)0)PWXU)?"*6YXP6$XP2)W@ZUW)P@[Z)F@WO)F@\F)[@OW))>6%,%*74*&,&156?72.&2%<<5-.46%.,,./&.4&-.+-5*.4646&,4(@"&.4&<74)6%74&2.&,4A=B#CD&E&&F%&,&-5)6%74&21.6&$4&7-2-.&G$.&47$*&47674*&$&+-&-++7-6&H&A=B#CD/&,7-*&E&&@&I&JK&A=B#CD$&&L4(@"&I&L4(JK&A=B#CD$"&I&L4(J"&M&L4A=B#CD$&&L4(@"&I&L4(J"&M&$KL4A=B#CD&&=7$*&@74*&'%.4&$4.&2-7%6.&274)&,35G$6%74&47$*&1746-.&G$.&$&.*6&24*&).&)*&,.&)7.<<%)%.46&2%-.)6.$-&2.&,&2-7%6.K&&&N<<.)6$74*&$4.&-5O-.**%74&,%45%-.&E&

&&"B#C$%&%'()"B#L$*%'()&*%+%,-./%,-.012342/2%5,-1/6..+3/2%3%2-1.%2-1/.+031.2%,-1,43/34%.%+-,3%2-4024603.0%,-42+030/,/%/%+-4+%+-,4033263+%2-,,,.12//%2,%1-3%+-1,+6/6,01%2-++144631+%&&&"#$%&'()#$&E&47$*&7'6.474*&'%.4&$4.&2-7%6.K&L.&)7.<<%)%.46&PB&6.42&@.-*&Q&.6&@$6&1R1.&Q&%)%K&=7$*&@7974*&G$.&,.&)7.<<%)%.46&2%-.)6.$-&@$6&QK&&S74),$*%74&E&,37-2-.&2.&,&-5)6%74&.*6&'%.4&QK& Exercice 3 : loi dÕArrhŽnius Svante ArrhŽnius Y+),"#$-+#-9)&9):%-9$$9)&9)*+)('+,-%"#))F)KFHL0N2)))))))O)KHF0N2))3))HF0N2)&"<;*9)1<+#&)"#)8+$$9)&9)FF@LW])S)F\@O\]6))R'-9(?%#9()*M'#9(N%9)&M+,-%:+-%"#)&9)*+)('+,-%"#6))

9&I&0&8&Q/TUVV&PW&I&Q&

,4(@"& *#0:2)Y%#'+%(9)0*#0:22)

R"##'9$).)^)B)U@[PO)_6)VXP6?"*XP) Ea11

Ln(2) = -.( - )

8,314273,15+27, 47273,15+22,50

RŽponse : Ea = 103 056 J.mol-1 = 103,06 kJ.mol-1 Exercice 4 : dŽtermination dÕune Žnergie dÕactivation Y+),"#$-+#-9)&9):%-9$$9)&9)*+)('+,-%"#)&<)&%">I&9)&=+J"-9)+:9,)*9)?"#">I&9)&9),+(;"#9)N+J9<>@)&='1<+-%"#.)KHF0N2)3)H0N2)5)HF0N2)3)KH0N2)9$-)&'-9(?%#'9)S) &%``'(9#-9$)-9?8'(+-<(9$6))a)0V2)ZWW)ZLW)\WW)\LW)UWW)C)0Y6?"*XP6$XP2)W@WFU)W@FF)P@[)Z@W)F[)P2 R'-9(?%#9()*='#9(N%9)&=+ ,-%:+-%"#)&9)*+)('+,-%"# @)$<88"$'9)%#&'89#&+#-9)&9)*+)-9?8'(+-<(96))S711.&L4(J"&I&8(NXP"K(QXY"&M&L4Z/&6-[74*&L4(J"&.4&<74)6%74&2.&(QXY"&E&).)%&27%6&R6-.&$4.&2-7%6.&2746&,&+.46.&.*6&(8NXP"K&)7%8%297%:(8%""#"$"%&#,-,,2....4%51-64666,44%'"#"$%%#,-,,261/3.%52-6232+441%(""#)$*#,-,,23+/64%,-+.+1.3+.%('"##,-,,211111%2-40246034%&""#%*#,-,,2+6%1-216303++%

))L.*&+7%46*&2.&,&)7$-'.&L4(J"&I&(QXY"&*746&'%.4&,%O45*K&L&+.46.&@$6&E&+.46.&I&8&Q\&QTV&I&]NXP&&^7_&E&N&I&&Q``&aBB&bK17,8Q&&N&"&Q`c&JbK17,8Q&)SZLS>LZYPdSN&E&9&I&K0&M&'&&@.)&E&&&&I&8&Q\&QTV/cC&'&I&B`/BUQT`BQ&-&I&8&T/aaaaaaC&)F2 +*,<*9()*+),"#$-+#-9)&9):%-9$$9)&9)*+)('+,-%"#)S)ZUL)V6))P.+-.474*&,&1725,%*6%74&E&L4(J"&I&8&Q\&QTVK(QX\VC"&M&B`/BUQ&E&&S.,&2744.&E&L4(J"&I&8&Q\&QTVK(QX\VC"&M&B`/BUQ&&&L4(J"&I&8&T/Bcc&&J&I&T/UV&LK17,8QK*8Q&)

L4J&

Y#C)Y%#'+%(9)0Y#C2)

Exercice 5 : dŽtermination dÕun ordre par la mŽthode vitesses initiales )H#),"#$ %&c(9)*+)('+,-%"#)&9)$<;$-%-<-%"#)&9 )*M%" &"'-d+#9)8+()*9$)%"#$ )dI&(">I&9)&M'1<+-%"#).)FGLe)0+12)3)GHX)0+12)5)FGLHG)0+12)3)eX)0+12))Y+):%-9$$9)%#%-%+*9)$M',(%-):W)B)C6DFGLeEW86DHGXEW16)R'-9(?%#9()8)9-)16))H#)+)";-9#<)S)FTU)V@)*9$)('$<*-+-$)$<%:+#-$).)))f>8'(%9#,9)P)F)[)DFGLeEW)0PWX[)?"*6YXP2)P@W)P@W)F@W)DGHXEW)0PWX[)?"*6YXP2)P@W)L@W)L@W):W)0)PWX\)?"*6YXP6?%#XP2)W@TW)O@L)T@W) Y+):%-9$$9)%#%-%+*9)$M',(%-):W)B)C6DFGLeEW86DHGXEW16)R'-9(?%#9()8)9-)16))g-%*%$"#$)*9$)('$<*-+-$)&9$)&%``'(9#-9$)9>8'(%9#,9$).))f>8'(%9#,9)P).):WP)B)C6DFGLeEWP86DHGXEWP1))f>8'(%9#,9)F).):WF)B)C6DFGLeEWF86DHGXEWF1))f>8'(%9#,9)P).):W[)B)C6DFGLeEW[86DHGXEW[1)))R9$)9>8'(%9#,9$)P)9-)F).)"??9)DFGLeEWP)B)DFGLeEWF):WFQ:WP)B)DHGXEWF1)Q)DHGXEWP1):WFQ:WP)B)0DHGXEWFQDHGXEWP21)/6K).)O@L6PWX\QW@T6PWX\)B)0L@W6PWX[QP@W6PWX[21)Z%4*%&E&CICG&G&I&Q&)R9$)9>8'(%9#,9$)F)9-)[).)"??9)DGHhEWF)B)DGHhEW[):W[Q:WF)B)DFGLeEW[8)Q)DFGLeEW[8):W[Q:WF)B)0DFGLeEW[QDFGLeEWF28)/6K).)T@W6PWX\QO@L6PWX\)B)0F@W6PWX[QP@W6PWX[28)Z%4*%&E&B&I&B+&+&I&Q&)K"<$)+:"#$)&"#,)'-+;*%)*+)*"%)&9):%-9$$9)-"-+*9).)):)B)C6DFGLeE6DHGXE))Y+)('+,-%"#)9$-)&M"(&(9)8+(-%9*)P)8+()(+88"(-)S)G[GFe)9-)&M"(&(9)8+(-%9*)P)8+()(+88"(-)S)GHX6))

f**9)9$-)&M"(&(9)N*";+*)F)9-)"#)(9?+(1<9)18(%?9)9#)0-9?8$2XP)8+()9>9?8*9)B)$XP@)?%#XP@dXP@k))F2 f>8(%?9():)9#)`"#,-%"#)&9)dN2O5"#$dt@)8<%$)&9)dNO2"#$dt)9-)9#`%#)&9)dO2"#$dt)6))M9$-)*+)&'`%#%-%"#)&9)*+):%-9$$9):"*

H#)('$"<-)*M'1<+-%"#)9#)$'8+(+#-)*9$):+(%+;*9$)9-)9#)%#-'N(+#-).) ))L2 ^98('$9#-9()*M':"*<-%"#)&9)DKFHLE)9#)`"#,-%"#)&<)-9?8$6))^'+,-%"#)&M"(&(9)P).)&',("%$$+#,9)9>8"#9#-%9**9)))Z2 f>8(%?9()-PQF)9#)`"#,-%"#)&9)C6)Y9)-9?8$)&9)&9?%X('+,-%"#)-PQF))&'89#&X-X%*)&9)DKFHLEW)A))Y9)-9?8$)&9)&9?%X('+,-%"#)9$-)*9)-9?8$)-PQF))+<);"<-)&<1<9*)*+)?"%-%')&<)('+,-%`)/)+)&%$8+(<6)l"<()*+)('+,-%"#)&M"(&(9)P)'-<&%'9)%,%).)" )H#):"%-);%9#)1<9),9)-9?8$)&9)&9?%X('+,-%"#)#9)&'89#&)8+$)&9)*+),"#,9#-(+-%"#)%#%-%+*9)&<)('+,-%`6) Exercice 7 : ordre dÕune rŽaction Y"($)&9)*+)&',"?8"$%-%"#)8+()*+),d+*9<(@)S):"*I&9)&9)&%+J"-9@)9#)8d+$9)N+J9<$9)9-)$<%:+#-)*+)('+,-%"#).)2252

O 2 1

NO 2 ON+"

7-2-.&Q&

"(&(9)P)

"#),"#$-+ -9)1<9)*9)-9?8$)-P)+<);"<-)& <1<9*)*+)?"%-%' )&9)KFHL)%#%-%+*)+)&%$8+(<)9$-)%#&'89#&+#-)&9)*+)8(9$$%"#)%#%-%+*96))P2 f#)&'&<%(9)*="(&(9)&9)*+)('+,-%"#)*&+,+-.(,/0'1#',2'3'+&&0-#),)42+5678)$),)0&02)(.09'+(,)$24.+$20$,2+&0.9+(()#$)$),)0&+:;&S3.*6&274)&$4.&-5)6%74&237-2-.&QK&)F2 /)LL]@)"#),"#$-+-9)1<9),9)-9?8$)-P)9$-))&9)OZW)$9,"#&9$6)+*,<*9()*+),"#$-+#-9)&9):%-9$$9)C)&9)&',"?8"$%-%"#)&9)KFHL6)6QXB&I&L4B&X&J&&&237_&E&J&I&L4B&X&c\T&&I&&Q/CQKQT8`&*8Q&K& Exercice 8 : ordre dÕune rŽaction correctif par rapport ˆ lՎnoncŽ Y+)('+,-%"#)&M'1<+-%"#)[)4(HX0+12)))4(H[X0+12)3)F)4(X0+12)+)<#9),"#$-+#-9)&9):%-9$$9)'N+*9)S)L@ZP6PWXF)17,8QKLK*8Q)S)FL]6)H#)$<88"$9)1<9),9--9)('+,-%"#)+&?9-)<#)"(&(96)P2 j<9*)9$-)*M"(&(9)&9)*+)('+,-%"#)8+()(+88"(-)S)*M%"#)dI8";("?%-9)4(HX)A)Y+)('8"#$9)9$-)&+#$)*M<#%-')&9)*+),"#$-+#-9)&9):%-9$$96)C)$M9>8(%?9)9#)?"*XP6Y6$XP).)))L&-5)6%74&.*6&237-2-.&B&+-&-++7-6&H&e-#8K&)F2 H#)8+(-)&M<#9)$"*<-%"#),"#-9#+#-)*9$)%"#$)4(HX)S)*+),"#,9#-(+-%"#)L@W6PWXF)?"*6YXP6)+6 +*,<*9()*9)-9?8$)&9)&9?%X('+,-%"#6)i"%()*9$)('$<*-+-$)&<),"<($)9#)'-+#-):%N%*+#-)$<()*9$)#"?;(9$)$-"9,d%"?'-(%1<9$).))"#""#))"#""#)"#"#")f**9)$M%#-cN(9)9#).)"#"#))f#)-PQF@)*+),"#,9#-(+-%"#)%#%-%+*9)&9)4(HX)9$-)&%:%$'9)8+()&9<>).)

)"#"#))"#"#))"#))l+$$"#$)S)*M+88*%,+-%"#)#)8"<()',(%(9) *9$),"#,9#-(+-%"#$)&9$)9$8 c,9$)8('$9#-9$)&+#$)*+)$"*<-%"#)S)-)B)PUW)$).)

D4(HXEPUW)B)D4(HXEW)m)[6>PUW))W@WF)B)W@WL)m)[6>PUW)0QVT&&I&&T/TQ&17,KL8Q))Ae-#`8DQVT&I&0QVT&&I&T/TQ&17,KL8Q&&&&&&Ae-8DQVT&I&BK0QVT&&I&T/TB&17,KL8Q&&),6 /)1<9**9)&+-9)\L)n)&9$)%"#$)dI8";("?%-9)+<("#-X%*$)'-'),"#$"??'$)A) o%)\L)n)"#-)'-'),"#$"??'$@)+*"($k%*)9#)(9$-9)FLn)))^'$"*:"#$)*M'1<+-%"#).)""#"#))""""#$))j<%)&"##9).)6&I&`C\/C&*))Exercice 9 : hydrolyse du saccharose ))P2 f#)9>8*%1<+#-):"-(9)&'?+(,d9@)?"#-(9()1<9)*+)('+,-%"#)9$-)&M"(&(9)P)8+()(+88"(-)+<)$+,,d+("$9)#"-')o)9-)&'-9(?%#9()*+):+*9<()&9)*+),"#$-+#-9)&9):%-9$$9)"6)i"<$)9``9,-<9(9J)$"%-)<#9)('N(9$$%"#)*%#'+%(9@)$"%-)<#9)('$"*<-%"#)N(+8d%1<96)i"<$)(9?8*%(9J)*9)-+;* 9+<)&9):+*9<()p "%#-)9#)I)(98"(-+#-)*9$):+*9<($)1<9):"<$)+:9J)8"(-'9$)9#)"(&"##'96))Y+)('+,-%"#)$M',(%-).))o))B))q))3))r))f**9)9$-)&M"(&(9)P)8+()(+88"(-)S)o).):)B)"6DoEP)9-)8+()&'`%#%-%"#)&9):).):)B)X)&DoEQ&-)/*"($).)X)&DoEQ&-)B)"6DoE)

[S] [S] 0 [S] = - k 1 .dt Ln( [S] [S] 0 )= - k 1 .t

))/%#$%@)8"<():'(%`%9()$%)*+)('+,-%"#)9$-)&M"(&(9)P@)#"<$)+**"#$)-(+,9()L4(AFDXAFDT"&.4&<74)6%74&2.&66)o%)*9$)8"%#-$)$"#-)+*%N#'$@)*+)('N(9$$%"#)*%#'+%(9)$9(+),"#:9#+;*9)9-)#"<$):+*%&9("#$),9-)"(&(9)P6))a(+s"#$)&"#,)Y#0DoEQDoEW2)B)0-26))6&X&?.$-.&AFD&X&17,KL8Q&L4(AFDXAFDT"&T&W@OWW)W@WWW)QTT&W@[OZ)XW@POL)BCT&W@FUW)XW@[L\)CTT&W@PTZ)XW@\P[)UCT&W@POW)XP@WLW)QTTT&W@PWW)XP@[UZ))))Y9$)8"%#-$)$"#-)+*%N#'$@)*+)('N(9$$%"#)*%#'+%(9)9$-);"##96)"#,*<$%"#).)*+)('+,-%"#)9$-);%9#)&M"(&(9)P)9-)*+)89#-9)&9)*+)&("%-9)9$-)*M"88"$'9)&9)*+),"#$-+#-9)&9):%-9$$9)CP).)))JQ&I&Q/cKQT8`&?8Q)))*9)-9?8$)9$-)9#)9``9-)9>8(%?')9#)d9<(96))Y+)$<%-9)&9) *M'-<&9),"#$%$-9) S),d9(,d9() $%)"#)&"%-)"<)#"#),"#$%&'(9()1<9)* 9)$+,,d+("$9)$MdI&("*I$9)&+#$)*+);"%$$"#)'-<&%'96)H#)#9)89<-)8+$)<-%*%$9()*+):+*9<()#

I)B)XW@WWPO>)^b)B)W@TTT\P)

F2 f:+*<9()+<);"<-)&M<#)?"%$)&9)$-",C+N9)S)FW]@)*9)8"<(,9#-+N9)&9)$+,,d+("$9)(9$-+#-)&+#$)*+);"%$$"#6)"#,*<(96))K"<$)$+:"#$)1<9).)DoE)B)DoEW69>80X6-2)))+*,<*"#$)-"<-)&M+;"(&)C)9#)<-%*%$+#-)*+)*"%)&M/((d'#%<$).)))C)B)/69>80Xf+Q^a2)))C)B)[@PZ6PWPF69>80XPWU)WWWQU@[PO>FT[2))C)B)[@PZ6PWPF69>80XPWU)WWWQU@[PO>FT[2)B)P@\Z6PWX\)$XP))/<);"<-)&M<#)?"%$)&9)$-",C+N9).)))))))P)?"%$)B)[P)p"<($)B)[P)>)FO)>)[)ZWW)$))))DoE)B)DoEW69>80X6-2)B)DoEW69>80XP@\Z6PWX\)>)[P)>)FO)>)[)ZWW2))DoE)B)DoEW69>80XW@OL2)B)W@ZO6DoEW6))d,&-.*6.&274)&\c&f&2$&*))?-7*.&%4%6%,K&)^7445.*&E&¥ "#$-+#-9)&9$)N+J)8+(`+%-$).)^)B)U@[PO)_6VXP6?"*XP&¥ H#)8(9#&(+).)0aQV2)B)0#Q]2)3)F\[)¥ K)+)'-')&%$$"<$)&+#$)<#9);"<-9%**9)&M9+<6)9**9X,%)9$-)&';"<,d'9)+<)-9?8$)-)B)W6)Y+)-9?8'(+-<(9)9-)*+)8(9$$%"#)$"#-),"#$-+#-9$6)Y+)$"*<-%"#)&'N+N9)&<)HF6)l9#&+#-)*M%#-9(:+**9)&9)-)B)W)S)F)p"<($@)"#)(9,<9%**9)FLZ)?Y)&9)HF)N+J6)R9)-)B)F)S)O)p"<($@)"#)(9,<9%**9)PFU)?Y6)R9)-)B)O)S)Z)p"<($@)"#)(9,<9%**9)ZO)?Y6)v))R'-9(?%#9()*M"(&(9)&9)*+)('+,-%"#)&9)&'N+J+N9)9-),+*,<*9()$+),"#$-+#-9)&9):%-9$$9)C6))&

10

15 - 12,5

1,5 Pt Par consŽquent, v0 = |12,5 Ð 15|/10 : v0 = 0,25 µmol.L-1.s-1 La dŽcomposition de la fŽnamidone peut tre considŽrŽe comme une rŽaction ne faisant intervenir que la fŽnamidone selon un ordre 1. 2) ƒtablir lÕexpression de la concentration C de la fŽnamidone en fonction du temps ; on notera C0 la concentration en fŽnamidone ˆ lÕinstant initial. v = -dC/dt = k.C -dC/dt = k.C 0

0 0 0 d = -k.dt dt

Ln() - Ln( ) = - k.t

Ln= - k.t

Ct C C CC C C

0,5 Pt Soit : -k.t

0 .eCC=

3) Quel est le graphe le mieux adaptŽ pour vŽrifier la cinŽtique ? 0,5 Pt Le graphe le mieux adaptŽ est le trace de LnC = f(t) ou de Ln(C/C0) = f(t) car cette linŽarisation des rŽsultats est la plus facile ˆ exploiter : nous obtenons une droite. 4) A lÕaide dÕune rŽgression linŽaire, ou bien par une construction graphique, dŽterminer k. On reportera les valeurs de la fonction portŽe en ordonnŽe et

1 v = - 2dt Il faut donc rŽsoudre lՎquation diffŽrentielle : [] u dA 1 v = - = k.A 2dt 0 dAdA 11 - = k. A - = k

2dt2 dt

dA = - 2.kdt 1 dAdA 11 - = k .A - = kA

2dt2dt

dA = - 2.k.dt A et intŽgrons :

AZD&X&17,KL

8Q&

D/E)Q)?"*6YXP)Y%#'+%(9)0D/E)Q)?"*6YXP2)

L4AZD&

Y#D/E)Y%#'+%(9)0Y#D/E2)

Conclusion : la rŽaction ŽtudiŽe est dÕordre 1 par rapport ˆ A et la constante de vitesse de la rŽaction est k = 1,68.10-2 min-1. Exercice 13 : suivi dÕune rŽaction par mesure de pH )H#)'-<&%9)*+)('+,-%"#)-"-+*9)$<%:+#-9).)x"\HFOZX)3)U)HGX))))"))x"HOFX)3)O)GFH)9#)?9--+#-)<#)N(+#&)9>,c$)&M%"#$)8"*I?"*I;&+-9)x"\HFOZX6)H#)?9$<(9)*9)8G)+<),"<($)&<)-9?8$).)6(1*"&T&C&QQ&QV&BC&+;&PP@\)PP@L)PP@[)PP@WL)PW@U))R'-9(?%#9()*M"(&(9)&9),9--9)('+,-%"#)8+()(+88"(-)S)HGX)9-)9#)&'&<%(9)*+),"#$-+#-9)&9):%-9$$9)+88+(9#-9)(9*+-%:9)S),9$),"#&%-%"#$)9>8'(%?9#-+*9$6)oM)%*)I)+)<#)N(+#&)9>,c$)&M%"#$)GHX@)+*"($)%*)I)+)<#9)&'N'#'(9$,9#,9)&9)*M"(&(9)8+()(+88"(-)S)*M%"#)8"*I?"*I;&+-9)9-)&+#$),9),+$@)9#)#"-+#-)C+88)*+),"#$-+#-9)&9):%-9$$9)+88+(9#-9@)+*"($).))""")

QXAZD&

8G)Y%#'+%(9)08G2)

)f-)+*"($@)$%)1BP@)"#)$+%-)`+%(9).)'1<+-%"#)&%``'(9#-%9**9)X&D4(FEQ&-)B)C+88P6D4(FE))o'8+(+-%"#)&9$):+(%+;*9$@)8<%$) %#-'N(+-%"#) 9-)('N(9$$%"#)*%#'+%(9) "<)(98( '$9#-+-%"#)N(+8d%1<9).))Br

H Br H Br H Br H 1 2 3 4 1 2 3 4 4 3

)))))f-),9)$"#-);%9#)&9$)8"%#-$)+*%N#'$)$<()*+)&("%-9)&9)('N(9$$%"#).)*+)('+,-%"#)9$-);%9#)&="(&(9)8+(-%9*)1BP)8+()(+88"(-)S)4(F6))H#)9#)&'&<%-).)C+88P)B)W@WP[L)?%#XP6)))R+#$)*+)&9<>%c?9)9>8'(%9#,9@)%*)I)+)9#,"(9)<#9)&'N'#'(9$,9#,9)&9)*="(&(9@)*=+*,c#9)'-+#-)9#,"(9)9#)-(c$)*+(N9) 9>,c$6) 9--9)`"%$@)"#)& '-9(?%#9(+%-@),"??9) 8"<()*+)8(9?%c(9)9>8'(%9#,9)<#9),"#$-+#-9)&9):%-9$$9)C+88F6))

y = -0,0135x R 2

= 1 -1,800 -1,600 -1,400 -1,200 -1,000 -0,800 -0,600 -0,400 -0,200 0,000 0,200 0 20 40 60 80 100 120 140 Ln([Br2]/[Br2]0) t / min Ln([Br2]/[Br2]0) = f(t)

Ln([Br2]/[Br2]0) LinŽaire (Ln([Br2]/[Br2]0))

"??9)*="(&(9)8+(-%9*)8+()(+88"(-)+<)&%;("?9):+<-)P@)9d);%9#)*9)-9?8$)&9)&9?%X('+,-%"#)9$-)-PQF)B)Y#F)Q)C6))/%#$%).))))f>8'(%9#,9)P).)-PQF0P2)B)Y#F)Q)C+88P))f>8'(%9#,9)P).)-PQF0F2)B)Y#F)Q)C+88F)))9-).)C+88P)B)C6D/*EW@P8)B)W@WP[L)))))))C+88F)B)C6D/FEW@P8)B)Y#F)Q)-PQF0F2)B)W@WF\P))))C60W6W[28)B)W@WP[L))C60W6WZ28)B)W@WF\P)))86Y#0W@WZQW@W[2)B)Y#0W@WF\PQW@WP[L2))8)B)P))Y="(&(9)8+(-%9*)&9)*+)('+,-%"#)8+()(+88"(-)S)*=+*,c#9):+<-)'N+*9?9#-)P6)):)B)C6)D/*E6D4(FE))))*+)('+,-%"#)9$-)&="(&(9)N*";+*)F6))) Exercice 15 : dŽtermination dÕun ordre global )A 298 K, on mŽlange 100 mL d'une solution aqueuse d'ions cobalt(III) Co3+, de concentration initiale 1.10-3 mol.L-1 et 100 mL d'une solution aqueuse d'ions Fer(II) Fe2+, de concentration initiale 1.10-3 mol.L-1 . On Žtudie dans la suite la rŽaction d'oxydorŽduction suivante : 2+3+3+ 2+

Fe + Co Fe + Co"

ExpŽrimentalement, on dŽtermine la concentration molaire des ions Fe2+ ˆ diffŽrentes dates : t / s 20 40 60 80 100 120 [Fe2+] / mol.L-1 2,78.10-4 1,92.10-4 1,47.10-4 1,19.10-4 1,00.10-4 0,86.10-4 1.Calculer la concentration initiale des rŽactifs dans le mŽlange. Les concentrations sont divisŽes par deux car on mŽlange des volumes Žgaux des deux mmes solutions. Ainsi : [Co3+] = 5.10-4 mol.L-1 et [Fe2+] = 5.10-4 mol.L-1 2.Exprimer la vitesse de la rŽaction si les ordres partiels sont un par rapport ˆ chaque rŽactif.

v = k. [Co3+].[Fe2+] 3.Montrer, ˆ l'aide d'une construction graphique appropriŽe, que les rŽsultats expŽrimentaux sont en accord avec une cinŽtique global d'ordre 2. En dŽduire, ˆ partir de votre tracŽ ou par une rŽgression linŽaire, la valeur de la constante de vitesse k. Par dŽfinition de la vitesse volumique, ou spŽcifique de la rŽaction, alors : "

2+ 2+3+ dFe v = - = k.Fe .Co dt 2+ 2+3+ dFe - = k.Fe.Co dt

Or, ˆ chaque instant, [Co3+] = [Fe2+], car les rŽactifs ont ŽtŽ mŽlangŽs en proportions stoechiomŽtriques initialement ; ce ci permet dՎcri re lՎquation diffŽr entielle en ne faisant appara"tre que la concentration en Fe2+ : 2

2+ 2+ dFe - = k.Fe dt On sŽpare les variables avant dÕintŽgrer : 2+ 2+ 0 Fe 2+ 2+ Fe 2+2+ 0 dFe - = k.dt Fe 11 - = k.t FeFe

Traons la courbe 1/[Fe2+] en fonction du temps t : t / s [Fe2+] / mol.L-1 1/[Fe2+] 0 5,00E-04 2,000E+03 20 2,78E-04 3,597E+03 40 1,92E-04 5,208E+03 60 1,47E-04 6,803E+03 80 1,19E-04 8,403E+03 100 1,00E-04 1,000E+04 120 8,60E-05 1,163E+04

La courbe reprŽsentŽe est effectivement une droite, et les rŽsultats sont bien en accord avec une rŽaction dÕordre global Žgal ˆ 2. La constante de vitesse k sÕidentifie ˆ la pente de la droite : k = 80,15 mol-1.L.s-1 4.Calculer le temps de demi-rŽaction. NON POSEE DANS LE DEVOIR Le temps de demi-rŽaction de la rŽaction est le temps au bout duquel la moitiŽ du rŽactif limitant a disparu. Ici les deux rŽactifs sont introduits en proportions stoechiomŽtriques, et donc aucun nÕest limitant. Le temps de demi-rŽaction correspond donc ˆ la disparition ici de la moitiŽ de lÕun des deux rŽactifs, Fe2+ par exemple. Alors :

y = 80,151x + 1996,6 R = 0,99999 0,000E+00 2,000E+03 4,000E+03 6,000E+03 8,000E+03 1,000E+04 1,200E+04 1,400E+04 0 20 40 60 80 100 120 140 1/[Fe2+] t / s

1/[Fe2+] = f(t) est-elle une droite ? 1/[Fe2+] LinŽaire (1/[Fe2+])

1/2 2+2+ 00 1/2

2+2+2+

00 1/2 2+ 0 11 - = k.t FeFe 2 211
- = = k. t

FeFeFe

1 t = k.Fe 0 P k.t = Ln

2P - P

avec :  k : constante de vitesse de la rŽaction

 t : temps t  P0 : pression initiale de lՎthanal  P : pression dans lÕenceinte ˆ la date t Comme pratiquement ˆ chaque fois, un tableau dÕavancement permet de bien prŽparer la suite : CH3CHO(g)  CH4(g) + CO(g) nT(gaz) = n ˆ t=0 : n0 0 0 0 ˆ t : n0 Ð % % % n0 + % ˆ t$ : n0 Ð %$ %$ %$ n0 + %$ Or au bout dÕun temps infini, tout lՎthanal a disparu : n0 Ð %$ = 0 : n0 = %$ Si la rŽaction e st dÕordre 1, alors cela signifie que : []

1 3 3 dCHCHO v = - = k.CH CHO dt 3 3 0 CHCHO

Ln() = - k.t

CHCHO

Comme les gaz sont assimilŽs ˆ des gaz parfaits : Ç PV = nRT È et : V = constante T = constante Alors : ˆ t : PCH3CHO.V = n{CH3CHO}.RT soit : PCH3CHO.V = (n0 Ð %).RT [1] et P.V = n.RT soit : P.V = (n0 + %).RT [2] Ecrivons tout : ˆ t=0 : PCH3CHO,0.V = n{CH3CHO,0}.RT soit : P0.V = n0.RT et P0.V = n0.RT ˆ t$ : PCH3CHO,$.V = n{CH3CHO,$}.RT = 0 car il nÕy a plus dՎthanal et P$.V = n$.RT soit : P$.V = (n0+%$).RT soit : P$.V =2.n0.RT = 2.P0.V de [1] : PCH3CHO.V = (n0 Ð %).RT [1Õ] de [2] : P.V = (n0 + %).RT [2Õ]

[2Õ] + [1Õ] : (P + PCH3CHO).V = 2.n0.RT = P$.V = 2.P0.V Ainsi : (P + PCH3CHO).V = 2.P0.V : (P + PCH3CHO) = 2.P0 PCH3CHO = 2.P0 Ð P Et en t = 0 : PCH3CHO,0 = 2.P0 Ð P0 = P0 OK. Ainsi : []

33
33
3 3

CHCHOCH CHO

3

CHCHOCH CHO

300
0

CHCHO3

3CHCHO

00 nP CHCHO VRT

Ln() = Ln() = Ln()

nP CHCHO VRT

PCHCHO

Ln() = Ln()

CHCHO P

En utilisant les rŽsultats prŽcŽdents : [] 3 3

CHCHO30

3CHCHO0

00

PCHCHO2.PP

Ln() = Ln() = Ln()

CHCHOP P

CÕest le rŽsultat quÕil fallait Žtablir : [] 30
30
0

CHCHO2.PP

Ln() = Ln() = - k.t

CHCHOP

Que lÕon peut encore Žcrire : 0

0 P

Ln() = k.t

2.PP

2. Calculer la constante de vitesse k, en effectuant une rŽgression linŽaire, dont on reportera les caractŽristiques dans la copie, ou en effectuant une reprŽsentation graphique. Calculons k :

y = 0,0109x R 2 = 0,9937 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

0510152025303540

t / min

Ln(P0/(2.P0-P))

Ln(P0/(2.P0-P))

LinŽaire (Ln(P0/(2.P0-P)))

222

2NO 2 N + O "

Tanaka et Ozaki ont ŽtudiŽ sa cinŽtique en i ntroduisant dans un rŽcipient de volume V constant, prŽalablement vidŽ, une certaine quantitŽ de monoxyde et en mesurant la pression totale au cours du temps. Les rŽsultats suivants ont ŽtŽ obtenus, les pressions Žtant mesurŽes en unitŽs arbitraires : Temps /min 0 12 25 45 90 Pression T2 = 873 K 1 1,062 1,12 1,195 1,314 1. Rappeler la dŽfinition de la vitesse v de la rŽaction et l'exprimer par rapport ˆ N2O, ˆ N2 et ˆ O2. Par dŽfinition : [][][]

222
dNOdNdO 11 v = - = =

2dt2dtd t

2. On veut vŽrifier, ˆ partir des donnŽes relatives ˆ T2 = 873 K que la rŽaction est du premier ordre. Montrer qu'il faut Žtablir l'ŽgalitŽ suivante : 0

0 P

Ln2. k.t

3.P2.P

Par une rŽgression linŽaire, calculer la constante de vitesse k2 ˆ cette tempŽrature. Comme pratiquement ˆ chaque fois, un tableau dÕavancement permet de bien prŽparer la suite :

2 2 dNO 1 v = - = k.NO 2dt 2 2 dNO = -2k.NO dt 2 2 0 NO

Ln() = - 2k.t

NO

Comme les gaz sont assimilŽs ˆ des gaz parfaits : Ç PV = nRT È et : V = constante T = constante Alors : ˆ t : PN2O.V = n{N2O}.RT soit : PN2O.V = (n0 Ð 2%).RT [1] et P.V = n.RT soit : P.V = (n0 + %).RT [2] Ecrivons tout : ˆ t=0 : PN2O,0.V = n{N2O,0}.RT soit : P0.V = n0.RT et P0.V = n0.RT ˆ t$ : PN2O,$.V = n{N2O,$}.RT = 0 car il nÕy a plus de N2O. et P$.V = n$.RT soit : P$.V = (n0+%$).RT soit : P$.V = 3/2.n0.RT = 3/2.P0.V de [1] : PN2O.V = (n0 Ð 2%).RT [1Õ] de [2] : P.V = (n0 + %).RT [2Õ] 2.[2Õ] + [1Õ] : (2P + PN2O).V = 3.n0.RT = 3.P0.V Ainsi : (2P + PN2O).V = 3.P0.V : (2P + PN2O) = 3.P0

PN2O = 3.P0 Ð 2P Et en t = 0 : PN2O,0 = 3.P0 Ð 2.P0 = P0 OK. Ainsi : [] 22
22
2 2 NONO 2 NONO 200
0 NO2 2NO 00 nP NO VRT

Ln() = Ln() = Ln()

nP NO VRT PNO

Ln() = Ln()

NOP En utilisant les rŽsultats prŽcŽdents : [] 2 2 NO2 0 2NO0 00 PNO

3.P2.P

Ln() = Ln( ) = Ln()

NOPP CÕest le rŽsultat quÕil fallait Žtablir : [] 2 2 NO2 0 2NO0 00 PNO

3.P2.P

Ln() = Ln() = Ln() = - 2.k.t

NOPP

Que lÕon peut encore Žcrire : 0

0

3.P2.P

Ln() = 2.k.t

P

Passons ˆ la rŽgression linŽaire : t P 3.P0-2P Ln(P0/(3.P0-2P)) 0 1 1 0,000000 12 1,062 0,876 0,132389 25 1,12 0,76 0,274437 45 1,195 0,61 0,494296 90 1,314 0,372 0,988861

La pente vaut 0,011 et est Žgale ˆ 2k : k = 5,5.10-3 min-1. FIN DES CORRIGƒS Ln(P0/(3.P0-2P)) = f(t)

y = 0,011x R 2 = 1

0,000000

0,200000

0,400000

0,600000

0,800000

1,000000

1,200000

020406080100

t / min

Ln(P0/(2.P0-P))

Ln(P0/(3.P0-2P))

LinŽaire (Ln(P0/(3.P0-2P)))

quotesdbs_dbs19.pdfusesText_25
[PDF] cinq.o n e c.dz

[PDF] cinqonec dz relevé de note 2017

[PDF] cio bordeaux

[PDF] cioran la chute dans le temps pdf

[PDF] cioran pdf gratuit

[PDF] cioran sur les cimes du désespoir pdf

[PDF] circle movie 2015 wiki

[PDF] circonscription nice 1

[PDF] circonscription nice 3

[PDF] circonscription nice 5

[PDF] circonscriptions 06

[PDF] circonscriptions de nice

[PDF] circuit déclairage et de signalisation

[PDF] circuit de signalisation automobile pdf

[PDF] circuit economique a 5 agents