[PDF] Chapitre 4 Formules de Taylor permet l'approximation d'une





Previous PDF Next PDF



Approximation des fonctions

Ce texte présente quelques méthodes d'approximation de fonctions qui servent en particulier à calculer les fonctions classiques en utilisant des fonctions 



Chapitre II Interpolation et Approximation

Cette variante a en plus l'avantage d'éviter le calcul avec des nombres complexes. Transformée de Fourier en cosinus. Soit f(x) une fonction continue définie 



Analyse numérique : Approximation de fonctions

29 jan. 2013 Approximation de fonctions. Pagora 1A. Chapitre 3 ... On cherche à calculer les valeurs d'une fonction f (x) pour toutes.



Équation des tangentes et approximation affine

y = 11+6(x-2) = 6x-1. L'approximation affine ou linéaire. Supposons que la fonction f(x) ait une dérivée au point a :.



APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE

Définition 1. Soit I ? R un intervalle ouvert et soit f : I ? R une fonction. (1) Si f est continue on dit que f est de classe C0.



Analyse Numérique

3.4 Approximation par des fonctions polynômiales par morceaux . Dé nition 1.1 On appelle conditionnement d'une fonction numérique f de classe C1.



Chapitre 4 : APPROXIMATION POLYNÔMIALE DUNE FONCTION

4.3. Formule de Taylor. Dans ce paragraphe nous examinons Terreur dans l'approximation d'une fonction / par son polynôme de Taylor Tn(f).



Chapitre 4 Formules de Taylor

permet l'approximation d'une fonction plusieurs fois dérivable au voisinage b) La formule de Taylor-Young pour la fonction ex `a l'ordre n en 0 s'écrit.



Approximations numériques

approximation par une fonction polynomiale. ª Différentes techniques d'approximation `a étudier ! ! Interpolation de Lagrange f(x) = sin(.



Fonctions de deux variables

Pour une fonction dérivable f d'une variable on se rappelle que l'approximation linéaire au point a est la fonction dont le graphe est la tangente



Approximation numérique - u-bordeauxfr

mation de la fonction f initiale Deux approches sont possibles pour le calcul de cette approximation: Onimposequefetf h coïncident(etéventuellementleursdérivées)endespoints choisis Cette approche conduit aux méthodes d’interpolation polynomiale Elle permetégalementd’approcherlafonctionendehorsdel’intervalleinitial



Approximation with activation functions and applications

La théorie d’approximation des fonctions couvre de nombreuses branches en mathéma- tiques appliquées en informatique et en sciences de l’ingénieur en particulier en analyse numérique en théorie des éléments ?nis et plus récemment en sciences des données



Taylor and Maclaurin Polynomial Approximations

We also see that the local linear approximation becomes a very bad approximation quickly if f has a large bend at x0 We now try to find a local approximation by a polynomial of degree 2 and specify that its value and those of its first and second derivative match those of f at the point x0 For ease of computation we let the polynomial be () 00



IApproximation de fonctions régulières et numériques

Leçon 209 : Approximation d’une fonction par des polynômes et des polynômes trigonométriques Exemples et applications I Approximation de fonctions régulières et numériques I - 1 Fonctions régulières —Prop : Formule de Taylor-Young [1] —Exemple (exp sin ) [1] — Dev1 : Thm de Weierstrass [1] I - 2 Fonctions numériques



Searches related to approximation de fonction pdf PDF

- déterminer la fonction affine tangente g associée à f et utiliser cette fonction pour calculer la valeur approchée - appliquer directement la formule d’ATT en décomposant le nombre On peut utiliser les 2 méthodes mais en général on préfère appliquer la 2 e méthode

Chapitre 4Formules de Taylor

La formule de Taylor, du nom du math´ematicien Brook Taylor qui l"´etablit en 1715, permet l"approximation d"une fonction plusieurs fois d´erivable au voisinage d"un point par

un polynˆome dont les coefficients d´ependent uniquement des d´eriv´ees de la fonction en ce

point. La premi`ere ´etape est la formule (0+) =(0) +(0) +() qui montre que, siest d´erivable, alorsest approch´ee par un polynˆome de degr´e 1 (une droite). Comment faire pour augmenter le degr´e?

4.1 Les trois formules de Taylor

Notations 4.1.1.Soientun intervalle deR,0un point int´erieur `a, et:R une fonction. On fixe un entier naturel. On dit qu"une fonction est de classesursi elle estfois d´erivable sur, et si sa d´eriv´ee-i`eme est continue sur. Th´eor`eme 4.1.2(Taylor-Young).Supposons quesoit de classesur. Alors, pour toutRtel que0+appartienne `aon peut ´ecrire (0+) =(0) +(0) +2

2!(2)(0) ++!()(0) +()

=0 !()(0) +() o`u()est une fonction qui tend vers0quandtend vers0. 40

D´efinition 4.1.3.La somme?

=0 !()(0) s"appelle le polynˆome de Taylor de`a l"ordreau point0. Par convention, 0! = 1! = 1. Remarque.Une autre fa¸con d"´ecrire un d´eveloppement de Taylor au point0consiste `a poser=0+. Le th´eor`eme de Taylor-Young s"´enonce alors de la fa¸con suivante : si est de classesur, alors pour touton peut ´ecrire =0(0) !()(0) + (0)(0) o`u(0) tend vers 0 quandtend vers0. Exemples.a) La formule de Taylor-Young pour la fonction sin() `a l"ordre 2+ 1 en 0 s"´ecrit sin() =3

3!+55!++ (1)2+1(2+ 1)!+2+1()

En effet, on doit calculer les d´eriv´ees successives de sin() en 0. Nous avons sin(0) = 0sin(0) = cos(0) = 1sin(0) =sin(0) = 0

Plus g´en´eralement, pour toutNnous avons

sin (2)(0) = 0 et sin(2+1)(0) = (1)cos(0) = (1) d"o`u le r´esultat. b) La formule de Taylor-Young pour la fonction`a l"ordreen 0 s"´ecrit = 1 ++2

2+33!++!+()

En effet,est sa propre d´eriv´ee.

Par exemple, poursuffisamment petit, le polynˆome3

3!donne une valeur approch´ee

de sin(). On aimerait connaˆıtre la pr´ecision de cette approximation, c"est-`a-dire contrˆoler

la taille du reste3(). Nous allons d"abord exprimer le reste sous la forme de Lagrange,ce qui constitue une g´en´eralisation du th´eor`eme des accroissements finis. Th´eor`eme 4.1.4(Taylor-Lagrange).Supposons quesoit de classe+1sur. Alors, pour toutRtel que0+appartienne `a, il existe]01[tel que l"on ait (0+) =? =0 !()(0) ++1(+ 1)!(+1)(0+) (notons ici qued´epend de). 41
Exemples.a) Consid´erons `a nouveau la fonction sin(). La formule de Taylor-Lagrange `a l"ordre 3 au voisinage de 0 s"´ecrit sin() =3

3!+44!cos()

avec]01[. Ainsi, on peut dire que3

3!constitue une valeur approch´ee de sin()

avec une erreur inf´erieure ou ´egale `a 4 4!. b) Consid´erons encore. La formule de Taylor-Lagrange `a l"ordre 4 au voisinage de 0 s"´ecrit = 1 ++2

2+33!+44!+55!

Comme la fonctionest croissante, on peut dire que. Ceci permet par exemple de donner une valeur approch´ee de. En effet, nous avons = 1 + 1 +1

2+16+124+1120

avec 3 donc, l"erreur est de l"ordre de3

120=140.

c) Soitun polynˆome de degr´e au plus. Alorsest de classe+1et(+1)= 0. La formule de Taylor-Lagrange `a l"ordreau voisinage de 0 nous dit que, pour toutR =0 !()(0)

En effet, le reste est nul! Ainsi, les coefficients desont donn´es par les d´eriv´ees successives

deen 0. Ce r´esultat peut aussi se d´emontrer par un calcul alg´ebrique (sans recourir `a l"analyse). D´emonstration de la formule de Taylor-Lagrange.Si= 0, c"est vrai. Fixons= 0, pour simplifier les notations, nous posons=0+. Nous cherchons donc `a montrer l"existence d"un r´eelstrictement compris entre0ettel que l"on ait =0(0) !()(0) +(0)+1(+ 1)!(+1)()

On introduit la fonctiond´efinie par

=0() !()()()+1 o`uest un r´eel choisi de telle fa¸con que(0) = 0, c"est-`a-dire : =0(0) !()(0) +(0)+1 42
Il est clair, vu la d´efinition de, que() = 0. Pour d´emontrer le th´eor`eme, il suffit de montrer queest de la forme(n+1)() (+1)!pour un certain. Vu les hypoth`eses, nous pouvons appliquer le th´eor`eme de Rolle pour trouver(stric- tement compris entre0et) tel que() = 0. Calculons. Par la formule de d´erivation d"un produit, nous avons =1()1 =0()!(+1)() +(+ 1)() 1? =0() !(+1)()? =0()!(+1)() +(+ 1)() d"o`u !(+1)() +(+ 1)() (+1)() !+(+ 1)?

L"´egalit´e() = 0 se traduit donc par :

=(+1)() (+ 1)! d"o`u le r´esultat. D´emonstration de la formule de Taylor-Young.On applique la formule de Taylor-Lagrange `a l"ordre1 pour la fonction. Il existe donc]01[ tel que l"on ait (0+) =1? =0 !()(0) +!()(0+)

On pose alors

() =1 !?()(0+)()(0)? Le nombre, bien que d´ependant de, appartient `a ]01[. Nous avons donc lim

0(0+) =0

Comme()est continue en0, on en d´eduit que

lim

0() = 0

43

Enfin, par d´efinition mˆeme de, nous avons

!()(0+) =!()(0) +() d"o`u le r´esultat, en injectant ceci dans la formule de d´epart. Il existe aussi une autre expression du reste, qui constitue une g´en´eralisation du th´eor`eme fondamental du calcul diff´erentiel et int´egral (voir le chapitre suivant). Th´eor`eme 4.1.5(Taylor avec reste int´egral).Supposons quesoit de classe+1sur . Alors, pour toutRtel que0+appartienne `aon a (0+) =? =0 !()(0) ++1!? 1 0 (1)(+1)(0+)d

Remarque.Le reste int´egral admet une autre expression. Plus pr´ecis´ement, on a l"´egalit´e

+1 1 0 (1)(+1)(0+)d=? 0+

0(0+)!(+1)()d

qui d´ecoule tout simplement d"un changement de variable0+. Remarque.Pour certaines fonctions, nous pouvons montrer que le reste tend vers z´ero

quandtend vers l"infini; ces fonctions peuvent ˆetre d´evelopp´ees ens´erie de Taylordans

un voisinage du point0et sont appel´ees desfonction analytiques.

4.2 Op´erations sur les polynˆomes de Taylor

Soientetdeux fonctions de classe. Comment obtenir le polynˆome de Taylor de +, de, de , et caetera, `a partir de ceux deet? Commen¸cons par d´emontrer l"unicit´e du polynˆome de Taylor d"une fonction donn´ee en un point donn´e. Lemme 4.2.1.Soitde classesur, et soit0. Supposons qu"il existe un polynˆomede degr´e au pluset une fonctionqui tend vers0en0, tels que l"on ait (0+) =() +() pour touttel que0+. Alorsest le polynˆome de Taylor de`a l"ordreau point0. 44
D´emonstration.Commeest de classe, et queest un polynˆome, la fonction () est ´egalement de classe. De plus, lespremi`eres d´eriv´ees de() s"annulent en 0. On peut donc ´ecrire, pour tout 01, ()(0) =()(0) D"autre part, la formule de Taylor-Lagrange `a l"ordreen 0 pour le polynˆomenous dit que, pour toutR, =0 !()(0) (le reste ´etant nul comme on l"a vu plus haut). Ainsi =0 !()(0) ce qu"on voulait. Voici comment les op´erations alg´ebriques usuelles se traduisent au niveau des po- lynˆomes de Taylor. Th´eor`eme 4.2.2.Soientetdeux fonctions de classesur, et soit0. Soit (resp.) le polynˆome de Taylor de(resp.) `a l"ordreau point0. Alors (1)le polynˆome de Taylor de+`a l"ordreen0est+ (2)le polynˆome de Taylor de`a l"ordreen0esttronqu´e en degr´e (3)si(0)= 0, alors est de classeau voisinage de0et le polynˆome de Taylor de est le quotient deparselon les puissances croissantes `a l"ordre.

Quelques commentaires :

1)est un polynˆome de degr´e au plus 2, sontronqu´e en degr´eest le polynˆome

obtenu en supprimant tous les termes de degr´e strictement sup´erieur `a. Dans la pratique, ce ne sera mˆeme pas la peine de calculer ces termes...

2) Ladivision selon les puissances croissantesdepar`a l"ordreest d´efinie comme

suit : si(0)= 0, alors il existe un unique couple () de polynˆomes tel que l"on ait () =()() ++1() avec deg() On dit queest le quotient deparselon les puissances croissantes `a l"ordre, et queest le reste. Cette division, contrairement `a la division euclidienne despolynˆomes (que l"on appelle aussi division selon les puissances d´ecroissantes), a pour effet d"augmenter le degr´e du reste, au lieu de le diminuer. Ainsi, il n"y a pas une seule divisionselon les puissances croissantes, il y en a une pour chaque ordre. Plusaugmente, plus le degr´e du quotient et du reste augmentent. 45
Exemples.On ´ecrit Taylor-Young `a l"ordre 3 en 0 pour sin() sin() =3

6+31()

et pour ln(1 +) ln(1 +) =2

2+33+32()

d"o`u l"on d´eduit : a) Taylor-Young `a l"ordre 3 en 0 pour la diff´erence sin()ln(1 +) =2

232+3()

b) Taylor-Young `a l"ordre 3 en 0 pour le produit sin()ln(1 +) = (3

6)(22+33) +3()

=23 2+3() D´emonstration.D"apr`es Taylor-Young, il existe des fonction1et2qui tendent vers 0 en 0 telles que, pour touttel que0+, (0+) =() +1() et (0+) =() +2() En additionnant ces deux expressions, et en appliquant le lemme, le point (1) en d´ecoule. (2) Nous avons ()(0+) = (() +1())(() +2()) =()() +(()2() +1()() +1()2()) =()() +3() o`u3() est une fonction qui tend vers 0 en 0. Il suffit alors d"´ecrire ()() =()() +4() o`u()() est le tronqu´e deen degr´e. Ainsi ()(0+) =()() +(() +3()) 46
d"o`u le r´esultat (via le lemme). (3) Soit () =()() ++1() avec deg() le r´esultat de la division deparselon les puissances croissantes `a l"ordre. Nous avons alors, pour tout, ()()() =+1() d"o`u (0+)(0+)() = (() +1())(() +2())() =()()() +(1() +2()()) =+1() +() =3()

Ainsi, en divisant tout par(0+), nous obtenons

(0+) (0+)() =3()(0+) Quandtend vers 0,(0+) tend vers(0)= 0, donc la fonction3() (0+)tend vers 0.

D"o`u le r´esultat.

On peut aussi composer les polynˆomes de Taylor. Th´eor`eme 4.2.3.Soient:Ret:Rdeux fonctions de classetelles que (), et soit0. Soitle polynˆome de Taylor de`a l"ordreau point0, et soitle polynˆome de Taylor de`a l"ordreau point(0). Alors le polynˆome de Taylor de`a l"ordreau point0est le polynˆome compos´etronqu´e en degr´e. D´emonstration.Mˆeme principe que pr´ec´edemment. Remarque.a) Si une fonction est paire (resp. impaire), alors son polynˆome de Taylor d"ordreen 0 ne contient que des puissances paires (resp. impaires) de. b) On peut d´eriver (ou int´egrer) les polynˆomes de Taylor.Plus pr´ecis´ement, siest de classealorsest de classe1, et le polynˆome de Taylor de`a l"ordre1 au point0s"obtient en d´erivant le polynˆome de Taylor de`a l"ordreen ce mˆeme point. Citons quelques applications des formules de Taylor : - Calcul de valeurs approch´ees de fonctions usuelles - Calcul de limites - Position du graphe d"une courbe par rapport `a sa tangente 47
Exemple.Le dessin ci-dessous compare graphiquement la fonction sin() avec ses po- lynˆomes de Taylor d"ordres 3, 5 et 7 en 0. sin() 36

36+5120

36+512075040

48
quotesdbs_dbs26.pdfusesText_32
[PDF] approximation polynomiale exercices corrigés

[PDF] approximation au sens des moindres carrés exercices corrigés

[PDF] approximation polynomiale moindres carrés

[PDF] approximation polynomiale taylor

[PDF] approximation des fonctions analyse numérique

[PDF] approximation linéaire d'une fonction

[PDF] approximation de pi par la méthode de monte carlo

[PDF] méthode de monte carlo algorithme

[PDF] méthode de la sécante

[PDF] méthode du point fixe

[PDF] methode de newton pdf

[PDF] méthode de héron dm

[PDF] developpement decimal

[PDF] développement décimal d un réel

[PDF] loi de poisson exemple