[PDF] Monitoring land subsidence and its induced geological hazard with





Previous PDF Next PDF



Compte-Rendu de la réunion du CA 11 février 2006-02-11

Depuis le 1er septembre 2009 le LOOF applique une nomenclature unifiée des couleurs de robe des chats. Cette nomenclature est « unifiée » à plusieurs 



PROCÈS-VERBAL DE LA SÉANCE ORDINAIRE DU CONSEIL DE

24 mai 2006 tenue le 18 février 2002 le conseil a adopté le ... mandat d'un an



Monitoring land subsidence and its induced geological hazard with

2003 and May 1st 2010 and were acquired in Image Mode S2 (look 11 Feb 2006–27 Jan 2007 ... Comptes Rendus Geosciences



Monitoring land subsidence and its induced geological hazard with

2003 and May 1st 2010 and were acquired in Image Mode S2 (look 11 Feb 2006–27 Jan 2007 ... Comptes Rendus Geosciences



Monitoring land subsidence and its induced geological hazard with

2003 and May 1st 2010 and were acquired in Image Mode S2 (look 11 Feb 2006–27 Jan 2007 ... Comptes Rendus Geosciences



Monitoring land subsidence and its induced geological hazard with

2003 and May 1st 2010 and were acquired in Image Mode S2 (look 11 Feb 2006–27 Jan 2007 ... Comptes Rendus Geosciences

Monitoring landsubsidence andits inducedgeological hazardwith Synthetic Aperture RadarInterferometry: Acase studyin Morelia,Mexico

Francesca Cigna

a, ⁎, BatuhanOsmano lu a,1 , EnriqueCabral-Cano b , TimothyH. Dixon a,2

Jorge AlejandroÁvila-Olivera

c , VíctorHugo Garduño-Monroy d , CharlesDeMets e , ShimonWdowinski a a

Division ofMarine Geologyand Geophysics,University ofMiami, 4600Rickenbacker Causeway,Miami, FL33149-1098, UnitedStates b

Departamentode Geomagnetismoy Exploración,Ins titutode Geofísica,Universidad NacionalAutónomadeMéxi co,Ciudad Universitaria, 04510Méxic oD.F., Mexico

c

Institutode InvestigacionesSobre losRecursos Naturales,Universidad Michoacanade SanNicolás deHidalg o,Av. SanJuanito Itzícuaros/n, 58330,Morelia, Michoacán,Mexico

d

Instituto deInvestigaciones Metalúrgicas,Universidad Michoacanade SanNicolás deHidalgo, CiudadUniversitaria, Edif.U, 58030Morelia, Michoacán, Mexico

e

Department ofGeoscience, Universityof Wisconsin-Madison,1215 Dayton,Madison ,Wisconsin 53706,United States

abstractarticle info

Article history:

Received 15March 2011

Received inrevised form7 September2011

Accepted 8September 2011

Available online26 October2011 Keywords:SAR InterferometryInSARPersistent ScatterersSubsidenceTectonicsGroundwater

GPS

Morelia

Mexico

Twenty threeENVISAT SyntheticAperture Radar(SAR) imagesacquired in2003 -2010 wereprocessed with

conventional SARInterferometry (InSAR)and PersistentScatterer Interferometrytechniques, toinvestigate

spatial andtemporal patternsof landsubsidenc ein Morelia,Mexico. Subsidingareasaredistributed aseither

concentrated circularpatterns correspondingto intensegroundwater extraction(e.g., RioGrande meander area; maximumdeformation of7 -8 cm/yr)or aselongate patterns orientedalong NE-SW orE -W directions and parallelto majorfaults (i.e.La Colina,La Palomaand CentralCamionera; maximumdeformation of4 -

5 cm/yr).High subsidencerates arealso measuredon thehanging wallof majornorm alfaults, wherethe

thickest sequencesof compressibleQuaternary sedimentscrop out.Strong contrastsin subsidencera tes are identi ed acrossmajor faults,suggesting thatthese faultsact asbarriers tohori zontalmovement of groundwater. Subsidencerates showa weakpositive correlationwith thetotal thicknessof compressiblede-

posits, whilethere isno correlationwi theither waterextraction ratesorchangesin staticwater level.Time-

lapse analysisof grounddeformation withconventional InSARreveals temporalvariations ofsubsidence north ofthe LaColina faultand theRio Grandemeander area.For thislatter area,cross sectionsand 3Dper- spectives ofInSAR measures,and analysisof subsidence ratesthrough time, showanaccelerationof subsi- dence velocitiessince 2005,corresponding torecasing ofthe PradosVerdes IIwell, whoselocation is centered inthe areaof highestsubsidence.

© 2011Elsevier Inc.All rightsreserved.

1. Introduction

Many urbanareas inMexico deriveall orpart oftheir freshwater from localaquifers. Someof thesecities haveexperienced signicant population growthin thelast fewdecades, and/ordeclining rainfall and reducedaquifer recharge. Withoutcarefulmanagement, thiscan

result inover-explo itationofthegroundwa terresource, leadingto declining groundwaterlevels,compacti onand lossofporosityin the

aquifer, andsurface subsidence. Ifover-exploitationis continuedfor too long,porosity lossesbecome irreversibleand aquifercapacit yis permanentlyreduced. Inthese casessubsidence canalso reacha few meters, enoughto causesigni cant damageto urbaninfrastructu re. Monitoring surfacemovements associatedwith groundwater changes canbe accomplished withSyntheticApertureRadar (SAR) observationsacquired bylow Earthorbiting satellites.Since conven- tional SARInterferomet ry(InSAR)wasrst appliedin theearly

1990s (Massonnet& Feigl,1998; Rosenet al.,2000 ), ithas beenin-

creasingly recognizedasa valuabletool forgroundwa ter-related problems, inboth thesingle-int erferogram(conventio nal)andthe multi-interferogram(advanced) approaches(e.g., Amelung etal.,

1999; Cabral-Canoet al.,2008; Gallowayet al.,1998; Herreraet al.,

2009; Hoffmannet al.,2001; Osmanogluet al.,2011; Tomáset al.,

2005). Oneof thechallenges inapplying thetechniq ueis thatthe ob-

served surfacedeformat ioneld maybe complex, reecting bothtec- tonic andgroundwa ter-relatedsources(e.g.,Bawden etal., 2001). Multiple groundwaterextractionlocation s,temporally andspatially

variable extractionrates, andspatially variablemechanica lproperties Remote Sensingof Environment117 (2012)146 -161

⁎Corresponding authorat: Departmentof EarthSciences, University ofFirenze, Via La Pira4, 50121Firenze, Italy.Tel.: +1 305421 4660,+ 390552055300;fax: +1

305 4214632, +39 0552055317.

E-mail addresses:francesca.cigna@uni.it,francesca.cigna@gmail.com(F. Cigna), bosmanoglu@alaska.edu(B. Osmanolu),ecabral@geosica.unam.mx(E. Cabral-Cano), thd@usf.edu(T.H. Dixon),ja.avilaolivera@gmail.com(J.A. Ávila-Olivera), vgmonroy@umich.mx(V.H. Garduño-Monroy),chuck@geology.wisc.edu(C. DeMets), swdowinski@rsmas.miami.edu(S. Wdowinski).1 Present address:Geophy sicalInstitute,Unive rsityofAlaska,903 KoyukukDr.,Fair- banks, Alaska99775-7320, UnitedStates. 2 Present address:Department ofGeology, Universityof SouthFlorida, 4202E. Fowler Avenue, SCA528, Tampa,FL 33620-8100, UnitedStates.

0034-4257/$-see frontmatter ©2011 ElsevierInc. Allrights reserved.

doi:10.1016/j.rse.2011.09.005

Contents listsavailable atSciVerse ScienceDirect

Remote Sensingof Environment

journal homepage:www.elsevier.com/locate/rse and consequentvariable responses toextractionmayfurther compli- cate theinterp retation. Since theearly 1980sthe cityof Moreliain CentralMexico hasex- periencedsubsidence associatedwith groundwaterextraction inex- cess ofnatural recharge fromrainfall.Thesurface deformation ⁎eld re′ects bothtectonic andgroundwa terin ′uences (e.g.,Garduño- Monroy etal., 2001). Inthis paper,we presentsatellite SARdata for the period2003 ...2010, andshow thata timeseries analysisof these data isable tounravel mostof thecomplexi ty.Speci ⁎cally, weshow that mostof thevariance ofthe subsidence signalcan beexplained by thelocation ofmajor wells,the thicknessof theunderlying Quater- nary sedimentary⁎ll (themain aquifer)that overliesa faulted Miocenebasement,andproxim itytomajorfaults.Whilesome speci⁎c regions inthe cityshow rapidsubsidence andin somecases recently developed subsidencefeatures, alarger partof thecity doesnot yet exhibit extremesubsidence rates,suggesting thatimproved waterre- source managementhasthe potentialto greatlyreduce oreliminate long termsubsidence.

2. Geologicalandhistorica lbackgrou nd

Moreliaisthe capital ofthest ateofMichoac áni ncentr alMexico. Theor iginalcitycente rwasbuilt inthe16thcent uryand isnowa UNESCOWo rldHeritages ite.Beginninginthe 1980s,Mo reliaexperi- enceddiffer entiallandsubsidence,ca usingfaul tinganddamageto urbaninf rastructure.Subsidenceiscommonl yinducedbyconsolida - tionof clay-ri chlacustrineand′uvio-lacustrinesedimentsinr esponse to over-exploitationofgroundwater(e.g .,Ávila-Olivera&Garduño- Monroy,2010;Ca bral-Cano etal.,2008;2010b;Gar duño-Mo nroy etal .,1999;20 01;Lermo-S amaniegoe tal.,1996;Martínez-Reyes& Nieto-Samaniego,1990;Osmanoglu etal.,2011; Trejo-Moedano&

Martinez-Baini,1991;Trujillo -Candelaria, 1985).

Moreliaisloca tedint heGuayangareoV alle y,atane levationof

1850...2100ma. s.l .Thevalleyi salacu strineregio n,with sed imentary

sourcesboth southandno rthofthev alley. Tothesou th, theSie rradeMilC umbres(SMC)orSan taMaríaRegi on comprisesa MiddleMiocenesequen ceofrhyolit icpyroc lastic′ows,and esitesandbreccias.

To thenor th,monogeneti cvolcanoesandlavacone softheMichoacán... Guanajuatovolcanic⁎eldo ccuraspart of theMexica nVolca nicBel t.In theur banarea,th efollowi ngunits arede⁎ned( Fig.1;Ávila-Oliveraet al.,20 10a): Mioceneandesit es,overlainbyaseq uenceofignimbrite s andp yroclastic′ows oft heCanteradeMo reliaŽ, alsoof Miocene age, overlainbyMioce ne...Plioceneandesite sanddacitesbelon gingto the volcanicsequence ofCerroPunhuat o.The seareoverl ainbyMiocene... Pliocene′uvio-lacustrinedepositsand pyroclastic′ows,and Pleist o- cene...Holoceneandesit esandbasaltsfrom Quince o(2787ma.s.l .)and LasTe tillas(2760ma.s .l.)volcano es, partoftheMich oacán...Guanajua- to volcanic⁎eld.The uppermo stunitsaresedim entarydeposit sand cementedtuffs ofQuater naryage, formingthemajoraquif er. Morelia's 16thcentury buildingshave survivedremarkably well and representa typeof strain marker Ž. Untilrecently, theysuggested relative stabilityof theurban landsurface. However,since the1980s, structuralproblems beganto appearin newlyurbanized areas.Differ- ential landsubsidenc ewas⁎rst recognizedin 1983,when small gashes evolvedto forma networkof normalfaults, withaverage ver- tical displacementratesof 4...6 cm/yr( Garduño-Monroyet al.,2001 ). Today, ninemajor NE...SW andE ...W normalfaults canbe recognized within theurban area:La Colina,Central Camionera, LaPaloma, Cha- pultepec,Torremoli nos,ElRealito,La Soledad,Cuautla andVentura Puente (Fig. 1). Theorientation ofthese faultscoincides withregional tectonic faults.As describedby Garduño-Monroyet al.(1998, 2001), two ofthese faults,La Colinaand LaPaloma, havea tectonicorigin and arepotent iallyseismic.Theyare partof theMorelia ...Acambay fault systemwhich isin turnrelated tothe Chapala...Tula Faultzone (Johnson& Harrison,1990 ). Allother faultswithin thecity arelikely the resultof groundwater extraction,althoughsome mayre ′ect re- activationof pre-existing structures.Theselatter faultsareshallow, mainly affectingMiocene ...Pleistoceneterrains andsedimen tsbut not theunderlying ignimbrites. Theytypicallyinvolvenarrow damage zones, upto 30...40 mwide (Ávila-Olivera& Garduño-Monroy, 2008;

Fig. 1.Location (GoogleEarth, rightinset) andgeological map( Ávila-Olivera etal., 2010a) ofthe cityof Morelia,Michoacán, Mexico.Geology isoverlaid ona 1998topogr aphicmap

(Morelia E14A23;1:50,000 scale),updated withrecent streetblock information.Location ofMOGA andMOIT GPSpermanent stations,water wellsand cross-section T-T, aswell as

of theRio Grandemeander area(a), arealso represented.Q =Quaternary; Ps= Pleistocene; H= Holocene;P =Pliocene; M= Miocene.147F. Cignaet al./ RemoteSensing ofEnvironment 117(2012) 146-161

Cabral-Canoetal., 2010a) andhavebeguntoseriouslyaffect theurban infrastructure( Garduño-Monroyet al.,1999 ). Extensive geotechnicalsurveys, includingpaleo-s eismic,Ground Penetrating Radar(GPR) andSeismic RefractionTomograp hy(SRT) campaigns,and aconvention alInSAR studyhavebeencarried outin Morelia (Ávila-Olivera& Garduño-Monroy, 2004,2006,2008;Ávila- Olivera etal., 2008,2010b; Cabral-Cano etal., 2010a;Farinaetal.,

2007, 2008;Garduño-Monro yetal.,2001 ). Thesesurveys indicatea

complex spatial-temporal patternoffault motion,subsidence, andin- frastructuredamag e.

3. SARdata andinterferom etricanalysis

The causesand patterns ofgroundsubsidenceare wellknown for several citiesin theMexican VolcanicBelt. InMexico City,pioneering studies initiateddecade sagousingground-bas edtechniques docu- mented theextent andcause ofsubsidence (Carrillo, 1948;Gayol,

1925; Ortega-Guerreroetal., 1993). Recentconventiona landad-

vanced InSARinvestigation shaveextendedour understanding of this process(e.g., Cabral-Cano etal., 2008,2010b; López-Quirozet al., 2009;Osmanoglu etal., 2011;Strozzi &Wegmüller, 1999;Strozzi variationsin subsidence.Here weextend theseadvan cedtechniques to Morelia. Twenty threeradar imagesacquired bythe ASAR(Advanced SAR) sensor onboard theEuropea nENVISAT satellite,operatingin C-band (wavelength 5.6cm; frequency 5.3GHz),wereacquired forMorelia (Table 1). Thesescenes spanthe timeinterval betweenJuly 12th,

2003 andMay 1st,2010 andwere acquiredin ImageMode S2(look

angle,fi=20.8°;swath =100km),withVVpolarization ,and along descending orbits(track 69,frame 3213). ConventionalInSAR andPersistent ScattererInterferomet ry(PSI) processing wereperformed usingGAMMA SARsoftware forraw data (Werner etal., 2000). Subsequentsteps employed DelftObject- oriented RadarInterferom etricSoftware(DORIS)and thePSI Toolbox (Kampes &Usai, 1999;Ketelaar, 2009;Sousa etal., 2010), bothdevel-

oped bythe DelftInstitute ofEarth Observation andSpace Systemsof Delft UniversityofTechnology (TU-Delft), andthe AutomatedDORIS

Environment(ADORE) ,developedatthe GeodesyLaboratory, Univer- sity ofMiami (Osmanoglu, 2010). Precise orbitsfrom theDelft Institute forEarth-Orien tedSpaceRe- search (DEOS)were usedto minimizeorbital errorsfor allscenes (Scharroo& Visser,1998 ), exceptthe threemost recentones. For these, thePrecise OrbitEphemeris fromCentre Nationald'Etude s Spatiales (Willis etal., 2006) or,if notavailable, preliminaryorbits (Medium-precisionOrbit Ephemeris) fromtheEuropeanSpace Agen- cy (ESA)were used.

3.1. InSARanalysis

exploitstworadar images ofthesamear eaacquiredat dif ferentti mes tome asuregrounddi splacement(Massonnet&Feig l,19 98;Rosenet al.,20 00). Thetech niqueusesthephas edifferenc eofba ckscattered sig- nalsfro mthetwo acquisit ionstomeas uredifferentialmotion in the LineO fSight (LOS)direc tion(e.g. ,Goldsteinetal.,199 3;Ki mura& Yamaguchi,2000;Masso nnetetal.,19 95;Singhroyetal .,19 98). Our InSARanalysis usedfour SARpairs withshort perpendicu- lar baselines( B perp b200 m)and relativelyshort temporal baseline (B temp b1.5 yr)in orderto minimizethe spatialand temporaldecorre- lation ofthe correspondinginterferogra ms.These interferometric pairs spanthe timeinterval between2003 and2009 (Table 2). Inter- ferograms spanningthe rainyseason (May-August) tendedto have strong atmospheric-relatedartifactsand wereavoided . SAR rawdata wererst processedand convertedto SingleLook Complex (SLC)images, maintaining fullresolutionforeach acquisi- tion (i.e.4 min theazimuth direction and20 min range).TheSLCs were thencropped toour studyarea of20 kmby 16km, including both theurban andsuburban sectorsof Morelia.After co-registration of slaveimage stotheirrespective masters,a multi-lookratio of5:1 (nal pixelsize 20m by20 m)was usedto generateraw interfero- grams andsubsequent products. Extractionof thedisplacem entphase componentfromeachof the raw interferogramswascarried outusing the'two-passinterferom e- try"approach (Massonnet& Feigl,1998 ). Subtractionof topographic informationfrom eachinterferogra mwas performedusingapre- existing DigitalElevation Model(DEM) tosimulate thesynthe ticto- pographic phase.We usedthe 30m resolutionASTER GlobalDEM, distributed byNASA's LandProcess DistributedActive ArchiveCenter. We appliedan adaptiveltering toeach differential interferogram (Goldstein &Werner ,1998) toreduce phasenoise andimprove subsequent 2Dphase unwrapping. Wethenusedthe Statistical-cost, Network-ow Algorithmfor PHaseUnwrapping (SNAPHU)approach (Chen &Zebker, 2000) toresolve ambiguouswrapped phasedata. Connectedcompon entmasks(i.e.pixels unwrappedin arelative, in- ternally self-consistentmanner),derived fromthe fourunwrapp ed solutions, werealso appliedto theunwrapped interferograms to limit subsequentprocessing stepsto reliableareas. Theunwrapped differentialphases werethen convertedinto fourmaps ofground displacement(measured alongthe satelliteLOS) andgeocoded accordingto theASTER DEMprojectio ns. Thenal resultsof theInSAR processingwere alsoconverted from maps ofLOS displacements intomapsoftime-norm alizedLOS defor- mation rates,based onthe timespan ofthe respectiveinterferogra m.

Table 2

Temporal (B

temp ) andperpendicular (B perp ) baselinesfor ENVISATInSAR pairs.

Pair IDDates B

temp [days]B perp [m]

A 12Jul 2003-13 Nov2004 49010.3

B 18Dec 2004-3 Dec2005 35060.0

C 11Feb 2006-27 Jan2007 350196.6

D 27Dec 2008-3 Oct2009 28011.9

Table 1

Baseline informationfor ENVISATASAR IS2descending datafor Morelia:perpendicular (B perp ) andtemporal (B temp ) baselines,and Dopplercentroid frequencydifferences (B dopp ) betweenmaster andea chslave acquisition.Masterimagefor PSIprocessing is

22 January2005.

Date B

perp [m]B tempquotesdbs_dbs22.pdfusesText_28
[PDF] Le lexique du chat sur Internet : étude - SHS Web of Conferences

[PDF] Corrigé du bac S SVT Obligatoire 2015 - Liban - Sujet de bac

[PDF] Le Versailles républicain - Chateau de Versailles

[PDF] L 'Histoire des arts au château de Versailles pour le Primaire Clés de

[PDF] Séance 1 #8211

[PDF] Le château

[PDF] Au temps des châteaux-forts - leçon

[PDF] Château-Gontier Laval

[PDF] Les jardins - Chateau de Versailles

[PDF] Chauffage central : quelle chaudière choisir ?

[PDF] Chauffage central : quelle chaudière choisir ?

[PDF] Tarif Chauffage - WOLF FRANCE

[PDF] Chaudières basse température fioul/gaz - Wolf France

[PDF] Notice de montage et d 'utilisation - WOLF FRANCE

[PDF] Pourquoi chauler les étangs - Comifer