[PDF] Comparative study of long-term consolidation for subsoils under





Previous PDF Next PDF



Révision « accord des participes passés » : la tour penchée de Pise

21-Jan-2019 La tour penchée de Pise est un des monuments les plus remarquables que les touristes aient vus en parcourant l'Italie ; autant ils ont ...



La tour penchée de Pise - Pise - LEGO.com

La construction de la tour penchée de Pise (Torre pendente di Pisa) dura presque 200 ans et elle se tient à côté de la Cathédrale de.



Structural assessment of Leaning Tower of Pisa

Evaluation structurale de la Tour penchée de Pise. Einschätzung des Tragvermögens des Schiefen Turms von Pisa. Giorgio MACCHI. Professor. Univ. of Pavia.



INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND

The leaning tower of Pisa: End of an Odyssey. La tour penchee de Pise: Fin d'une Odyssee. M . B . J a m i o l k o w s k i — Technical University of Torino 



Authenticity of Foundations for Heritage Structures

systèmes de fondation tels que la Tour Penchée de Pise



INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND

systèmes de fondation tels que la Tour Penchée de Pise



Comparative study of long-term consolidation for subsoils under

RÉSUMÉ: Pour l'aéroport international de Kansai et la tour penchée de Pise le tassement de consolidation à long terme constitue une.



The Leaning Tower of Pisa

La construction de la tour penchée de Pise (Torre pendente di Pisa) dura presque 200 ans et elle se tient à côté de la Cathédrale de Pise depuis.



BEP - Contrôle en cours de formation

La tour penchée de Pise en Italie



La tour de Saint Martin dÉtampes (Essonne) et autres tours penchées

11-Sept-2006 ENS de Lyon - Laboratoire des Sciences de la Terre. Publié par : Olivier Dequincey. Résumé. La tour penchée de Saint Martin d'Étampes ...

437

Comparative study of long-term

consolidation for subsoils under Kansai Airport and

Pisa Tower

Etude comparative de la consolidation à long terme pour les sous-sols d'aéroport de Kansai et de

tour de Pise

Watabe Y., Sassa S.

Port and Airport Research Institute, Yokosuka, Japan

Udaka K.

Oyo Corporation, Saitama, Japan

ABSTRACT: In both the Kansai International Airport and Leaning Tower of Pisa, long-term consolidation settlement is a very

important geotechnical issue. In this study, a series of long-term consolidation tests were conducted for undisturbed samples retrieved

from these two sites. The isotache concept observed in the long-term consolidation beha vior was successfully modeled by a simple

equation, and then the difference in long-term consolidation behavior between the Osaka Bay clay (significant delayed consolidation)

and Pisa clay were compared and discussed. Using the isotache model, the long-term consolidation settlement can be quantitatively

predicted in association with the strain rate dependency.

RÉSUMÉ: Pour l'aéroport international de Kansai et la tour penchée de Pise, le tassement de consolidation à long terme constitue une

problématique géotechnique très importante. Dans cet article, on présente une série d'essais de consolidation à long terme réalisés

pour des échantillons intacts prélevés sur ces deux sites. Le concept isotâche, observé dans la consolidation à long terme, a pu être

modélisé par une équation simple. Les différences de consolidation à long terme observées entre l'argile de la baie d'Osak

a

(consolidation retardée significative) et l'argile de Pise ont été comparées et discutées. En utilisant le modèle isotâche, le tassement de

consolidation à long terme peut êt re quantitativement évalué en association avec la dépendance en vitesse de déformation. KEYWORDS: long-term consolidation, isotache, strain rate.

1INTRODUCTION

In both the Kansai International Airport and Leaning Tower of Pisa, long-term consolidation settlement is a very important geotechnical issue. Observed settlements at the two sites are, however, difficult to be directly compared, because their scale and mechanism are different. In this study, a series of long-term consolidation tests were conducted for undisturbed samples retrieved from these two sites. The test results were interpreted based on the most recent findings from the isotache concept, which considers strain rate dependency in preconsolidation pressure. Then, essential difference between the long-term consolidation behaviors at these two sites was clarified in association with the strain rate dependency. wL wpwn 0 50
100
150
200

0 60 120

Water content w (%)

Depth z (m)

siltclay sand0 50
100
150
200

0 50 100

Fraction (%)0

50
100
150
200

2.5 3.0

s (g/cm 3 y 'v0 0 50
100
150
200

0 1500 3000

Yield stress

y (kPa)0 50
100
150
200
123
OCR 0 50
100
150
200

1.0 1.5 2.0

H. clayMa13

sand

P. clayMa12

P. clayMa11

P. clayMa10

pc

P. clayMa9

P. clay

sand

P. clayMa7

Void ratio e

2PHYSICAL AND MECHANICAL PROPERTIES OF

THE CLAYS

Osaka Bay clay (Kansai International Airport) and Pisa clay have common characteristics, such as soil consistency (w L

80%, I

p

50), grain-size distribution (clay fraction (< 2 ȝm) of

50%, fine particle fraction (< 75

ȝm) of 100%), void ratio (e

1.5), overconsolidation ratio (OCR

1.4), etc, as shown in

Figure 1. Dominant clay minerals from X-ray diffraction are different: smectite and kaolinite for Osaka Bay clay and illite for Pisa clay. Micro-fabrics observed by scanning electron microscope (SEM) are shown in Figure 2. Osaka Bay clay is consisted of flaky particles (typically smectite) forming aggregations with abundant microfossils (typically diatoms). Pisa clay is consisted of platy particles (typically illite) with a small number of microfossils. p c Figure 1a. Depth profiles of soil properties for the Osaka Bay clay. 0 3 6 9 12 15 18 21
24

0.0 50.0 100.0

Water content w (%)

Depth z (m)

wpwLwn (a) 0. 00 3. 00 6. 00 9. 00

12. 00

15. 00

18. 00

21. 00

24. 00

0 50 100

Fraction (%)

Clay Silt

San d (b) 0. 00 3. 00 6. 00 9. 00

12. 00

15. 00

18. 00

21. 00

24. 00

2.5 3.0

s (g/cm 3 )(c)0. 003. 00 6. 00 9. 00

12. 00

15. 00

18. 00

21. 00

24. 00

0 250 500

Yield stress p'

y (kPa)' v0p'y (e) 0. 00 3. 00 6. 00 9. 00

12. 00

15. 00

18. 00

21. 00

24. 00

0.5 1.0 1.5 2.0

Void ratio e(d)

0. 00 3. 00 6. 00 9. 00

12. 00

15. 00

18. 00

21. 00

24. 00

123

OCR(f)pc

pc Figure 1b. Depth profiles of soil properties for the Pisa clay.

(a) The Osaka Bay clay. (b) The Pisa clay. Figure 2. Microfabrics observed by SEM.

438

Proceedings of the 18

th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013

3CONSOLIDATION TESTS

Compression curves (

e-log p curves) for the two clays are shown in Figure 3. Undisturbed samples collected from G.L.-76 and -101m (Ma11) for Osaka Bay clay and from G.L.-15.6 and -17.6 m (B3) for Pisa clay were examined. Compression indices C c at these two sites were commonly 0.7 with very similar compressibility. Preconsolidation pressures ' p for Osaka Bay clay and Pisa clay were 600-900 kN/m 2 and 250 kN/m 2 respectively. For these values, a common overconsolidation ratio (OCR = ' p v0 ) of approximately 1.4 were calculated with the overburden effective stress ' v0 of 750 kN/m 2 and 250 kN/m 2 , respectively. In the long-term consolidation test, a specimen with 60 mm in diameter and 20 mm in height was trimmed from an undisturbed sample, then it was set in the oedometer with double side drainage condition, then it was preliminary consolidated by 24-h incremental loading up to the overburden effective stress ' v0 , and then a target pressure for the long-term consolidation test was loaded (the overburden effective stress v0 , preconsolidation pressure ' p , and twice of preconsolidation pressure 2' p ). Consolidation curves observed at the target pressures were drawn in Figure 4. In the case of v0 , Osaka Bay clay shows significant delayed consolidation with convex curve, which means that the secondary consolidation index C gradually increases with time. Pisa clay, however, shows concave curve, which means that the secondary consolidation index C gradually decreases with time. In the case of 2' p , the both clays continuously shows the secondary consolidation with concave curve after the primary consolidation. In the case of ' p , observed behaviors for the two clays were between the above two cases, respectively. 0 2 4 6 8 10 12 14 16 18 20

0.01 0.1 1 10 100 1000 10000 100000

Time t (min)

Strain (%)

628 kPa

745 kPa

1569 kPa

'v0 = 618 kPa p c = 737 kPaquotesdbs_dbs46.pdfusesText_46
[PDF] La Tour Perret Grenoble

[PDF] la tour pise

[PDF] La Tourisme En Tunisie !!!!

[PDF] la tournée du facteur

[PDF] La toxoplasmose

[PDF] la trabant traversant le mur wikipedia

[PDF] La trace du temps

[PDF] la traduction dans l'enseignement des langues étrangères

[PDF] La traduction en anglais d'un texte de Charle Perrault

[PDF] la traduction pédagogique

[PDF] LA TRAGEDIE

[PDF] la tragédie antique

[PDF] la tragédie au 17ème siècle

[PDF] La tragédie classique d'Andromaque

[PDF] LA TRAGEDIE CLASSIQUE; Phèdre (1677), une tragédie de la fatalité