[PDF] Résistance des matériaux : élasticité méthodes énergétiques





Previous PDF Next PDF



CORRIGE

1 - But de la R.D.M. . CONTRAINTE DE CISAILLEMENT EN FLEXION SIMPLE. ... exercice : Déterminer l'allongement ?L d'un entrait d'une charpente sachant ...



RESISTANCE DES MATERIAUX

La résistance des matériaux désignée souvent par RDM



RDM – Ossatures Manuel dexercices

Manuel d'exercices F4 : Poutre console – flexion-torsion . ... Avec le module RDM – Éléments finis (hypoth`ese contraintes planes 600 triangles `a 6 ...



Elaboré par : Dr Imene BENAISSA République Algérienne

Le présent polycopié est un support de cours de résistance des matériaux (RDM) avec exercices corrigés destiné aux étudiants de 2ème année (S4) licence de 



Résistance des matériaux : élasticité méthodes énergétiques

20-Jun-2011 2.5 Flexion des poutres `a plan moyen : mod`ele de Bernoulli . ... 4.2.5 Exercice : contraintes et énergie de déformation .



Travaux dirigés de résistance des matériaux

EXERCICE 1. Soit la poutre encastrée en A et supportant un effort inclinéF EXERCICE 3 . ... Sollicitation de traction + sollicitation de flexion simple ...



Calcul des structures hyperstatiques Cours et exercices corrigés

La RDM permet de calculer et de tracer les diagrammes des sollicitations d' Un portique ACB constitué de poutre et de poteau de rigidité EI en flexion.



RESISTANCE DES MATERIAUX

flexion. Traction/compression. N. T =0. Mt =0. Mf =0. Cisaillement (1) La RDM vise en particulier à vérifier qu'en aucun point de la poutre les efforts ...



Poutres hyperstatiques-Simples.pdf

RDM. Déformation. 2. Poutres hyperstatiques (Poutre bi-encastrée avec force ponctuelle):. Les seules équations de la statique ne suffisant pas pour résoudre 



RDM : FLEXION des POUTRES

RDM : FLEXION des POUTRES. I - GENERALITES. ? Poutre. Pièce allongée L > 10*e. Section sans variation brusque. ?Nature de la charge. Charge ponctuelle.



VOLUME 2 - 7 POUTRES A INERTIE VARIABLE COURBES ET

Si on isole une poutre on appelle action mécaniques extérieures les actions appliquées par le milieu extérieur sur la partie isolée; On distingue deux types d'actions mécaniques extérieures : • les charges : ce sont les efforts de service auxquels est soumise la poutre



Exercice corrigé : La flexion simple - chikouche-rdm-13

Exercice corrigé : La flexion simple 1 Exercice 03 : Calculer les dimensions de la poutre rectangulaire illustrée en tenant compte du fait que la hauteur doit être double de la largeur et la contrainte admissible est de 1400 [Kg/cm²] en tension comme en compression 3 Solution : 1-Calcul des réactions d’appuis 7 51 [ ]; 7 74 [ ] 2 5 3 1



Résistance des matériaux Cours et exercices corrigés

cisaillement flexion et torsion) Elle permet d’évaluer les efforts internes les contraintes (normale et tangentielle) ainsi que les déplacements des structures Cet ouvrage de RDM présente des méthodes de calcul des formules pratiques illustrant des cas réels de dimensionnement des structures Les nombreuses



Searches related to exercice rdm flexion poutre PDF

utilisées un calcul rapide de RDM permet de vérifier les ordres de grandeur et de juger de l'opportunité d'utiliser d'autres méthodes plus complexes Ce polycopié est en perpétuel correction (quand j’en prends le temps)

Comment réduire la résistance à la flexion de la poutre?

Cependant, si le rapport rayon de courbure (r)/épaisseur des lamelles (t) est trop faible, la résistance à la flexion de la poutre sera impactée par les contraintes de flexion résiduelles ; il conviendra alors de la réduire. Selon l'Eurocode 5, un tel facteur de réduction doit être appliqué pour r/t

R´esistance des mat´eriaux :

´elasticit´e,

m´ethodes ´energ´etiques, m´ethode des ´el´ements finis

Rappels de cours

et exercices avec solutions

Yves Debard

Institut Universitaire de Technologie du Mans

D´epartement G´enie M´ecanique et Productique

20 juin 2011

Table des mati`eres

1

´Elasticit´e

1

1.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 D´eplacements et d´eformations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Contraintes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Loi de comportement ou loi constitutive

. . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Cas particulier : ´etat de contraintes planes

. . . . . . . . . . . . . . . . . . . . . 3

1.1.5 Formules math´ematiques

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 M´ethode des ´el´ements finis : approche r´esistance des mat´eriaux

25

2.1 Rappels : r´esolution d'un probl`eme stationnaire

. . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Partition des degr´es de libert´e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Calcul des d´eplacements inconnus

. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Calcul des r´eactions d'appui

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Poutre soumise `a un effort normal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Treillis plans `a noeuds articul´es

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Poutre soumise `a un moment de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Flexion des poutres `a plan moyen : mod`ele de Bernoulli

. . . . . . . . . . . . . . . . . 58

2.5.1 Rappels : flexion dans le plan{xy}

. . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 M´ethodes ´energ´etiques : poutres

83

3.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.1 Expression de l'´energie de d´eformation en fonction des forces appliqu´ees : for-

mule de Clapeyron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.2 Th´eor`eme de r´eciprocit´e de Maxwell-Betti

. . . . . . . . . . . . . . . . . . . . . 83

3.1.3 Th´eor`eme de Castigliano

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.4 Th´eor`eme de M´enabr´ea

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.5

´Energie de d´eformation d'une poutre

. . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.6 Formules math´ematiques utiles

. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IIExercices de resistance des materiaux

4 M´ethode des ´el´ements finis

121

4.1 Rappels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.1

´Energie de d´eformation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.2

´Energie cin´etique

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.1.3

´Energie potentielle et ´el´ements finis

. . . . . . . . . . . . . . . . . . . . . . . . 123

4.1.4 Modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Exercices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Assemblage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.2 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 126

4.2.3 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.4 Exercice : mise en ´equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.5 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 132

4.2.6 Exercice : contraintes et ´energie de d´eformation

. . . . . . . . . . . . . . . . . . 134 4.2.7 ´El´ement de poutre droite soumis `a un effort normal . . . . . . . . . . . . . . . 137

4.2.8 Exercice : modes propres

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.2.9

´El´ement fini de torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.10

´El´ement fini de flexion : mod`ele de Bernoulli . . . . . . . . . . . . . . . . . . . 144

4.2.11 Exercice : ´elasticit´e plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapitre 1

Elasticit´e

1.1 Rappels

Les d´eplacements et les d´eformations sont petits.

1.1.1 D´eplacements et d´eformations

Vecteur d´eplacement :

⃗u=---→M0M ,{u}= u(x,y,z) v(x,y,z) w(x,y,z) (1.1.1)

Tenseur des d´eformations :

xx1 2

γxy1

2

γxz

1 2

γxyεyy1

2

γyz

1 2

γxz1

2

γyzεzz

,[ε]T= [ε](1.1.2) xx=∂u ∂x , εyy=∂v ∂y , εzz=∂w ∂z (1.1.3a) xy=∂u ∂y +∂v ∂x , γxz=∂u ∂z +∂w ∂x , γyz=∂w ∂y +∂v ∂z (1.1.3b) Allongement unitaire enMdans la direction{n}= n x n y n z

ε(M,⃗n) ={n}T[ε(M)]{n}

Glissement enMdans les directions orthogonales⃗naet⃗nb: γ(M,⃗na,⃗nb) = 2{nb}T[ε(M)]{na},{nb}T{na}= 0(1.1.5)

Variation relative de volume :

V(M) = tr[ε] =εxx+εyy+εzz(1.1.6)

2Exercices de resistance des materiaux

1.1.2 Contraintes

Vecteur contrainte sur la facette⃗nenM:

T(M,⃗n) =σn⃗n+⃗τn(1.1.7a)

Soit{n}=

n x n y n z un vecteur unitaire enM. Le vecteur contrainte sur la facette⃗nenMest donn´e par la formule de Cauchy : T x T y T z xxσyxσzx xyσyyσzy xzσyzσzz n x n y n z ,{T}= [σ(M)]{n}(1.1.8) o`u [σ(M)] est le tenseur des contraintes enM.

Le tenseur des contraintes est sym´etrique :

[σ] = [σ]Tsoitσxy=σyx, σxz=σzx, σyz=σzy(1.1.9)

La contrainte normale sur la facette⃗nest :

n={n}T[σ]{n} =n2xσxx+n2yσyy+n2zσzz+ 2nxnyσxy+ 2nxnzσxz+ 2nynzσyz(1.1.10) Soientσ1,σ2etσ3les trois contraintes principales en un pointMd'un solide. Les crit`eres de

Rankine, Von Mises et de Tresca s'´ecrivent :

1 2

1.1.3 Loi de comportement ou loi constitutive

Si le mat´eriau est isotrope, la loi de comportement s'´ecrit : xx=1 E (σxx-ν(σyy+σzz)) yy=1 E (σyy-ν(σxx+σzz)) zz=1 E (σzz-ν(σxx+σyy))(1.1.12a) xy=σxy G , γxz=σxz G , γyz=σyzquotesdbs_dbs35.pdfusesText_40