[PDF] Cours dAutomatique 28 juin 2017 un enseignement





Previous PDF Next PDF



Automatique Linéaire 1 - JM Dutertre

Il s'agit schématiquement de l'automatique classique formalisée pendant la première moitié du vingtième siècle. Pré requis. Le cours « Mathématique du signal » 



AUTOMATIQUE Systèmes linéaires non linéaires

https://www.lirmm.fr/~chemori/Temp/Leila/automatique-systemes-lineaires-et-non-lineaires.pdf



Cours dAutomatique de la licence professionnelle “Technologies

– Le déphasage est gradué en degrés ou en radians en utilisant une échelle linéaire. L'avantage d'un tel diagramme est que les courbes suivent des asymptotes.



Correction des systèmes linéaires continus asservis

Automatique. Correction des systèmes linéaires continus asservis. UV Automatique. ASI 3. Cours 6. Page 2. 2. Automatique. Contenu. ? Introduction.



Automatique Linéaire 1 – Travaux Dirigés

Bibliographie. "Cours d'automatique tome 2 – Asservissement



Systèmes linéaires asservis : analyse de la stabilité

Automatique. Systèmes linéaires asservis : analyse de la stabilité. UV Automatique. ASI 3. Cours 4 Un système linéaire continu à temps invariant est.



Cours dAutomatique

28 juin 2017 un enseignement relatif `a l'étude des syst`emes linéaires modélisés par une fonction de transfert. (approche fréquentielle). Ce cours ...



COURS ET EXERCICES DE REGULATION

corrigés pour approfondir la compréhension du cours. On appelle système linéaire



Automatique des systemes lineaires

2 août 2021 Automatique des systèmes linéaires ... Ces notes de cours en automatique sont la deuxième version des notes de Justin ... coursMEE2.pdf.



Introduction à la représentation détat

Automatique. Introduction à la représentation d'état. UV Automatique. ASI 3. Cours 8 (II) : l'équation de sortie est une équation statique linéaire.

2`emeann´ee ENSIP, parcours MEE

Cours d"Automatique

Repr

´esentations d"´etat lin´eaires

des syst `emes monovariables

Olivier BACHELIER

Courriel :

Olivier.Bachelier@univ-poitiers.fr

Tel : 05-49-45-36-79; Fax : 05-49-45-40-34

2`emeann´ee ENSIP, parcours MEE

Cours d"Automatique

Repr

´esentations d"´etat lin´eaires

des syst `emes monovariables

Olivier BACHELIER

Courriel :

Olivier.Bachelier@univ-poitiers.fr

Tel : 05-49-45-36-79 ; Fax : 05-49-45-40-34

28 juin 2017

R´esum´e

Ce cours d"Automatique s"inscrit dans le cadre de la deuxi`eme ann´ee de?cycle ing´enieur?de l"´EcoleNationaleSup´erieure d"Ing´enieurs dePoitiers (

ENSIP) et s"adresse aux ´etudiants de

la fili`ere´Energie, parcoursMaˆıtrise de´Energie´Electrique (

MEE). Ces derniers ont d´ej`a suivi

un enseignement relatif `a l"´etude des syst`emes lin´eaires mod´elis´es par une fonction de transfert

(approche fr´equentielle). Ce cours s"int´eresse aux mˆemes syst`emes mais propose une ´etude via un

mod`ele diff´erent, appel´e repr´esentation d"´etat lin´eaire (approche temporelle).

Connaissances pr

´ealables souhait´ees :

notions de syst`emes lin´eaires, ´equations diff´erentielles, fonction de transfert enp(voire enz), analyse et commande des syst`emes lin´eaires par approche fr´equentielle, quelques bases d"alg`ebre lin´eaire. ii

Table des mati`eres

1Introduction1

1.1Notion de syst`eme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2Notion de mod`ele. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3Grandes lignes du cours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2Rappel sur la fonction de transfert5

2.1´Equations pr´eliminaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Lin´earit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Mod`ele entr´ee/sortie : l"´equation diff´erentielle. . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Transform´ee de Laplace : de l"´equation diff´erentielle `a la fonction de transfert. . . . . . . 6

2.2Fonction de transfert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Comment obtenir la fonction de transfert?. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Int´erˆet de la fonction de transfert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3La repr´esentation d"´etat11

3.1Principe g´en´eral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2De la non-lin´earit´e `a la lin´earit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3Historique de la repr´esentation d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4Comment obtenir un mod`ele d"´etat?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Par le jeu d"´equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Par l"´equation diff´erentielle unique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5De la fonction de transfert `a la repr´esentation d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Cas d"une fonction de transfert strictement propre (m < n). . . . . . . . . . . . . . . . . 17

3.5.1.1R´ealisation diagonale ou quasi diagonale de Jordan. . . . . . . . . . . . . . . 17

3.5.1.2R´ealisation de forme compagne. . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.2 Cas d"une fonction de transfert non strictement propre (m=n). . . . . . . . . . . . . . 20

3.6De la repr´esentation d"´etat `a la fonction de transfert. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7D"une r´ealisation `a l"autre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.1 Changement de base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.2 Obtention d"une forme compagne (horizontale). . . . . . . . . . . . . . . . . . . . . . . 22

3.7.3 Obtention d"une forme de Jordan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7.3.1Les valeurs propresλideAsont distinctes. . . . . . . . . . . . . . . . . . . . 23

3.7.3.2Les valeurs propresλideAsont multiples. . . . . . . . . . . . . . . . . . . . 23

4R´eponse d"un mod`ele d"´etat25

4.1Solution du syst`eme autonome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Matrice de transition d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Solution de l"´equation homog`ene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2Solution de l"´equation d"´etat compl`ete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3Calcul deeAt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 M´ethode des s´eries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Par la transformation de Laplace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 M´ethodes des modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii

TABLE DES MATI`ERESTABLE DES MATI`ERES

4.4R´egime transitoire : influence des modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5R´eponse impulsionnelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6R´eponse indicielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7R´eponse harmonique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5Stabilit´e des mod`eles d"´etat35

5.1Une approche quasi intuitive : la stabilit´e BIBO. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2Stabilit´e d"un ´etat d"´equilibre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 D´efinition et recherche d"un ´etat d"´equilibre. . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3Crit`eres de stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Crit`ere des racines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1.1rang(A) =n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1.2rang(A) =n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1.3rang(A)< n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1.4En r´esum´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1.5Stabilit´e interne et stabilit´e BIBO. . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1.6Les marges de stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.2 Crit`ere de Routh/Hurwitz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.3 M´ethode de Lyapunov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6Commandabilit´e et observabilit´e43

6.1D´efinitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Commandabilit´e ou gouvernabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.2 Observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2Crit`ere de Kalman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Commandabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.2 Observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.3 Dualit´e des deux concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3Crit`eres s"appliquant aux formes de Jordan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.1Adiagonalisable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.2Anon diagonalisable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4Grammiens de commandabilit´e et d"observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4.1 D´efinition des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4.2 Interpr´etation des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4.3 Calcul des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5Mod`eles et structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5.1 Diff´erence entre les mod`eles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5.2 Syst`emes composites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.6R´ealisation minimale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6.1 D´efinition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6.2 R´ealisation minimale et notion de pˆoles. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6.3 R´ealisation minimale et stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7Commande par retour d"´etat55

7.1Notion de retour d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2Retour d"´etat et performances transitoires : le placementde pˆoles. . . . . . . . . . . . . . . . . . 56

7.2.1 Commandabilit´e et placement de pˆoles. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.2 Placement de pˆoles sur une r´ealisation canonique. . . . . . . . . . . . . . . . . . . . . . 57

7.2.3 Placement de pˆoles sur une r´ealisation quelconque. . . . . . . . . . . . . . . . . . . . . 58

7.2.3.1Obtention de la forme canonique `a partir de la fonction de transfert. . . . . . . 58

7.2.3.2Obtention de la forme canonique `a partir d"une autre r´ealisation. . . . . . . . . 58

7.2.3.3Algorithme de placement de pˆoles. . . . . . . . . . . . . . . . . . . . . . . . 58

7.3Performances statiques et retour d"´etat : la pr´ecommande. . . . . . . . . . . . . . . . . . . . . . 60

7.4Rejet de perturbation et retour d"´etat : adjonction d"int´egrateurs. . . . . . . . . . . . . . . . . . . 61

iv

TABLE DES MATI`ERESTABLE DES MATI`ERES

7.4.1 Premi`ere approche. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.4.2 Seconde approche. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8Commande par retour de sortie : les observateurs69

8.1Notions pr´eliminaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1.2 Principe de l"observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1.3 Propri´et´e d"un observateur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1.4 Condition d"existence d"un observateur. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.1.5`A propos de la transmission directe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2Synth`ese d"un observateur d"ordre minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2.1 Observateur d"ordre minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2.2 Proc´edure de Luenberger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3Synth`ese d"un observateur d"ordre plein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.3.1 Observateur d"ordre plein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3.2 Proc´edure de synth`ese. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.4Commande par retour d"´etat observ´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9Introduction`a la repr´esentation d"´etat discr`ete81

9.1Rappels sur les signaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.1.1 Signaux continus, discrets, quantifi´es, non quantifi´es. . . . . . . . . . . . . . . . . . . . 81

9.1.2 Transformation de signaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.2.1´Echantillonnage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.2.2Quantification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.2.3Blocage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.2Syst`emes discrets lin´eaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2.1 D´efinition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2.2 Mod`eles externes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2.2.1´Equation r´ecurrente. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.2.2Transformation enz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.2.3Fonction de transfert enz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.3 Repr´esentation d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2.4 Lien entre les mod`eles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.2.4.1D"une r´ealisation `a l"autre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.2.4.2De l"´equation d"´etat `a la fonction de transfert enz. . . . . . . . . . . . . . . . 88

9.2.4.3De la fonction de transfert enz`a l"´equation d"´etat. . . . . . . . . . . . . . . . 88

9.3Syst`emes ´echantillonn´es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.3.1 Pourquoi ´etudier les mod`eles discrets? (notion de syst`eme ´echantillonn´e). . . . . . . . . 88

9.3.2 La commande num´erique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.3.3´Echantillonnage et th´eor`eme de Shannon. . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.4 Obtention d"un mod`ele ´echantillonn´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.4.1Calcul deG(z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.4.2Mod`ele d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.4R´eponse d"un syst`eme discret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4.1 R´eponse du mod`ele d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4.1.1R´eponse par r´esolution de l"´equation d"´etat. . . . . . . . . . . . . . . . . . . . 93

9.4.1.2Calcul deAk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4.1.3R´eponse d"un syst`eme ´echantillonn´e.. . . . . . . . . . . . . . . . . . . . . . . 94

9.4.2 Analyse de la r´eponse : ´etude des modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.5Stabilit´e d"un syst`eme discret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5.1 Stabilit´e BIBO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5.2 Stabilit´e interne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5.2.1D´efinition et recherche d"un ´etat d"´equilibre. . . . . . . . . . . . . . . . . . . 96

9.5.2.2Stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5.3 Crit`ere des racines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

v

TABLE DES MATI`ERESTABLE DES MATI`ERES

9.5.3.1R´esultat g´en´eral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.5.3.2Stabilit´e interne et stabilit´e BIBO. . . . . . . . . . . . . . . . . . . . . . . . . 98

9.5.3.3Marge de stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.5.4 Crit`ere de Jury. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.5.5 M´ethode de Lyapunov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.5.6 Stabilit´e d"un syst`eme ´echantillonn´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.5.6.1´Echantilonnage d"une boucle ouverte. . . . . . . . . . . . . . . . . . . . . . . 100

9.5.6.2Bouclage d"un syst`eme ´echantillonn´e. . . . . . . . . . . . . . . . . . . . . . . 100

9.6Commandabilit´e/observabilit´ed"un mod`ele discret. . . . . . . . . . . . . . . . . . . . . . . . . 100

9.6.1 D´efinitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.1.1Commandabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.1.2Observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.2 Crit`ere de Kalman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.2.1Commandabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.2.2Observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.2.3Dualit´e des deux concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.6.3 Crit`eres s"appliquant aux formes de Jordan. . . . . . . . . . . . . . . . . . . . . . . . . 102

9.6.4 Grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.6.4.1D´efinition des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.6.4.2Interpr´etation des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.6.4.3Calcul des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.6.5 Mod`eles et structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.6.6 R´ealisation minimale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.7Commande par retour d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.7.1 Les diff´erentes approches de la commande num´erique. . . . . . . . . . . . . . . . . . . 104

9.7.2 Retour d"´etat discret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.7.3 Placement de pˆoles par retour d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.7.3.1Commandabilit´e et placement de pˆoles. . . . . . . . . . . . . . . . . . . . . . 105

9.7.3.2Technique de placement de pˆoles. . . . . . . . . . . . . . . . . . . . . . . . . 105

9.8Commande par retour de sortie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10Conclusion107

10.1R´esum´e du cours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.2Perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Annexes109

ARappels d"alg`ebre et d"analyse111

A.1`A propos des matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.1 Transposition et conjugaison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.2 Matrices carr´ees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.3 Op´erations sur les matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1.3.1Addition de matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 A.1.3.2Multiplication de matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1.4 D´eterminant d"une matrice carr´ee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1.4.1D´eterminant d"une matrice carr´ee d"ordre 2. . . . . . . . . . . . . . . . . . . 114 A.1.4.2D´eterminant d"une matrice carr´e d"ordre 3 ou plus. . . . . . . . . . . . . . . . 114

A.1.4.3Quelques propri´et´es du d´eterminant. . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.5 Cofacteurs et matrice adjointe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.6 Polynˆome caract´eristique d"une matrice carr´ee. . . . . . . . . . . . . . . . . . . . . . . 115

A.1.7 Rang d"une matrice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.8 Matrices inverses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.8.1D´efinition et calcul. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.8.2Propri´et´es des inverses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1.9 Valeurs propres d"une matrice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi

TABLE DES MATI`ERESTABLE DES MATI`ERES

A.1.9.1Structure propre d"une matrice. . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1.9.2Propri´et´es des valeurs propres. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1.9.3Propri´et´es des vecteurs propres. . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1.10 Rang d"une matrice carr´ee, d´eterminant et valeurspropres. . . . . . . . . . . . . . . . . 118

A.1.11 Trace d"une matrice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2`A propos de la d´efinition positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.1 Fonction d´efinie positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.2 Matrices Hermitiennes d´efinies en signe. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B`A propos du r´egime transitoire121

B.1Influence du spectre de la matrice d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2Influence des vecteurs propres deA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2.1 Couplage modes/sortie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2.2 couplage modes/commandes en boucle ferm´ee. . . . . . . . . . . . . . . . . . . . . . . 123

B.2.3 Couplage modes/consigne en boucle ferm´ee. . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2.4 En r´esum´e sur les vecteurs propres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3Influence des z´eros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3.1 Les z´eros d"un mod`ele d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3.2 Contribution des z´eros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

CFormule d"Ackermann pour le placement de pˆoles par retour d"´etat127

C.1Rappel du probl`eme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.2R´esolution selon Ackermann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D`A propos deZ129

D.1Propri´et´es deZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

D.2Tableau de transform´ees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ELyapunov et les syst`emes lin´eaires131

E.1Le cas continu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.2Le cas discret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

E.3Le cas ´echantillonn´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

F`A propos des grammiens135

F.1Signification des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

F.2Invariance des valeurs propres deWcWo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

GMATLABet la repr´esentation d"´etat139

G.1Fonctions math´ematiques de base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

G.2Fonctions li´ees au mod`ele d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

G.3Fonctions li´ees aux mod`eles discrets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

HBiographies153

H.1Alexandr Lyapunov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

H.2Rudolf Kalman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

R´ef´erences bibliographiques159

vii

TABLE DES MATI`ERESTABLE DES MATI`ERES

viii

Chapitre 1

Introduction

L"Automatique est une discipline scientifique qui vise `a conf´erer `a un dispositif donn´e, appel´e syst`eme, des

propri´et´es souhait´ees et ce, sans n´ecessit´e d"une intervention humaine. Une telle discipline requiert d"attribuer

un mod`ele au comportement du dit syst`eme (phase de mod´elisation) et de l"utiliser afin, d"une part, de mieux

comprendre ce comportement (phase d"analyse) et d"autre part, d"agir sur le syst`eme dans le but d"am´eliorer ses

propri´et´es (phase de commande).

Sans revenir trop longuement dans cette introduction sur des concepts ´etudi´es lors des cours relatifs `a l"approche

dite fr´equentielle, il convient de rappeler quelques notions de base. 1.1

Notion de syst`eme

Un syst`emeest unecombinaisonde composantsinterconnect´espouratteindreun objectif,rendreunservice `a unou

plusieurs op´erateurs humains.Le ?composant?est un organefonctionnelqui ne se limite pas `a un objet physique

mais peut correspondre `a un objet plus abstrait de telle sorte qu"un syst`eme peut ˆetre ´economique, financier,

d´emographique mˆeme si, dans le cadre de cet enseignement,seront plutˆot rencontr´es des syst`emes physiques,

c"est-`a-dire m´ecaniques, ´electriques, ´electroniques, hydrauliques, pneumatiques, chimiques, m´ecatroniques voire

biologiques.

Parmi les grandeurs, ´eventuellement physiques, mises en jeu dans le fonctionnement d"un syst`eme, l"on peut

distinguercelles qui,g´en´er´eesparl"environnementext´erieurau syst`eme,agissent sur ce dernier.Ce sont les entr´ees

parmi lesquelles figurent celles dont l"homme a la maˆıtrise(les entr´ees de commande ou simplement entr´ees) et

celles qui ´echappent `a son contrˆole (les perturbations).L"on distingue aussi les grandeurs par lesquelles le syst`eme

agit sur l"environnement ext´erieur, `a savoir les sorties. L"on note souvent par les lettresu,dety, respectivement

les entr´ees, les perturbations et les sorties, de sorte qu"un syst`eme peut-ˆetre repr´esent´e par le sch´ema de la figure

1.1.

Syst`emeu

1 u

2...umy

1 y

2...ypd

1dr FIGURE1.1 - Syst`eme comportantmentr´ees,psorties etrperturbations

Dans le cadre de ce cours, seuls seront ´etudi´es les syst`emes monovariables pour lesquelsm=p= 1, c"est-`a-dire

ne comportant qu"une seule entr´ee et une seule sortie. 1

Notion de mod`ele

Il est rappel´e que l"automaticien est souvent amen´e `a r´eintroduire l"information pr´esente au niveau de la sortie

sur l"entr´ee afin de modifier les performancesdu syst`eme. Ce dernier est alors dit boucl´e.La notion de boucle ´etant

d´ej`a connue des ´etudiants, elle n"est pas d´etaill´ee dans cette introduction. Une partie de ce cours consacr´ee `a la

commande y reviendra. Il va de soi que les performances attendues sont les mˆemes que celles envisag´ees lors de

l"´etude de l"approche fr´equentielle, `a savoir la stabilit´e, la forme des r´egimes transitoires, la pr´ecision et le rejet de

perturbations. 1.2

Notion de mod`ele

Comme le sous-entend le pr´eambule de cette introduction, l"analyse d"un syst`eme eta fortiorisa commande font

appel `a un mod`ele du comportement du syst`eme. De cette description math´ematique du comportement peuvent

naˆıtre des outils d"analyse et de commande qui sont utilis´es par la suite. L"on distingue plusieurs automatiques

selon la nature des signaux et des mod`eles consid´er´es.

?Ainsi les signaux continus peuvent prendre toutes les valeurs dans un intervalle donn´e alors que d"autres signaux

sont susceptibles de prendre uniquement certaines valeursbien d´etermin´ees. Sur la base de cette diff´erence, l"on

distingue l"automatiquedes syst`emes `a ´ev´enements continusde l"automatiquedes syst`emes `a ´ev´enements discrets. Seul le cas des ´ev´enements continus sera envisag´e dans cecours.

?Une autre distinction tout aussi fondamentale se fait sur letemps. En effet, les signaux peuvent ˆetre d´efinis `a

tout instant du temps ou simplement connus `a des instants donn´es (l"on parle de signaux discrets, discr´etis´es, ou

´echantillonn´es). Les signaux de sortie sont ainsi mesur´es, et donc connus, uniquement `a certains instants, et la

s´equence des ´echantillons est obtenue sous forme num´erique en sortie d"un convertisseur analogique num´erique.

Elle est transmise `a un calculateur qui en d´eduit une s´equence de signaux de commande. Celle-ci est transform´ee

par un convertisseur num´erique analogique qui restitue unsignal `a temps continu sur l"entr´ee du syst`eme. Pour le

calculateur, l"ensemble constitu´e du syst`eme et des convertisseurs est vu comme un syst`eme `a temps discret (ou,

de mani`ere plus g´en´erale, ?syst`eme discret?). Dans ce cours, sera essentiellement consid´er´ee l"automatique des syst

`emes`a temps continu(ou simplement des?syst`emes continus?). Seul le dernier chapitre traitera traitera de

l"automatique des syst`emes discrets.

?Il existe d"autres distinctions qui reposent sur le mod`elemath´ematique utilis´e pour d´ecrire le comportement

du syst`eme. Ce mod`ele est obtenu soit par identification (l"on fait correspondre un mod`ele de structure donn´ee

au comportement entr´ees/sorties du syst`eme) ou, et ce sera le cas ici, par une utilisation judicieuse des ´equations

correspondant aux lois de la physique r´egissant le comportement du syst`eme. La plupart de ces ´equations sont

diff´erentielles et non lin´eaires. Cependant, il est souvent recommand´e de travailler dans une gamme de valeurs

autour d"un point de fonctionnement de telle sorte que les ´equations sont raisonnablement remplac¸ables par des

´equations diff´erentielles dites lin´eaires `a coefficients constants. Cette approximation permet donc de passer d"un

mod`ele non lin´eaire `a un mod`elelin´eaire. Bien que moins fid`ele `a la r´ealit´e, ce dernier facilite l"analyse et la

commande du syst`eme, notamment grˆace `a un principe fondamental, celui desuperposition(ou de s´eparation),

r´esum´e sur la figure 1.2. 1ua1 u

22ay=a1y1+ay2 2Syst`emelin´eaire++

FIGURE1.2 - Principe de s´eparation

Si l"entr´eeu1entraˆıne la sortiey1et si l"entr´eeu2entraˆıne la sortiey2alors une entr´eea1u1+a2u2entraˆıne une

sortiey=a1y1+a2y2. Ce cours est restreint `a l"´etude des syst`emes lin´eaires.

?Enfin, comme il a d´ej`a ´et´e mentionn´e, une derni`ere distinction est essentielle pour ce cours. Les syst`emes sont

quotesdbs_dbs50.pdfusesText_50
[PDF] cours bac economie maroc pdf

[PDF] cours bac international maroc

[PDF] cours bac pro identité diversité

[PDF] cours bac pro industriel gestion

[PDF] cours bac pro melec

[PDF] cours bac pro vente

[PDF] cours bac science tunisie pdf

[PDF] cours banque assurance pdf

[PDF] cours banque pdf gratuit

[PDF] cours base de données pour debutant pdf

[PDF] cours base de données relationnelles pdf

[PDF] cours base de données site du zero pdf

[PDF] cours base de données sql pdf

[PDF] cours base de registre windows 7 pdf

[PDF] cours béton armé bael 91 pdf