[PDF] [PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS





Previous PDF Next PDF



[PDF] Exercices de 4ème – Chapitre 9 – Traitement de données - Math2Cool

Calculer la moyenne arrondie au dixième des buts marqués par match par l'équipe lors de cette saison Exercice 3 Lors d'une compétition de ski Tom passe 



[PDF] Corrigé Français-4e année-Les Exercices du Petit Prof

CORRIGÉ 4e année un cours fatigant et compliqué long stupide m) Son examen de français et son examen de math étaient bourrés de fautes



[PDF] Exercices Corrigés Statistique et Probabilités

Correction de l'exercice 1 Examen Statistique et Probabilités (1) Mesurez la dispersion de la distribution au moyen de : l'étendue l'écart type 



[PDF] Mathématiques financières EXERCICES CORRIGES

Cours correspondant disponible sur cours-assurance Exercice 3: Valeur future et calculs d'années les troisième et quatrième de 5 000



[PDF] livre-algebre-1pdf - Exo7 - Cours de mathématiques

Nous vous proposons de partir à la découverte des maths de leur logique et de leur beauté Dans vos bagages des objets que vous connaissez déjà : les entiers 



[PDF] Fiche dexercices statistiques - Promath

des notes obtenues par les élèves de 3eB lors du dernier devoir en classe 1) Quel est l'effectif de la classe de 3eB ? 2) Calculer la note moyenne de ce devoir 



[PDF] guide_maths_4epdf

indispensable pour aborder avec succès l'apprentissage projeté au cours de la o commentaires sur les exercices du livre Faso-Math 4e ;



[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

Pour un cours plus complet se reporter `a la bibliographie Informations utiles (partiels barêmes annales corrigés ) : http://math unice fr/?rubentha 



[PDF] Exercices de mathématiques - mediaeduscoleducationfr

MENESR/DGESCO http://eduscol education fr/ressources-maths Ressources pour le Exercices de Mathématiques - Terminales S ES STI2D STMG septembre 2014



[PDF] ANNALES DE MATHEMATIQUES - Melusine

Lors d'un examen un questionnaire `a choix multiple (Q C M ) est utilisé (a) Faire une figure que l'on compl`etera au cours de l'exercice

Integration et probabilites

(cours + exercices corriges)

L3 MASS, Universite Nice Sophia Antipolis

version 2021Sylvain Rubenthaler

Table des matieres

Introduction iii

1 Denombrement (rappels) 1

1.1 Ensembles denombrables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theorie de la mesure 5

2.1 Tribus et mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Tribus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Integrales des fonctions etagees mesurables positives. . . . . . . . . . . . . . . 9

2.4 Fonctions mesurables et integrales . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Integrales des fonctions mesurables positives . . . . . . . . . . . . . . . 10

2.4.2 Integrales des fonctions mesurables de signe quelconque. . . . . . . . . 11

2.5 Fonction de repartition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Ensembles negligeables 17

4 Theoremes limites 21

4.1 Stabilite de la mesurabilite par passage a la limite. . . . . . . . . . . . . . . . 21

4.2 Theoremes de convergence pour les integrales. . . . . . . . . . . . . . . . . . . 22

4.3 Integrales dependant d'un parametre . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Mesure produit et theoremes de Fubini 33

5.1 Theoremes de Fubini et Fubini-Tonelli . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Changement de variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Fondements de la theorie des probabilites 41

6.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Esperance d'une v.a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Inegalites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Lois classiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.1 Lois discretes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.2 Lois continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Fonctions caracteristiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Fonctions generatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i

6.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Variables independantes 59

7.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1Evenements et variables independantes . . . . . . . . . . . . . . . . . 59

7.1.2 Densites de variables independantes . . . . . . . . . . . . . . . . . . . 60

7.2 Lemme de Borel-Cantelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Somme de deux variables independantes . . . . . . . . . . . . . . . . . . . . . 62

7.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Convergence de variables aleatoires 71

8.1 Les dierentes notions de convergence . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Theoreme central-limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Conditionnement 83

9.1 Conditionnement discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2 Esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Variables gaussiennes 89

10.1 Denitions et proprietes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.2 Gaussiennes et esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . 90

A Table de la loi normale 93

Introduction

Le but de ce cours est d'introduire les notions de theorie de la mesure qui seront utiles en calcul des probabilites et en analyse. Il est destine aux etudiants qui veulent poursuivre leurs etudes dans un master a composante mathematique. Pour un cours plus complet, se reporter a la bibliographie. Informations utiles (partiels, bar^emes, annales, corriges, ...) : PREREQUIS : Pour pouvoir suivre ce cours, l'etudiant doit conna^tre, entre autres, les developpements limites, les equivalents, les etudes de fonction, le denombrement, les nombre complexes, la theorie des ensembles., les integrales et primitives usuelles, la trigonometrie, etc. Nouveautes 2019 : corrections apportees par Laure Helme-Guizon (Teaching Fellow, UNSW, Sydney, Australia) et Antoine Mal. Un grand merci a eux. iii

Chapitre 1

Denombrement (rappels)

1.1 Ensembles denombrables

Denition 1.1.1.Injection.

SoitE;Fdes ensembles,f:E!Fest une injection si8x;y2E,f(x) =f(y))x=y.

Denition 1.1.2.Surjection.

SoitE;Fdes ensembles,f:E!Fest une surjection si8z2F,9x2Etel quef(x) =z.

Denition 1.1.3.Bijection.

SoitE;Fdes ensembles,f:E!Fest une bijection sifest une injection et une surjection. Proposition 1.1.4.SoientE;F;Gdes ensembles. Soientf:E!F,g:F!G. Alors [f etginjectives])[gfinjective]. Demonstration.Soientx;ytels quegf(x) =gf(y). L'applicationgest injective donc

f(x) =f(y). L'applicationfest injective doncx=y.Denition 1.1.5.On dit qu'un ensembleEest denombrable s'il existe une injection deE

dansN. Dans le cas ouFest inni, on peut alors demontrer qu'il existe alors une bijection deEdansN. (Cela revient a dire que l'on peut compter un a un les elements deE.)

Exemple 1.1.6.Tout ensemble ni est denombrable.

Exemple 1.1.7.Zest denombrable car l'application

f:Z!N n7!(

2nsin>0

2n1sin <0

est bijective (donc injective).01 23-1-2-30 2 4

13Figure1.1 {Enumeration des elements deZ.

1

2CHAPITRE 1. DENOMBREMENT (RAPPELS)

Exemple 1.1.8.NNest denombrable car l'application

f:NN!N (p;q)7!(p+q)(p+q+ 1)2 +q est bijective (donc injective).0 129 58
74

3 6Figure1.2 {Enumeration des elements deNN.

Exemple 1.1.9.L'ensembleQest denombrable. L'ensembleRn'est pas denombrable. Proposition 1.1.10.Si on aE0,E1, ...,En, ...des ensembles denombrables alorsE= E

0[E1[E2[ =[n>0Enest un ensemble denombrable.

(En d'autres termes, une reunion denombrable d'ensembles denombrables est denombrable.) Demonstration.S Pour touti>0,Eiest denombrable donc9fi:Ei!Ninjective. Soit

F:[n>0En!NN

x7!(i;fi(x)) six2Ei Cette applicationFest injective. L'ensembleNNest denombrable donc il existeg:NN! Ninjective. Par la proposition 1.1.4,gFest injective. Donc[n>0Enest denombrable.1.2 Exercices Tous les exercices de ce chapitre n'ont pas un lien direct avec le cours. Par contre, ils constituent des revisions necessaires a la suite du cours. 1.2.1

Enonces

1) Rappel :Sif:E!FetAF,f1(A) =fx2E:f(x)2Ag. SiCE,f(C) =

ff(x);x2Cg.

On considere l'applicationf:R!R,x7!x2.

(a) Determinerf([3;1]),f([3;1]),f(]3;1]). (b) Determinerf1(] 1;2]),f1(]1;+1[),f1(]1;0][[1;2[).

2) Calculer les limites suivantes :

(a) lim x!0sin(x)log(1+x) (b) lim x!+11 +2x x (c) lim x!01cos(x)xsin(x)

1.2. EXERCICES3

(d) lim x!01(1+x)1(1+x)pour; >0.

3) Calculer les integrales suivantes :

(a)R+1

0x2exdx

(b)R+1 e

11(log(z))2zdz

(c) R1

01(2x)(1+x)dx

(d) R=4 0cos

2(x)+sin2(x)cos

2(x)dx.

4) Integrales de Wallis

Pour toutn2N, on pose :

I n=Z =2 0 sinn(x)dx : (a) CalculerI0etI1. (b) Donner une relation de recurrence entreInetIn+2. (c) En deduire que :

8p2N; I2p=(2p1)(2p3):::12p(2p2):::22

etI2p+1=2p(2p2):::2(2p+ 1)(2p1):::1: (d) Montrer que8p2N;I2p+16I2p6I2p1. En deduire que limp!+1I 2pI

2p+1= 1.

(e) En deduire la formule de Wallis : lim p!+11p

2p(2p2):::2(2p1)(2p3):::1

2 (f) Montrer que8n2N,Inn!+1p 2n.

1.2.2 Corriges

(1) (a)f([3;1]) = [1;9],f([3;1]) = [0;9],f(]3;1]) = [0;9[. (b)f1(] 1;2]) = [p2;p2],f1(]1;+1[) =] 1;1[[]1;+1[,f1(]1;0][ [1;2[) =f0g[]p2;1][[1;p2[. (2) (a) sin(x)log(1+x)x!0+xx = 1!x!0+1 (b) 1 +2x x=exlog(1+2x )etxlog1 +2x x!+12xx !x!+12 donc par continuite de la fonction exp :1 +2x x!x!+1e2 (c)

1cos(x)xsin(x)=(x2=2)+o(x2)x

2+o(x2)x!0x

22x2= 1=2

(d)

1(1+x)1(1+x)=x+o(x)x+o(x)x!0xx

(a) on integre par parties : Z +1 0 x2exdx= [x2ex]+10+Z +1 0

2xexdx

= 0 + [2xex]+10+Z +1 0 2exdx = [2ex]+10= 2 (b) changement de variable :t= log(z),z=et,dz=etdt Z +1 e

11(log(z))2zdz=Z

+1 11t 2dt = [1=t]+11= 1

4CHAPITRE 1. DENOMBREMENT (RAPPELS)

(c) on decompose

1(2x)(1+x)=1=32x+1=31+x(toujours possible pour une fraction ratio-

nelle a p^oles simples) et donc : Z 1

01(2x)(1 +x)dx=

13 log(2x) +13 log(1 +x) 1 0 =13 log(4) (d) changement de variable :t= tan(x),x= arctan(t),dx=11+t2dt Z =4 0cos

2(x) + sin2(x)cos

2(x)dx=Z

=4 0

1 + tan2(x)dx

= [tan(x)]=4 0= 1 (3) (a)I0=R=2

01dx=2

,I1=R=2

0sin(x)dx= [cos(x)]=2

0= 1. (b) On integre par parties pour toutn>2 : I n+2=Z =2 0 sinn+1(x)sin(x)dx = [sinn+1(x)cos(x)]=2

0+ (n+ 1)Z

=2 0 sinn(x)cos2(x)dx = (n+ 1)(InIn+2) d'ouIn+2=n+1n+2In. (c) Demonstration par recurrence de la formule pourI2p(demonstration similaire pour I

2p+1) :

| c'est vrai enp= 0 | si c'est vrai jusqu'au rangpalorsI2p+2=2p+12p+2I2p=(2p+1)(2p1):::1(2p+2)(2p):::22 (d)8p2N,8x2[0;=2], 06sin2p+1(x)6sin2p(x)6sin2p1(x) donc par integration

8p2N,I2p+16I2p6I2p1, donc 16I2pI

2p+16I2p1I

2p+1=2p+12p, donc

lim p!+1I 2pI

2p+1= 1

(e) on deduit de la question precedente : lim p!+12 h (2p1)(2p3):::12p(2p2):::2i

2(2p+ 1) = 1,

d'ou la formule de Wallis (f) On fait la demonstration pournimpair . Soitn= 2p+ 1 : I

2p+1=2p(2p2):::2(2p+ 1):::1

pp

2p+ 1s1

p

2p(2p+ 2):::2(2p1):::1

2 p!+11p2(2p+ 1)p :

Chapitre 2

Theorie de la mesure

La theorie de la mesure est l'outil utilise pour modeliserle hasard.

2.1 Tribus et mesures

2.1.1 Tribus

Dans la suite, on utilisera un ensemble

que l'on appellera univers. Il contient tous les aleas possibles.

Denition 2.1.1.Une familleAde parties de

est une tribu (sur ) si elle verie 1. 2 A

2.A2 A )Ac2 A(stabilite par passage au complementaire)

3.A0;A1;A2; 2 A ) [n>0An2 A(une reunion denombrable d'elements deAest

dansA)

Remarque 2.1.2.On rappelle que :

|Ac:=fx2quotesdbs_dbs42.pdfusesText_42
[PDF] 4ème de couverture d'un livre PDF Cours,Exercices ,Examens

[PDF] 4eme de couverture de claude gueux, de victor hugo 3ème Français

[PDF] 4ème de couverture exemple PDF Cours,Exercices ,Examens

[PDF] 4eme DM urg pour Mardi 5ème Mathématiques

[PDF] 4EME FAIRE UN POEME 4ème Français

[PDF] 4ème Justice des mineurs !!! 4ème Education civique

[PDF] 4eme lettre a un ami allemand commentaire PDF Cours,Exercices ,Examens

[PDF] 4eme Maths equations 4ème Mathématiques

[PDF] 4ème page de couverture mémoire PDF Cours,Exercices ,Examens

[PDF] 4ème page de couverture rapport de stage PDF Cours,Exercices ,Examens

[PDF] 4eme question svp detaillée merci 3ème Mathématiques

[PDF] 4ème république PDF Cours,Exercices ,Examens

[PDF] 4eme techno tp eclairage PDF Cours,Exercices ,Examens

[PDF] 4ème Utiliser open office calc EXERCICE 2nde Mathématiques

[PDF] 4eme valeur de la republique PDF Cours,Exercices ,Examens