[PDF] Exercices et problèmes de statistique et probabilités





Previous PDF Next PDF



Exercices corriges sur les probabilites - Terminale S

b) Calculer la probabilité d'obtenir au moins un câble de type C1. c) Calculer l'espérance E(X). 2) Dans cette question n est inconnu. a) Exprimer P 



Sujet et corrigé mathématiques bac s obligatoire

https://www.freemaths.fr/corriges-par-theme/bac-s-mathematiques-france-metropolitaine-2018-obligatoire-corrige-exercice-2-probabilites-discretes.pdf



Baccalauréat S Probabilités

Quelle est la probabilité de tirer exactement un cube marqué d'un cercle ? Exercices de probabilités. 5. Page 6. Baccalauréat S. A. P. M. E. P.. 2 Métropole 



Terminale S - Probabilités Exercices corrigés

Donner la loi de probabilité de X puis calculer son espérance mathématique et son écart-type. Correction. 1. a. p(A) = 1. 6. ; p( A ) = 5. 6. ; p(B/A) = 4. 7.



Mathématiques : du lycée aux CPGE scientifiques

À cet effet le style d'écriture est souvent plus proche du post-bac que de la terminale. Dans les deux exercices suivants



Exercices de mathématiques

Ce document propose des exercices conformes aux programmes de Terminale pour les filières S



Baccalauréat ES Index des exercices avec des probabilités de 2013

Baccalauréat ES obligatoire probabilités. 3. Asie (exercice 1) 2016 Un client du magasin s'inquiète de la durée de vie du téléphone de type T1 qu'il vient de ...



PROBABILITES – EXERCICES CORRIGES

b) Déterminer la part des Terminales parmi les externes. Probabilité conditionnelles. Exercice n°11. Dans un magasin d'électroménager on s'intéresse au 



Corrigé du baccalauréat Centres étrangers 9 juin 2021 Candidats

9 juin 2021 Dans tout cet exercice les probabilités seront arrondies



Corrigé du baccalauréat Métropole 12 mai 2022 Sujet 2 ÉPREUVE

12 mai 2022 Le candidat choisit 3 exercices parmi les 4 et ne doit traiter que ces 3 exercices ... Quelle est la loi de probabilité suivie par X ? Justifier ...



PROBABILITÉS

Probabilités – Terminale S Exercice n°3 : avec une pièce ... appelle respectivement espérance mathématique de X variance de X et écart-type de X



Terminale S - Probabilités Exercices corrigés

Probabilités exercices corrigés. Terminale S. Probabilités. Exercices corrigés. 1. Combinatoire avec démonstration. 2. Rangements. 3. Calcul d'événements 1.



Exercices Corrigés Statistique et Probabilités

6. Correction de l'exercice 3. Examen Statistique et Probabilités (1) . ... 1) Calculer les moyennes marginales et les écarts types marginaux de X et Y.



Sujet et corrigé mathématiques bac s obligatoire

https://www.freemaths.fr/corriges-par-theme/bac-s-mathematiques-france-metropolitaine-2018-obligatoire-corrige-exercice-2-probabilites-discretes.pdf



ANNALES DE MATHEMATIQUES

3. Déterminer les points d'intersection de et de ¡. A.2 Sujet national 1999. EXERCICE 1 (5 points).



Cours de probabilités et statistiques

Exercice 2 – Soit P une probabilité sur un ensemble ? et deux événements A et B. On et l'écart-type de X est la racine carrée de sa variance.



EXERCICES corrigés de PROBABILITES

EXERCICES corrigés de PROBABILITES. Calculer la probabilité d'un événement. Exercice n°1: Un sachet contient 2 bonbons à la menthe 3 à l'orange et 5 au 



Introduction aux probabilités et à la statistique Jean Bérard

ainsi que des exercices dans lesquelles des hypothèses très l'absorption des photons issus d'une source de même type que S par un détecteur.



Exercices et problèmes de statistique et probabilités

En admettant que cette variable X suit une loi LG(ms)



Baccalauréat S Probabilités

Index des exercices de probabilité de septembre 1999 à juin 2012 chacun des 2 000 élèves répartis dans les sections de seconde



[PDF] Exercices corriges sur les probabilites - Terminale S - Free

a) Calculer la probabilité d'obtenir 2 câbles du type C1 b) Calculer la probabilité d'obtenir au moins un câble de type C1 c) Calculer l'espérance E(X) 



[PDF] Probabilités Exercices corrigés

Probabilités exercices corrigés Terminale S Probabilités Exercices corrigés 1 Combinatoire avec démonstration 2 Rangements 3 Calcul d'événements 1



[PDF] Baccalauréat S Probabilités - APMEP

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS No Lieu et date P condi-



Probabilités : exercices de maths en terminale corrigés en PDF

Exercices sur les probabilités en terminale avec sa correction et les différentes formules Ces énoncés rédigés sur les probabilités



[PDF] Terminale S Exercices probabilités conditionnelles 2010-2011

1) a) Définir l'événement contraire de A qu'on notera A b) Calculer les probabilités de A et de A 2) a) Calculer PA(B) probabilité de B sachant que 



[PDF] Sujet et corrigé mathématiques bac s obligatoire France

22 jui 2018 · Le sujet est composé de 4 exercices indépendants Le candidat doit traiter tous les exercices Le candidat est invité à faire figurer sur la 



[PDF] Exercices probabilités type BAC

EXERCICE 1 : Une entreprise de textile emploie 300 personnes dans le secteur confection Il est composé de trois ateliers L'atelier de stylisme est constitué 



Révisions pour le Bac - Terminale S - Exercices supplémentaires

Les textes et les corrigés sont disponibles au format pdf qui devrait en cas de besoin permettre de les imprimer avec une meilleure qualité



PROBLEMES ET SOLUTIONS - Probabilités 2017 / 2015

Calculer une probabilité avec la loi normale Déterminer un intervalle de fluctuation et l'utiliser Téléchargement : Enoncé pdf · Corrigé pdf · Enoncé 



[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

Le but de ce cours est d'introduire les notions de théorie de la mesure qui seront utiles en calcul des probabilités et en analyse

  • Comment calculer les probabilités terminale ?

    = P(B) × PB(A)); • la probabilité d'un événement est la somme des probabilités des chemins qui le compose(par exemple, P(A) = P(A ? B) + P(A ? ¯ B)).
  • Quelles sont les probabilités ?

    les probabilités d'un fait donnent le pourcentage de chance qu'un fait se produise, c'est-à-dire qu'elles donnent une ou plusieurs valeurs (ou pourcentages) de la possibilité qu'il se produise. Cette notion se rapproche de la notion mathématique de loi de probabilité (définition 1 du Larousse).
  • Comment interpréter les probabilités ?

    = P(A) + P(B) – P(A – B) C'est-à-dire que la probabilité que l'un ou l'autre des deux événements se produise est égale à la probabilité que le premier événement se produise, plus la probabilité que le second se produise, moins la probabilité que les deux se produisent.
  • Pour calculer la probabilité d'un événement, vous pouvez simplement utiliser la formule générale de probabilité : P = n/N. Vous devez donc connaître le nombre d'issues favorables et le nombre total d'issues possibles.

Exercices et problèmes

de statistique et probabilités

Thérèse Phan

Jean-Pierre Rowenczyk

2 e

édition

“doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page i — #1

Illustration de couverture :

digitalvision

© Dunod, Paris, 2012

ISBN 978-2-10-056298-5

“doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page ii — #2

Table des matières

Avertissementvii

Chapitre 1 Probabilités....................................................... 1 Rappel de cours............................................................ 1

1.1 Rappels de Mathématiques.................................................... 1

1.2 Axiomes du calcul des probabilités............................................. 2

1.3 Notion de variable aléatoire.................................................... 3

1.4 Moments d"une variable aléatoire............................................. 4

1.5 Variables à deux dimensions................................................... 7

1.6 Indépendance de deux variables aléatoiresXetY.............................. 9

1.7 Probabilités individuelles....................................................... 9

1.8 Lois de la somme de variables indépendantes connues.......................... 10

Énoncés des exercices...................................................... 11 Énoncés des problèmes.................................................... 13 Du mal à démarrer ? ...................................................... 14 Corrigésdesexercices...................................................... 15 Corrigésdesproblèmes.................................................... 23 Chapitre 2 Convergences et échantillonnage................................ 29 Rappel de cours............................................................ 29

2.1 Lois statistiques............................................................... 29

2.2 Propriétés..................................................................... 29

2.3 Échantillon gaussien........................................................... 30

2.4 Convergences................................................................. 30

Énonces des exercices...................................................... 32Dunod - La photocopie non autorisée est un délit

“doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page iii — #3∞ ivTable des matières Énoncés des problèmes.................................................... 34 Du mal à démarrer ? ...................................................... 36 Corrigésdesexercices...................................................... 36 Corrigésdesproblèmes.................................................... 41 Chapitre 3 Estimation ponctuelle............................................ 49 Rappel de cours............................................................ 49

3.1 Échantillonnage............................................................... 49

3.2 Estimation statistique.......................................................... 50

3.3 Éléments de théorie de la décision............................................. 51

Énoncés des exercices...................................................... 52 Énoncés des problèmes.................................................... 54 Du mal à démarrer ? ...................................................... 55 Corrigésdesexercices...................................................... 56 Corrigésdesproblèmes.................................................... 64 Chapitre 4 Information et exhaustivité...................................... 71 Rappel de cours............................................................ 71

4.1 Éléments de théorie de l"information........................................... 71

4.2 Méthode du maximum de vraisemblance....................................... 73

Énoncés des exercices...................................................... 74 Énoncés des problèmes.................................................... 76 Du mal à démarrer ? ...................................................... 78 Corrigésdesexercices...................................................... 79 Corrigésdesproblèmes.................................................... 88 Chapitre 5 Estimateur sans biais de variance minimale..................... 97 Rappel de cours............................................................ 97

5.1 Théorème..................................................................... 97“doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page iv — #4

Table des matièresv

5.2 Théorème de Rao - Blackwell.................................................. 97

5.3 Théorème de Lehmann-Scheffe................................................ 97

Énoncés des exercices...................................................... 98 Enoncés des problèmes.................................................... 102 Du mal à démarrer ? ...................................................... 106 Corrigésdesexercices...................................................... 107 Corrigésdesproblèmes.................................................... 119 Chapitre 6 Intervalles de conance.......................................... 131 Rappel de cours............................................................ 131

6.1 Définition d"un intervalle de confiance.......................................... 131

6.2 Intervalles de confiance pour des paramètres de lois normales................... 131

6.3 Intervalles de confiance pour les paramètres d"une loi inconnue................. 134

6.4 Intervalles de confiance pour une proportion................................... 135

Énoncés des exercices...................................................... 135 Énoncés des problèmes.................................................... 139 Du mal à démarrer ? ...................................................... 146 Corrigésdesexercices...................................................... 147 Corrigésdesproblèmes.................................................... 160 Chapitre 7 Tests paramétriques.............................................. 177 Rappel de cours............................................................ 177

7.1 Définition générale d"un problème de test...................................... 177

7.2 Théorie de la décision......................................................... 178

7.3 Notion de risque.............................................................. 179

7.4 Théorème de Neyman et Pearson.............................................. 179

Énoncés des exercices...................................................... 180 Énoncés des problèmes.................................................... 185 Du mal à démarrer ? ...................................................... 188 Dunod - La photocopie non autorisée est un délit "doc" (Col. : Science Sup 19.3x250) - 2012/4/27 - 14:21 - page v - #5? viTable des matières Corrigésdesexercices...................................................... 189 Corrigésdesproblèmes.................................................... 212 Chapitre 8 Tests d"adéquation et tests d"indépendance..................... 223 Rappel de cours............................................................ 223

8.1 Test d"adéquation............................................................. 223

8.2 Test d"indépendance........................................................... 224

Énoncés des Problèmes sur les tests non paramétriques d"adéquation.... 227 Énoncés des Problèmes sur les tests non paramétriques d"indépendance. 229 Du mal à démarrer ? ...................................................... 229 Corrigésdesproblèmes.................................................... 230 Chapitre 9 Analyse de la variance (ou ANOVA) à un seul facteur........... 245 Rappel de cours............................................................ 245

9.1 Hypothèses................................................................... 245

9.2 Position du test ANOVA....................................................... 245

9.1 Observations réalisées................................................ 246

9.1 Décomposition de la variance totale............................................ 246

9.2 Principe de l"ANOVA........................................................... 247

9.3 Calcul de la constanteC....................................................... 248

9.4 Comparaison des variancess

2i de chaque population........................... 249

9.5 Mode opératoire pour l"ANOVA................................................ 250

Énoncé du problème....................................................... 251 Du mal à démarrer ? ...................................................... 252 Corrigéduproblème...................................................... 252

Index255

“doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page vi — #6

Avertissement

Cet ouvrage est destiné aux étudiants de Licence, de première année des Grandes Écoles d"ingé-

nieurs, de commerce et de gestion ou d"Institut Universitaires de Technologie désireux d"appré-

hender les concepts et les notions de base de la statistique.

Il peut être utile à tous ceux qui seraient désireux d"acquérir ou de revoir les notions opérationnelles

des méthodes de base de la statistique. Cet ouvrage comporte des rappels de cours sans démonstrations, des exercices classiques de

difcultés progressives (le niveau de difculté est repéré par un nombre d"étoiles), ainsi que des

problèmes plus complexes permettant d"aborder des cas concrets d"utilisation de la statistique dans

différents domaines d"application. Il est découpé en chapitres mais il comporte fondamentalement

deux grandes parties : €Une première partie concerne le calcul des probabilités

Bien que comportant des rappels de cours relativement complets, nous avons choisi, délibéré-

ment, de ne proposer dans cette partie, que des exercices abordant des notions et des calculs de

probabilité qui sont utilisés en statistique : Théorème Central-Limite (ou théorème de la limite

centrale), Lois de probabilités fréquemment utilisées en statistique (Loi normale, du Khi-deux,

de Student, de Fisher...)

Nous avons donc évité de proposer des exercices de probabilités calculatoires classiques (exer-

cices utilisant la combinatoire, calcul de paramètres de lois de probabilités...). Pour cette raison, avant d"aborder les chapitres de statistique, nous conseillons vivement au

lecteur, de se reporter, en cas de besoin, aux ouvrages spécialisés, an de revoir ou de compléter

leurs connaissances en matière de calcul des probabilités.

€Une deuxième partie est consacrée à l"étude des trois méthodes de base utilisées en statistique :

ŠL"estimation ponctuelle

ŠL"estimation par intervalle

ŠLes tests d"hypothèse

Les chapitres concernant l"estimation ponctuelle permette d"aborder les notions essentielles permettant d"étudier les estimateurs de paramètres réels de lois de probabilités. Néanmoins, ces chapitres proposent quelques exemples d"estimation de paramètres vectoriels.

Les chapitres consacrés à l"estimation par intervalle proposent un éventail large d"exercices

différents, permettant d"appréhender la plupart des cas concrets rencontrés dans les différents

domaines utilisant la statistique.

Les chapitres consacrés aux tests d"hypothèses sont essentiellement consacrés à l"étude des

tests paramétriques dans le cas d"hypothèses simples et à l"étude de deux types de tests non

paramétriques, les tests d"ajustement et les tests d"indépendance.

Les différents chapitres proposent toujours la même organisation : les énoncés, puis une rubrique

" Du mal à démarrer », et enn, les corrigés des exercices proposés. Chaque corrigé propose, en outre, un bilan " ce qu"il faut retenir ». Dunod - La photocopie non autorisée est un délit “doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page vii — #7

Remerciements

Nous tenons, tout d"abord à exprimer toute notre gratitude à nos collègues de l"École Centrale de

Paris et de l"École Spéciale des Travaux Publics, pour nous avoir incités à élaborer cet ouvrage et

pour nous avoir fourni de nombreux conseils de rédaction. En particulier, nous tenons à remercier, Alain MARRET et Michel LUCIEN, pour leur apport lors de l"élaboration du contenu de cet ouvrage. Nos remerciements vont ensuite à Franck PHAN, pour son aide précieuse pour l"utilisation de Latex et donc de la réalisation de la maquette de cet ouvrage. Enn, nous tenons également à remercier vivement les Éditions DUNOD, Anne Bourguignon et

Benjamin Peylet, pour leur accueil, leur compétence et leur grande compréhension au cours de la

réalisation de cet ouvrage.

Thérèse PHANetJean-Pierre ROWENCZYK

“doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page viii — #8 1

Probabilités

RAPPEL DE COURS

1.1 Rappels de Mathématiques

a) Opérations sur les ensembles SoitVun ensemble etA,B... des parties deV.SiAdésigne le complémentaire deAdansV, alors nous avons :

€A∞A=V

€A∞B=A?B

€A∞B=(A?B)∞(A?B)∞(A?B)

€A→∞

i (A?B i ?si les évènementsB i sont incompatibles entre eux ?et siV→∞ i B i b) Analyse combinatoire

Nous rappellons ici quelques résultats :

€Nombre d"arrangements depobjets pris parminavec répétition pn =n p €Nombre d"arrangements depobjets pris parminsans répétition A pn =n(n-1)...(n-p+1)=n! (n-p)! €Nombre de combinaisons depobjets pris parminavec répétition K pn =C p n+pŠ1 €Nombre de combinaisons depobjets pris parminsans répétition C pn =n! p!(n-p)!=A pn p!

€Nombre de permutations denobjets

Per(n)=n!

“doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page 1 — #9 21

Probabilités

1.2 Axiomes du calcul des probabilités

a) Généralités

La théorie des probabilités repose sur l"étude de phénomènes aléatoires. Une expérience est dite

aléatoire si on ne peut pas prévoir son résultat et si répétée dans les mêmes conditions, elle peut

donner des résultats différents. Les résultats possibles de cette expérience constituent l"ensemble

fondamentalV. Un événement aléatoire est une assertion relative au résultat de l"expérience.

On identifie usuellement l"événement aléatoire et la partie deVpour laquelle cet événement est

réalisé. Si P est une probabilité définie surV,etsiAetBsont deux parties deV,ona:

€P(∞)=0etP(V)=1

€P(A)=1ŠP(A)

€P(A?B)=P(A)+P(B)ŠP(A∂B)

P(A?B)=P(A)+P(B)siA∩B=

b) Probabilités conditionnelles

On définit la probabilité conditionnelle de l"événementAsachant que l"événementBest réalisé,

par :

P(A/B)=P(A∂B)

P(B) c) Formule de décomposition

Si l"ensemble des partiesU

j deVforme un système complet d"événements, c"est-à-dire si lesU j sont indépendants et si leur réunion formeVtout entier, alors : P(A)= n j=1 P(A/U j )P(U j d) Indépendance de deux événements

AetBindépendantsP(A∂B)=P(A)P(B)

e) Probabilités des causes ou probabilités de BAYES

P(A/B)=P(A∂B)

P(B)=P(B/A)P(A)P(B)

Si l"ensemble des partiesA

i deVforme un système complet d"événements, P(A k /B)=P(B/A k )P(A k i P(B/A i )P(A i “doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page 2 — #10

Rappel de cours3

1.3 Notion de variable aléatoire

Lorsque l"ensemble fondamentalVest tout ou partie de l"ensemble des réelsR, le concept

d"événement aléatoire est remplacé par celui de variable aléatoire. On distingue usuellement :

1.les variables aléatoires discrètes pour lesquelles l"ensembleVest un ensemble discret de valeurs

numériques (par exempleNensemble des entiers naturels) 2. les variables aléatoires continues pour lesquelles l"ensembleVest un intervalle deRouRtout entier. a) Fonction de répartition

On appelle " Fonction de répartition d"une variable aléatoire X » l"application F deRdans[0,1]

définie par :

F(x)=P(X b) Variable aléatoire discrète On définit la probabilité attachée en un pointxdu domaine de définition de la variable aléatoireXdiscrète par :

P(X=x)

Fonction de répartition deX:

F(x)=P(X tP(X=t)

c) Variable aléatoire continue On dit que la variable aléatoireXde fonction de répartitionFest continue si on peut définir une fonction densité de probabilitéfdeXvérifiant : f(x)=F (x)ouF(x)=→ x f(t)dt La probabilité attachée au segment [a,b] est alors :

P[aXb]=→

b a f(x)dx=F(b)ŠF(a) d) Formule de changement de variables €Cas discret p y =P(Y=y)=P(Xw Š1 (y))=∞ x?w 1 (y)

P(X=x)

?Dunod - La photocopie non autorisée est un délit “doc" (Col. : Science Sup 19.3x250) — 2012/4/27 — 14:21 — page 3 — #11 41

Probabilités

€Cas continu west monotone croissante

G(y)=P(Y -1 (y))=F?w -1 (y)? west monotone décroissante

G(y)=P(Y -1 (y))=1ŠP[XG(y)=1ŠF?w

-1 (y)? wn"est pas monotone

G(y)=P(Y 1

···+P(XI

n oùI 1 ,...,I n sont les intervalles de la variable aléatoireXqui correspondent au domaineYLoi binomialeB(n,p)w

X (t)=(pe it +1Šp) n

Loi de PoissonP(l)w

X (t)=exp?l(e it

Š1)?

Loi de GaussLG(m,s)w

X (t)=equotesdbs_dbs11.pdfusesText_17

[PDF] exercices procédés d'écriture bac pro

[PDF] exercices production écrite ce2

[PDF] exercices puissances de 10 cm2

[PDF] exercices qu cp

[PDF] exercices quadrilatères 5ème

[PDF] exercices quadrilatères 5ème pdf

[PDF] exercices quadrilatères 5ème primaire

[PDF] exercices quadrilatères 6ème à imprimer

[PDF] exercices quadrilatères 6ème pdf

[PDF] exercices quadrilatères ce1

[PDF] exercices quadrilatères ce2 pdf

[PDF] exercices quadrilatères cm1 à imprimer

[PDF] exercices quadrilatères cm1 en ligne

[PDF] exercices quadrilatères cm2 à imprimer

[PDF] exercices quadrilatères seconde