[PDF] Rumen microorganisms and fermentation Microorganismos y





Previous PDF Next PDF



Microorganisms as sources of oils

This review is covering the related researches about different oleaginous microorganisms for lipids production and microbial oils biosynthesis process.



Etude de la composante microbiologique dans le cycle du mercure

03-Feb-2009 MEASUREMENTS OF MERCURY SPECIES BY DIFFERENT TECHNIQUES ... Les micro organismes sont connus pour pouvoir réagir avec le mercure.





ÉTUDE DE CADRAGE SUR LES MICRO-ORGANISMES

23-Oct-2009 La Commission a reconnu que les invertébrés et les micro-organismes avaient des caractéristiques différentes et a donc décidé de les traiter ...



Activité 1 : Etudier les différents micro organismes rencontrés au

D'autres micro-organismes installés à vie sur les parties superficielles de l'épiderme appelé la flore résidente. Mais dans certaines conditions (des plaies 



Influence des facteurs biotiques et abiotiques sur la dynamique de

23-Mar-2015 Abondance des microorganismes à différentes échelles. ... au cours de la décomposition par les (micro)organismes. Les MOS sont un mélange de.



Rumen microorganisms and fermentation Microorganismos y

diverse microorganisms such as bacteria protozoa



Les gants contre les micro-organismes

Les gants sont soumis à une réglementa- tion et des normes différentes selon l'usage auquel ils sont destinés. Les gants médicaux ou chirurgicaux utili-.



Models and algorithms for investigating and exploiting the

04-Feb-2021 communautés microbiennes c'est-`a-dire pour un scénario o`u différents micro-organismes interagissent les uns avec les autres.



Infectious Bovine Keratoconjunctivitis - 1. Experimental Production

10-Jul-1973 of microorganisms (live or killed Moraxella bovis infectious bovine rhinotracheitis virus ... les deux yeux de 20 veaux

349

Arch Med Vet

46, 349-361 (2014)

REVIEW ARTICLE

Accepted: 20.03.2014.

* Perif. R. Almada km. 1, C.P. 31453 Chihuahua, Chih., México; mburrola1@uach.mx

Rumen microorganisms and fermentation

Microorganismos y fermentación ruminal

AR Castillo-González

a , ME Burrola-Barraza b* , J Domínguez-Viverosb , A Chávez-Martínez b a

Programa de Doctorado en Philosophia, Departamento de Nutrición Animal. Facultad de Zootecnia y Ecología, Universidad

Autónoma de Chihuahua, Chihuahua, México.

b Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, México.

RESUMEN

El rumen es un ecosistema complejo donde los nutrientes consumidos por l os rumiantes son digeridos mediante un proceso de ferme ntación

realizado por los microorganismos ruminales (bacterias, protozoos y hongos). Dichos microorganismos están en simbiosis, debido a su capacidad de

adaptación e interacción, y mientras el rumiante proporciona el am biente necesario para su establecimiento estos proporcionan energía al animal, la

que proviene de los productos finales de la fermentación. Dentro del rumen, los microorganismos coexisten en un entorno reducido y a un pH cercano

a la neutralidad. Estos microorganismos fermentan los sustratos presentes en la dieta del rumiante (azú

cares, proteínas y lípidos). Sin embargo, el

proceso de fermentación no es 100% eficaz, ya que durante la fermentación existen pérdidas de energía, principalmente en forma de gas metano (CH4

el que representa un problema medioambiental, ya que es un gas de efecto invernadero. Por consiguiente, para mejorar la eficiencia de los sistemas

de producción de rumiantes se han establecido estrategias nutricionales que tienen como objetivo manipular la fermentación ruminal mediante el uso

de aditivos en la dieta, como monensina, sebo, tampones, compuestos de nitrógeno, probióticos, etc. Estos aditivos permiten cambiar el proceso de

fermentación y mejorar la eficiencia animal, además disminuyen la pérdida de energía. El objetivo de este trabajo es revisar los procesos fermentativos

que tienen lugar en el rumen y aplicar los fundamentos de estos en el desarrollo de nuevas estrategias nutricionales que pudieran ayudar a mejorar los

procesos de digestión, de manera que se alcance una máxima producc ión.

Palabras clave

: aditivos, microorganismos ruminales, simbiosis.

SUMMARY

The rumen consists of a complex ecosystem where nutrients consumed by ruminants are digested by fermen

tation process, which is executed by

diverse microorganisms such as bacteria, protozoa, and fungi. A symbiotic relationship is found among different groups of microorganisms due to the

diverse nature of these microbial species and their adaptability and interactions also coexist. The ruminant provides the necessary environment for the

establishment of such microorganisms, while the microorganisms obtain energy from the host animal from microbial fermentation end products. Within

the ruminal ecosystem, the microorganisms coexist in a reduced environment and pH remains close to neutral. Rumen microorganisms are involved in

the fermentation of substrates contained in thedietof the animals (carbohydrates, proteins and lipids). However, the fermentation process is not 100%

effective because there are energy losses mainly in the form of methane gas (CH4 ), which is a problem for the environment since it is a greenhouse gas.

In order to improve the efficiency of ruminant production systems, nutritional strategies that aim to manipulate ruminal fermentation using additives

in the diet such as monensin, tallow, buffers, nitrogen compounds, probiotics, and others have been used. These additives allow changing the ruminal

fermentation process in ways that produce better growth efficiency while decreasing energy loss. The purpose of this review is to contribute to a better

understanding of the fermentation processes taking place in the rumen, p roviding information that can be applied in the development of new nutritional strategies for the improvement of the digestion process to achieve maximum production.

Key words

: additives, ruminal microorganisms, symbiosis.INTRODUCTION

The rumen is a complex ecosystem where nutrients

consumed by the microorganisms such as bacteria, pro tozoa, and fungi are digested anaerobically. The main end products of fermentation are volatile fatty acids (VFAs) and

microbial biomass, which are used by the host ruminant. The interaction between microorganisms and the host animal

results in a symbiotic relationship that allows ruminants to digest diets rich in fiber and low in protein. In the rumen the environment favors the microorganisms to provide the enzymes necessary to digest the nutrients. Ruminants have the ability to convert the low quality fibrous materials into products such as meat, milk and fibers, which are useful to

humans. The ability of ruminal microorganisms to produce the enzymes necessary for fermentation processes allows

ruminants to efficiently obtain the energy contained in forages (Burns 2008). However, the ruminal fermentation process is not completely efficient because it produces some final products such as methane gas (Kingston-Smith et al

2012) and excess ammonia (Russell and Mantovani

2002). Ruminants such as cattle, sheep, and goats have

350

CASTILLO-GONZÁLEZ

ET AL evolved to use fibrous food efficiently (Oltjen and Beckett

1996). The anatomical adaptation of their digestive system

allows them to use cellulose as an energy source without requiring external sources of vitamin B complex (Russell and Mantovani 2002) or essential amino acids because ruminal microorganisms are able to produce such products (Cole etal

1982). Thus, a symbiotic relationship exists

within the rumen providing the necessary environment for the establishment of microorganisms and substrates required for their maintenance. In turn, the microorganisms provide nutrients to the host ruminant to generate energy (Russell and Rychlik 2001). The continued increase of the human population has increased the need for more and better animal products. For this reason, in the field of animal production, most efforts have been directed to increase ruminant production using biotechnological tools to manipulate the ruminal ecosystem. For example, the use of additives in the diet such as monensin, tallow, buffers, nitrogen compounds, probiotics, etc., allow manipulation of the ruminal fermentation process to maximize the production efficiency while decreasing energy loss, for example, methane which pollutes the environment. The objective of this review is to describe the fermentation processes in the rumen so that current knowledge can be applied in the development of nutritional strategies for improving animal production.

PHYSICOCHEMICAL PROPERTIES OF THE

RUMEN

The ruminant digestive system is composed of reti

culum, rumen, omasum, and abomasum. The rumen is mainly where the major fermentation processes are held (Tharwat etal

2012 ). Enzymes present in the rumen are

produced by microorganisms. These enzymes are used to digest and ferment food eaten by ruminants, thus, the rumen is considered as a fermentation vat (Aschenbach etal

2011). The main factors influencing the growth and

activity of ruminal microbial populations are temperatu re, pH, buffering capacity, osmotic pressure and redox potential. These factors are determined by environmental conditions. The rumen temperature is maintained in the range of 39 to 39.5 °C (Wahrmund etal

2012) and may

increase up to 41 °C immediately after the animal eats because the fermentation process generates heat (Brod etal

1982). The pH depends on the production of saliva,

the generation and absorption of short-chain fatty acids (SCFA), the type and level of feed intake, and the exchan- ge of bicarbonates and phosphates through the ruminal epithelium (Aschenbach etal 2011). Thus, these factors determine both pH and buffering capacity in the reticule ruminal environment. The pH constantly changes (Russell and Strobel 1989), but it usually remains in the range of

5.5 to 7.0 (Krause and Oetzel 2006), depending on the diet

and buffering capacity of saliva, because saliva produc

tion is a constant process that provides bicarbonates and phosphates into the rumen. Furthermore, reticuloruminal

secretions also possess buffering capabilities, so this environment does not only depend of the buffering capa city of saliva, which has a pH of 8.2 (Krause and Oetzel

2006). Generally, the bacterial intracellular pH remains

near 7.0, which decreases considerably when the cell is under acidic environment. Likewise, microbial enzymes are sensitive to changes in pH, for example, inhibition of bacterial growth under acidic pH. This may be due to the imbalance of intracellular hydrogen ions (Russell and Wilson 1996). The osmotic pressure in the rumen depends on the presence of ions and molecules, which generate a gas tension (Lodemann and Martens 2006). The ruminal fluid osmolality is approximately 250 mOsm/kg. Ruminal fermentation processes may depend on the environmental conditions and the type of diet, so these factors may in fluence the osmotic pressure of the rumen. Immediately after feed intake, the osmotic pressure increases from 350 to 400 mOsm and then decreases gradually over a period of 8 to 10 hours. The osmotic pressure increases with the presence of VFAs produced by fermentation processes and has a direct relationship with the pH in diets rich in carbohydrates (Lodemann and Martens 2006).

RUMINAL MICROORGANISMS

The ruminal ecosystem consists of a wide diversity of microorganisms that are in a symbiotic relationship in a strict anaerobic environment (Ozutsumi etal

2005). The

microbiota is formed by ruminal bacteria, protozoa, and fungi, at concentrations of 10 10 , 10 6 , and 10 4 cells/ml, respectively. Bacterial populations are most vulnerable to the physicochemical properties of the rumen (McAllister etal

1990).

RUMINAL BACTERIA

The rumen contains a variety of bacterial genera (table1), which constitute the majority of the microorganisms that live in anaerobic environment (Pitta etal

2010). The

competition between bacteria in the rumen is determined by several factors, among which are the preference for certain substrates, energy requirements for maintenance, and resistance to certain metabolism products that can be toxic (Russell etal

1979).

CELLULOSE-DEGRADING BACTERIA

The ruminant diet is based on plant-based feed con sumption. Because cellulose is the main component of the cell wall of these plants, cellulolytic ruminal microor- ganisms play an important role in animal nourishment (Russell etal

2009). Cellulose is digested in the rumen

(Michalet-Doreau etal

2002). The ability to degrade

cellulose depends mainly on the type of forage, crop maturity, and the members of the cellulolytic bacterial 351

ADDITIVES, RUMINAL MICROORGANISMS, SYMBIOSIS

Table 1. Characteristics of principal ruminal bacteria. Características de las principales bacterias ruminales. Microorganisms Gram stain Morphology Fermetation productsReference

Cellulose-degrading bacteria

Fibrobacter succinogenesNegative BacillusSuccinate, Acetate, Formate(Ivan et al 2012) Butyrivibrio fibrisolvensNegative Bacillus curve Acetate, Formate, Lactate,

Butyrate, H

2 , CO 2 (Weimer 1996) Ruminococci albusPositive Cocci Acetate, Formate, H 2 , CO 2 (Michalet-Doreau et al 2002)
Clostridium lochheadiiPositive Bacillus (espores) Acetate, Formate, Butyrate, H 2 CO 2 (Weimer 1996)

Amylolytic bacteria

Bacteriodes ruminicolaNegative BacillusFormate, Acetate, Succinate(Cotta 1988) Ruminobacter amylophilusNegative BacillusFormate, Acetate, Succinate Selenomonas ruminantiumNegative Bacillus curve Acetate, Propionate, Lactate (Cotta 1992) Succinomonas amylolíticaNegative Oval Acetate, Propionate, Succinate Streptococci bovisPositive Cocci Lactate(Cotta 1988, McAllister et al 1990)

Lipolytic bacteria

Anaerovibrio lipolyticaNegative BacillusAcetate, Propionate, Acetate (Fuentes et al 2009)

Lactate-degrading bacteria

Selenomonas lactilyticaNegative Bacillus curvado Acetate, Succinate(Brown et al 2006) Megasphaera elsdeniiPositive Cocci Acetate, Propionate, Butyrate,

Valerate, H

2 , CO 2

Pectin-degrading bacteria

Lachnospira multiparusPositive Bacillus curve Acetate, Formate, Lactate, H 2 CO 2 (Duskova and Marounek 2001)

Ruminal archaea (methanogens)

Methanobrevibacter ruminantiumPositive Bacillus CH4 (of H 2 +CO 2 or Formate) (Yanagita et al 2000,
Hook et al 2010)
Methanomicrobium mobileNegative Bacillus CH4 (of H 2 +CO 2 or Formate)

Lactic acid-utilizing bacteria

Megasphaera elsdeniiNegative Cocci Lactate (Counotte and Prins 1981)
communities (Fondevila and Dehority 1996). To ensure maintenance and growth of cellulolytic bacteria, optimal ruminal conditions are required. A neutral pH near neu trality between 6 and 9 is best, while a pH less than 5.5 affects fiber digestibility (Weimer 1996). A temperature of 39 °C affects the adhesion ability of bacteria to feed particles (Michalet-Doreau etal

2001), while the presence

of extracellular cellulase enzymes (Weimer 1996) to break ȕ-glycosidic bonds (1-4) of the biopolymer provides sugars for use by microorganisms (Wedekind etal

1988). In

addition, the presence of ionized calcium (Ca +2 ) favors the establishment of such bacteria, except for

F. succinogenes

(Morales and Dehority 2009). The establishment of this bacterial group can be affected by the presence of certain types of lipids in the diet. For example, medium-chain fatty acids are often toxic to cellulolytic bacteria, reducing the digestibility of the fiber. For a mylolytic bacteria (table1), starch is an important component of the diet of cattle and high milk-producing cows which are fed with concentrates containing major proportions of grains. Although these diets for ruminants have been effective as a fermentable energy source, they are also associated with metabolic disorders such as acidosis (Gressley etal

2011), low-fat

milk syndrome and liver abscesses (Owens etal

1998).

352

CASTILLO-GONZÁLEZ

ET AL In ruminants fed mainly forage, this bacterial species is found at a concentration of 10 4 -10 7 cells/grams. In addition, when the fermentable sugar concentration increases, its concentration may be greater than 10 11 /grams in ruminal contents (Nagaraja and Titgemeyer 2007). Furthermore,

S. bovis

ferments glucose to provide acetate, formate, and ethanol as a final product. However, in high concentrate diets, this species changes its metabolism to provide lactic acid as the final product, which causes a drop of pH to 5.5 that is detrimental to the ruminant (Russell and Hino 1985). To avoid this situation, it is necessary to gradually introduce fermentable carbohydrates in the ruminant diet. This dietary management allows

S. bovis

not to produce lactic acid rapidly. Thus, the growth of other starch-degrading bacteria, such as

Bacteroides

ruminicola , Ruminobacter amylophilus, Selenomonas ruminantium and

Succinomonas amylolytica

which pro duce other VFAs such as formate, acetate, propionate, and succinate, is also promoted so that an imbalance of homeostasis in the biochemical pathways in the ruminal environment is avoided (Cotta 1992).

LACTATE-DEGRADING BACTERIA AND

LACTATE- BACTERIA

They have a very important role in the rumen (table1) mainly in those ruminants that are fed with high grains in the diet. These bacteria metabolize lactic acid and control its accumulation, which helps to keep the pH in the proper range (Mackie and Heath 1979). This type of bacteria increases when the diet consists of approximately 70% concentrate (Brown etal

2006).

PECTIN-DEGRADING BACTERIA

They are important because the pectin represents

10-20% of total carbohydrates in forages used in ruminant

nutrition (table1). Pectin is fermented by both bacteria and protozoa (Dehority 1969) and the main bacteria that per- form this function are

Butyrivibrio fibrisolvens

, Prevotella ruminicola , Bacteroides ruminicola and Lachnospira multiparus . These ruminal bacteria produce and release pectinolytic enzymes into the ruminal environment; pectin lyases are the primary enzymes that hydrolyze the pectin in oligogalacturonoides (Duskova and Marounek 2001).

RUMINAL ARCHAEA OR METHANOGENS

They depend on the growth, maintenance, and activity of a diverse population of microorganisms (table1). However, microbial activity is the main source of greenhouse gases in agriculture (Mosoni etal

2011), such as methane gas.

Methane is an end product of ruminal fermentation and is considered as a loss of total energy consumed by ru minants, representing 6-10% of total energy (Mohammed etal

2004), which contributes to the greenhouse effect (Garnsworthy etal 2012). In ruminants, 80% of methane is generated during fiber fermentation, mainly cellulose, and 20% of methane is generated by the decomposition

quotesdbs_dbs46.pdfusesText_46
[PDF] Les différents micro-organismes

[PDF] Les différents microbes

[PDF] les différents milieux naturels dans le monde

[PDF] les différents modèles de prise de décision pdf

[PDF] les différents modes d'achat

[PDF] les différents modes de scrutin

[PDF] les differents modes de vie dans le monde

[PDF] Les différents moyens d'eteindre un feu

[PDF] les différents moyens de contraception sous forme de tableau

[PDF] Les différents niveaux d'organisation du vivant

[PDF] les différents niveaux d'expertise

[PDF] Les Différents Partis Politiques

[PDF] les différents plans d'un paysage ce2

[PDF] les differents plans: dissertation

[PDF] Les différents points de vue