[PDF] Chapitre 5 – Fonctions linéaires et affines





Previous PDF Next PDF



Applications linéaires

Cet f est un exemple d'application linéaire. Page 3. Définition des fonctions linéaires. Une fonction linéaire sur R3 est une fonction de 



3ème Révisions – Fonctions linéaires et affines

3ème Révisions – Fonctions linéaires et affines. Exercice 1. Mettre une croix où la réponse est oui. La fonction … est une fonction linéaire.



Chapitre 5 – Fonctions linéaires et affines

* Si une fonction est linéaire alors sa représentation graphique est une droite qui passe par l'origine. * Réciproquement



IV. Applications linéaires

Si E est de dimension finie une application linéaire est définie de façon unique si on conna?t les images des vecteurs d'une base de E. 1. Page 2 



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

I. Les matrices et abrégé d'algèbre linéaire la fonction polynomiale associée comme l'application ... Espace vectoriel des applications linéaires.



Chapitre VI Applications linéaires

On vérifie que la formule proposée est une application linéaire (exercice). Toutes les applications linéaires (en dimension finie) peuvent donc être définies 



Espaces vectoriels

Autrement dit : une application est linéaire si elle « respecte » les deux lois d'un espace vectoriel. Notation. L'ensemble des applications linéaires de E dans 



LALGÈBRE LINÉAIRE POUR TOUS

Dans ce cas la fonction de transition est une application linéaire. Et c'est tout le but de ce cours d'expliquer ce que cela signifie.



Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et

vectoriels et applications linéaires. Correction des exercices. De plus si f est la fonction carrée



ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 L'application qui à ? f £(EF) fait correspondre MBB'(f) est bijective. 3. Opérations sur les matrices. 3.1. Addition interne et multiplication ...

Chapitre 5 - Fonctions linéaires et affines

1 - Fonctions linéaires

a) Définition

On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x

où a est une constante. Ce nombre a est alors appelé coefficient de linéarité de la fonction linéaire f.

Remarque : lien avec la proportionnalité

* On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x. La fonction qui, à la grandeur x, associe la grandeur y est donc linéaire. * Réciproquement, toute fonction linéaire représente une situation de proportionnalité. b) Propriétés Soit f une fonction linéaire de coefficient a. * Le coefficient d'une fonction linéaire est l'image de 1 par cette fonction, soit : a = f (1). Démonstration : évidente en calculant l'image de 1. * Pour tout nombre x non nul : a=fx x. Démonstration : évidente d'après la définition. c) Représentation graphique

On considère un repère du plan.

* Si une fonction est linéaire, alors sa représentation graphique est une droite qui passe par l'origine.

* Réciproquement, si la représentation graphique d'une fonction est une droite qui passe par l'origine du repère,

alors cette fonction est linéaire.

Démonstrations : admise.

d) Étude d'une fonction linéaire * 1 er cas : on connaît l'expression Soit la fonction f définie pour tout nombre x par : fx=2

3x. Étude de f

fx=2

3x.On reconnaît une expression de la forme f (x) = a x avec :a=2

3donc f est linéaire.

Par conséquent sa représentation graphique est une droite qui passe par l'origine. Par ailleurs : f (3) = 2 . Donc la droite passe par le point de coordonnées ( 3 ; 2 ).

Représentation graphique

* 2ème cas : on connaît un nombre et son image Soit la fonction g définie par sa représentation graphique.

Étude de g

La représentation graphique de g est une droite qui passe par l'origine. Donc g est une fonction linéaire et son expression est de la forme g (x) = k x.

D'autre part, la droite passe par le point de coordonnées ( 5 ; - 2 ) ; par conséquent : g ( 5 ) = - 2 .

Or, pour tout nombre x non nul : k=gx x. Donc, pour x = 5 : k=g5 5=-2 5

Conclusion : pour tout nombre x,gx=-2

5x. - 2

+ 5

2 - Fonctions affines

a) Définition

On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b

où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.

Remarques

* Si b = 0, l'expression devient f (x) = a x . On retrouve alors une fonction linéaire. Donc : toute fonction linéaire est aussi une fonction affine. * Si a = 0, l'expression devient : f (x) = b . On obtient alors une fonction constante. Donc : toute fonction constante est aussi une fonction affine. * Si a = b = 0, l'expression devient : f (x) = 0 . On obtient alors la fonction nulle. Et la fonction nulle est linéaire, constante et donc affine. b) Représentation graphique

On considère un repère du plan.

* Si une fonction est affine, alors sa représentation graphique est une droite (qui n'est pas parallèle à l'axe des

ordonnées).

* Réciproquement, si la représentation graphique d'une fonction est une droite (qui n'est pas parallèle à l'axe

des ordonnées), alors cette fonction est affine.

Démonstrations : admise.

Remarque : la représentation graphique d'une fonction constante est une droite parallèle à l'axe des abscisses.

c) Propriétés Soit f une fonction affine de coefficient directeur a et d'ordonnée à l'origine b.

* L'ordonnée à l'origine d'une fonction affine est l'image de 0 par cette fonction, soit : b = f (0) .

Démonstration : évidente en calculant l'image de 0. * Pour tous nombres x1 et x2 tels que : x1 ≠ x2 : a=fx1-fx2 x1-x2

Démonstration

f (x1) - f (x2) = ( a x1 + b ) - ( a x2 + b ) = a x1 + b - a x2 - b = a ( x1 - x2 )

Comme x1 ≠ x2 , on peut diviser chaque membre de l'égalité par ( x1 - x2 ), ce qui donne le résultat.

d) Étude d'une fonction affine * 1 er cas : on connaît l'expression Soit la fonction f définie pour tout nombre x par : fx=2x-3. Étude de f fx=2x-3. On reconnaît une expression de la forme f (x) = a x + b avec : a = 2 et b = - 3 donc f une fonction affine. Par conséquent sa représentation graphique est une droite.

Par ailleurs : f (0) = - 3 et f (1) = - 1 .

Donc la droite passe par les points de coordonnées ( 0 ; - 3 ) et ( 1 ; - 1 ).Représentation graphique * 2ème cas : on connaît un nombre et son image

1ère méthode : lecture graphique

Soit la fonction g définie par sa représentation graphique.

Étude de g

La représentation graphique de g est une droite (qui n'est pas parallèle à l'axe des ordonnées).

Donc g est une fonction affine et son expression est de la forme g (x) = m x + p.

Par lecture graphique : m=-4

6=-2

3et p = + 3 .

Par conséquent : gx=-2

3x3. - 4

+ 6p = + 3m=-4 6

2 ème méthode : calcul

Soit la fonction affine f telle que : f ( 2 ) = 1 et f ( 5 ) = - 5 . On sait que f est une fonction affine, donc son expression est de la forme f (x) = a x + b. De plus : f ( 2 ) = 1 donc, en remplaçant x par 2 dans l'expression de f : 2 a + b = 1 .

Par ailleurs : f ( 5 ) = - 5 donc, en remplaçant x par 5 dans l'expression de f : 5 a + b = - 5 .

2 a + b = 1

On doit donc résoudre le système :

5 a + b = - 5

Après résolution, on trouve : a = - 2 et b = 5 .

Par conséquent : f (x) = - 2 x + 5

quotesdbs_dbs46.pdfusesText_46
[PDF] les fonctions Linéaire -

[PDF] les fonctions linéaires

[PDF] Les fonctions linéaires et affines

[PDF] Les fonctions linéaires et affines QCM PARTIE 1 SUR 9

[PDF] Les fonctions linéaires et leur coefficient

[PDF] Les fonctions linéaires etc

[PDF] les fonctions linéaires/ représenter graphiquement une fonction linéaire

[PDF] Les fonctions logarithmes

[PDF] les fonctions math

[PDF] les fonctions mathématiques

[PDF] les fonctions mathématiques 3ème

[PDF] les fonctions mathématiques cours

[PDF] les fonctions mathématiques cours pdf

[PDF] les fonctions mathématiques terminale

[PDF] LES FONCTIONS NUMERIQUES