[PDF] LIMITES DES FONCTIONS Yvan Monka – Académie de





Previous PDF Next PDF



Mathématiques terminale S

Si f?(a) = 0 et si f? change de signe en a alors la fonction f admet un extremum local en a. 4 Fonctions exponentielle et logarithme. 4.1 Existence. Définition 



Programme de spécialité de mathématiques de terminale générale

L'enseignement de spécialité de mathématiques de la classe terminale générale Les élèves sont évalués en fonction des capacités attendues et selon des ...



Programme denseignement optionnel de mathématiques

complémentaires de terminale générale. Sommaire. Préambule Les élèves sont évalués en fonction des capacités attendues et selon des modes variés :.



CONTINUITÉ DES FONCTIONS

La fonction f est continue sur ]?? ; 5[ et sur [5 ; +?[. Page 3. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.



FONCTION LOGARITHME NEPERIEN

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION LOGARITHME. NEPERIEN. En 1614 un mathématicien écossais



LIMITES DES FONCTIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DES FONCTIONS. Partie 1 : Limite d'une fonction à l'infini.



Exercices de mathématiques pour la classe terminale - 2e partie

2) Indiquer un intervalle sur lequel la fonction est convexe. Analyse didactique. Les compétences mises en jeu dans cet exercice sont les suivantes : A1. A2.



Programme de mathématiques de terminale technologique

- écrire une fonction simple en langage Python ;. - interpréter un algorithme donné ;. - compléter améliorer ou corriger un programme informatique ;. - 



COMPOSITION DE FONCTIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr La fonction f est la composée de deux fonctions et telles que :.



PRIMITIVES ET ÉQUATIONS DIFFÉRENTIELLES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Méthode : Vérifier qu'une fonction est solution d'une équation différentielle.

1

LIMITES DES FONCTIONS

Partie 1 : Limite d'une fonction à l'infini

1) Limite infinie en ∞

Définition :

On dit que la fonction admet pour limite +∞ en +∞, si ()est aussi grand que l'on veut pourvu que soit suffisamment grand. Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

a pour limite +∞ lorsque tend vers +∞.

On a par exemple :

100
=100 =10000 1000
=1000 =1000000 Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que est suffisamment grand.

Remarques :

- Une fonction qui tend vers +∞ lorsque tend vers +∞ n'est pas nécessairement croissante. Par exemple : - Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales. 2

2) Limite finie en ∞

Définition :

On dit que la fonction admet pour limite en +∞,

si ()est aussi proche de que l'on veut, pourvu que soit suffisamment grand et on

note : lim Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

=2+ a pour limite 2 lorsque tend vers +∞.

On a par exemple :

100
=2+ =2,01 10000
=2+ =2,0001 Les valeurs de la fonction se resserrent autour de 2 dès que est suffisamment grand. La courbe de la fonction "se rapproche" de la droite d'équation =2 sans jamais la toucher.

Définition : Si lim

=, la droite d'équation = est appelée asymptote horizontale

à la courbe de la fonction en +∞.

3

Remarques :

• Lorsque tend vers +∞, la courbe de la fonction "se rapproche" de son asymptote. • On a une définition analogue en -∞.

3) Limites des fonctions de référence

Propriétés :

- lim =+∞, lim - lim =+∞, lim - lim - lim 1 =0, lim 1 =0 - lim =+∞, lim =0

Partie 2 : Limite d'une fonction en un réel A

1) Définition

Définition :

On dit que la fonction admet pour limite +∞ en ,

si () est aussi grand que l'on veut pourvu que soit suffisamment proche de .

Exemple :

La fonction définie par

1

3-

+1 a pour limite +∞ lorsque tend vers 3.

On a par exemple :

2,99 1

3-2,99

+1=101

2,9999

1

3-2,9999

+1=10001

Les valeurs de la fonction deviennent aussi

grandes que l'on veut dès que est suffisamment proche de 3.

La courbe de la fonction "se rapproche" de la

droite d'équation =3 sans jamais la toucher. 4

Définition : Si : lim

=+∞ ou lim =-∞, la droite d'équation = est appelée asymptote verticale à la courbe de la fonction .

2) Limite à gauche, limite à droite :

Exemple :

Considérons la fonction inverse définie sur ℝ par La fonction admet des limites différentes en 0 selon que : >0 ou <0. Si >0 : Lorsque tend vers 0, () tend vers +∞ et on note : lim =+∞ou lim

On parle de limite à droite de 0

Si <0 : Lorsque tend vers 0, () tend vers -∞ et on note : lim =-∞ ou lim

On parle de limite à gauche de 0.

Méthode : Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

On donne ci-dessous la représentation graphique de la fonction . a) Lire graphiquement les limites en -∞, en +∞, en -4 et en 5. b) Compléter alors le tableau de variations de . 5

Correction

a) lim =5 lim =5 La courbe de admet une asymptote horizontale d'équation =5 en -∞ et +∞. lim La courbe de admet une asymptote verticale d'équation =-4. lim =+∞ et lim La courbe de admet une asymptote verticale d'équation =5. 2) -∞-425+∞ -∞-425+∞ +∞+∞ +∞5

56-∞

6

Partie 3 : Opérations sur les limites

1) Utiliser les propriétés des opérations sur les limites

peut désigner +∞, -∞ ou un nombre réel. SOMME lim lim lim F.I.* * Forme indéterminée : On ne peut pas prévoir la limite éventuelle. PRODUIT ∞ désigne +∞ ou -∞ lim ∞ 0 lim lim F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. QUOTIENT ∞ désigne +∞ ou -∞ lim ≠0 0 lim ′≠0

0 ∞ ∞

0 lim ∞ 0 ∞ F.I. F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. Méthode : Calculer la limite d'une fonction à l'aide des formules d'opération

Vidéo https://youtu.be/at6pFx-Umfs

Déterminer les limites suivantes : a)lim

-5

3+

b) lim

1-2

-3

Correction

a) lim -5

3+

F lim -5=-∞ lim =+∞lim

3+

Comme limite d'un produit : lim

-5

3+

7 b) lim

1-2

-3 lim

1-2=1-2×3=-5

lim -3=0

Une limite de la forme "

» est égale à " ∞ ».

Donc, d'après la règle des signes, une limite de la forme "

» est égale à " +∞ ».

D'où, comme limite d'un quotient : lim

1-2

-3

2) Cas des formes indéterminée (non exigible)

Comme pour les suites, on rappelle que :

Les quatre formes indéterminées sont, par abus d'écriture : ∞-∞0×∞ Méthode : Lever une forme indéterminée à l'aide de factorisations (1) - NON EXIGIBLE

Vidéo https://youtu.be/4NQbGdXThrk

Calculer : lim

-3 +2 -6+1

Correction

lim -3 +2 -6+1=? • F lim -3 lim

2

On reconnait une forme indéterminée du type "∞-∞". • Levons l'indétermination en factorisant par le monôme de plus haut degré : -3 +2 -6+1= M-3+ 2 6 1 N •lim 2 =lim 6 2 =lim 1 3 =0.quotesdbs_dbs46.pdfusesText_46
[PDF] LES FONCTIONS NUMERIQUES

[PDF] les fonctions numériques cours tronc commun

[PDF] les fonctions numériques et les suites

[PDF] Les fonctions paires et impaires

[PDF] les fonctions par rapport au nom

[PDF] Les fonctions polynômes

[PDF] Les fonctions pour DM de maths

[PDF] Les fonctions POUR LUNDI 7/11/2011

[PDF] Les fonctions problème

[PDF] Les fonctions programme de calcul

[PDF] Les fonctions références

[PDF] Les fonctions références: fonctions monotones

[PDF] les fonctions seconde

[PDF] les fonctions secondes

[PDF] les fonctions sinus et cosinus