[PDF] SECOND DEGRE (Partie 2) Une solution de cette équation





Previous PDF Next PDF



SECOND DEGRE (Partie 2)

Une solution de cette équation s'appelle une racine du trinôme ax2 + bx + c . Exemple : L'équation 3x2 ? 6x ? 2 = 0 est une équation du second degré.



PRIMITIVES ET ÉQUATIONS DIFFÉRENTIELLES

Définition : Soit f une fonction définie sur un intervalle I de ?. On dit que la fonction g est une solution de l'équation différentielle ' = sur I si 



1 Équations avec une ou deux variables

Une équation d'une variable (dans R) est une définition implicite d'un nombre qu'on note souvent x ; on appelle solution tout nombre qui vérifie l'équation.



EQUATIONS DIFFERENTIELLES I Définition et notation

Résoudre une équation différentielle d'ordre n sur un intervalle I c'est trouver toutes les fonctions dérivables n fois sur I solution de l'équation.



ÉQUATIONS DIFFÉRENTIELLES

I.1 Solution générale de l'équation sans second membre . I.3 Ensemble des solutions d'une équation différentielle .



ÉQUATIONS INÉQUATIONS

1er membre. 2e membre. RESOUDRE UNE EQUATION : C'est chercher et trouver le nombre inconnu. SOLUTION : C'est la valeur de l'inconnue. 2) Tester une égalité.



Résolution des équations différentielles linéaires du second ordre `a

Mais maintenant qu'il nous a donné une solution on peut l'oublier et utiliser la méthode classique de variation de la constante : on cherche les solutions sous 



Les équations différentielles en physique

En physique on ne s'intéressera qu'à des équations différentielles linéaires à coefficients constants. Equation du premier ordre. La forme canonique (forme « 



- FICHE DE COURS CHAPITRE SUR LES EQUATIONS

4. existence et unicité de la solution avec les conditions initiales. Synthèse sur la résolution des équations différentielles du 2nd ordre.



Séance de soutien PCSI2 numéro 4 : Résolution des EDL1 et EDL2

On considère les équations caractéristiques C valant X + a = 0 pour l'ordre 1 et aX2 + bX + c = 0 en ordre 2. 1) Si ? n'est pas solution de C alors l'équation 

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSECOND DEGRE (Partie 2) I. Résolution d'une équation du second degré Définition : Une équation du second degré est une équation de la forme

ax 2 +bx+c=0 où a, b et c sont des réels avec a≠0 . Une solution de cette équation s'appelle une racine du trinôme ax 2 +bx+c . Exemple : L'équation 3x 2 -6x-2=0 est une équation du second degré. Définition : On appelle discriminant du trinôme ax 2 +bx+c , le nombre réel, noté Δ, égal à b 2 -4ac . Exemple : Le discriminant de l'équation 3x 2 -6x-2=0

est : ∆ = (-6)2 - 4 x 3 x (-2) = 36 + 24 = 60. En effet, a = 3, b = -6 et c = -2. Propriété : Soit Δ le discriminant du trinôme

ax 2 +bx+c . - Si Δ < 0 : L'équation ax 2 +bx+c=0 n'a pas de solution réelle. - Si Δ = 0 : L'équation ax 2 +bx+c=0 a une unique solution : x 0 b 2a . - Si Δ > 0 : L'équation ax 2 +bx+c=0 a deux solutions distinctes : x 1 -b-Δ 2a et x 2 -b+Δ 2a

. - Admis - Méthode : Résoudre une équation du second degré Vidéo https://youtu.be/youUIZ-wsYk Vidéo https://youtu.be/RhHheS2Wpyk Vidéo https://youtu.be/v6fI2RqCCiE Résoudre les équations suivantes : a)

2x 2 -x-6=0 b) 2x 2 -3x+ 9 8 =0 c) x 2 +3x+10=0 a) Calculons le discriminant de l'équation 2x 2 -x-6=0

: a = 2, b = -1 et c = -6 donc Δ = b2 - 4ac = (-1)2 - 4 x 2 x (-6) = 49. Comme Δ > 0, l'équation possède deux solutions distinctes : ()

1 149
3 2222
b x a 2 149
2 222
b x a

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frb) Calculons le discriminant de l'équation

2x 2 -3x+ 9 8 =0 : a = 2, b = -3 et c = 9 8 donc Δ = b2 - 4ac = (-3)2 - 4 x 2 x 9 8 = 0. Comme Δ = 0, l'équation possède une unique solution : x 0 b 2a -3

2×2

3 4 c) Calculons le discriminant de l'équation x 2 +3x+10=0

: a = 1, b = 3 et c = 10 donc Δ = b2 - 4ac = 32 - 4 x 1 x 10 = -31. Comme Δ < 0, l'équation ne possède pas de solution réelle. II. Factorisation d'un trinôme Propriété : Soit f une fonction polynôme de degré 2 définie sur ℝ par

f(x)=ax 2 +bx+c . - Si Δ = 0 : Pour tout réel x, on a : f(x)=a(x-x 0 2 . - Si Δ > 0 : Pour tout réel x, on a : ()() 12 ()fxax xxx=--

. - Admis - Remarque : Si Δ < 0, on n'a pas de forme factorisée de f. Méthode : Factoriser un trinôme Vidéo https://youtu.be/eKrZK1Iisc8 Factoriser les trinômes suivants : a)

4x 2 +19x-5 b) 9x 2 -6x+1 a) On cherche les racines du trinôme 4x 2 +19x-5 : Calcul du discriminant : Δ = 192 - 4 x 4 x (-5) = 441 Les racines sont : x 1 -19-441

2×4

=-5 et x 2 -19+441

2×4

1 4

On a donc : ()()

2 1 5 4 4195
41
4 5 xxxx xx

. Une vérification à l'aide de la calculatrice n'est jamais inutile ! On peut lire une valeur approchée des racines sur l'axe des abscisses.

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frb) On cherche les racines du trinôme

9x 2 -6x+1 : Calcul du discriminant : Δ = (-6)2 - 4 x 9 x 1 = 0 La racine (double) est : x 0 -6

2×9

1 3

On a donc : ()

2 2 2 1 3 961
3 9 1 xxx x

III. Signe d'un trinôme Vidéo https://youtu.be/sFNW9KVsTMY Vidéo https://youtu.be/pT4xtI2Yg2Q Remarque préliminaire : Pour une fonction polynôme de degré 2 définie par

f(x)=ax 2 +bx+c

: - si a > 0, sa représentation graphique est une parabole tournée vers le haut : - si a < 0, sa représentation graphique est une parabole tournée vers le bas : Propriété : Soit f une fonction polynôme de degré 2 définie sur ℝ par

f(x)=ax 2 +bx+c . - Si Δ < 0 : x -∞ f(x) Signe de a - Si Δ = 0 : x -∞ x 0 f(x) Signe de a O Signe de a - Si Δ > 0 : x -∞ x 1 x 2

f(x) Signe de a O Signe de -a O Signe de a a>0a<0a>0a<0a>0a<0L'équationf(x)=0n'apasdesolutiondonclacourbedefnetraversepasl'axedesabscisses.L'équationf(x)=0aunesolutionuniquedonclacourbedefadmetsonextremumsurl'axedesabscisses.L'équationf(x)=0adeuxsolutionsdonclacourbedeftraversel'axedesabscissesendeuxpoints.

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr Méthode : Résoudre une inéquation Vidéo https://youtu.be/AEL4qKKNvp8 Résoudre l'inéquation suivante :

x 2 +3x-5<-x+2

On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier le signe du trinôme.

x 2 +3x-5<-x+2

équivaut à

x 2 +4x-7<0

Le discriminant de

x 2 +4x-7 est Δ = 42 - 4 x 1 x (-7) = 44 et ses racines sont : x 1 -4-44

2×1

=-2-11 et x 2 -4+44

2×1

=-2+11

On obtient le tableau de signes : x -∞

-2-11 -2+11

f(x) + O - O + L'ensemble des solutions de l'inéquation

x 2 +3x-5<-x+2 est donc -2-11;-2+11

. Une vérification à l'aide de la calculatrice n'est jamais inutile ! On peut lire une valeur approchée des racines sur l'axe des abscisses. Un logiciel de calcul formel permet également de contrôler le résultat : Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs46.pdfusesText_46
[PDF] Les solutions d'une inéquation

[PDF] les solutions de l'analphabétisme

[PDF] les solutions de l'analphabétisme au maroc

[PDF] les solutions de l'eau

[PDF] les solutions de l'inflation pdf

[PDF] les solutions de l'obésité

[PDF] les solutions des problèmes de l'environnement

[PDF] les solutions du changement climatique

[PDF] Les solutions ioniques

[PDF] Les solutions ioniques niveau première

[PDF] Les solutions pour améliorer la qualite de l'air pour préserver notre santé

[PDF] les solutions pour lutter contre la pauvreté

[PDF] les solutions pour résoudre le problème de leau

[PDF] Les solutions techniques

[PDF] Les solutions techniques et les foctions