[PDF] [PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3 u1 = 8 u2 = 13 u3 = 18 Une telle suite est appelée une suite arithmétique de 



[PDF] SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3 u1 = 8 u2 = 13 u3 = 18 Une telle suite est appelée une suite arithmétique de 



[PDF] Suites arithmétiques et suites géométriques - dpernoux

terme est u12 si le premier terme est noté u1 5°) Formule permettant de calculer la somme des n premiers termes d'une suite arithmétique : a) S = nombre 



[PDF] Chapitre 2: Suites arithmétiques et suites géométriques

Démontrer que la suite (bn) est aussi une suite arithmétique ; quelle en est sa raison ? Page 4 16 SUITES ARITHMETIQUES ET GEOMETRIQUES CHAPITRE 2 2MSPM – 



[PDF] Suites arithmétiques Suites géométriques - Maths-France

Si la suite (un) est géométrique de premier terme u0 et de raison q pour tout entier naturel n un = u0 + nr un = u0 × qn • Les suites arithmétiques sont 



[PDF] Rappel: suites arithmétiques et géométriques - Lovemaths

Rappel: suites arithmétiques et géométriques: Suite arithmétique Suite géométrique Définition a u u n n + = +1 a raison de la suite



[PDF] Chapitre 10 : Les suites arithmétiques et géométriques

Chapitre 10 : Les suites arithmétiques et géométriques Si la suite est arithmétique le nombre est appelé raison de cette suite



[PDF] Chap8 : SUITES ARITHMETIQUES & GEOMETRIQUES

Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation En calculant les premiers termes :

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

quotesdbs_dbs46.pdfusesText_46
[PDF] Les suites avec relation de récurrence

[PDF] les suites ci-dessous sont-elles proportionnelles

[PDF] les suites cours pdf

[PDF] Les suites de nombres

[PDF] Les suites Devoir maison

[PDF] Les Suites Dm

[PDF] Les Suites en maths

[PDF] les suites en terminal S

[PDF] Les suites en terminale

[PDF] les suites en ts

[PDF] Les suites et e

[PDF] Les suites et encadrement

[PDF] Les suites et la convergence

[PDF] Les suites et la récurrence

[PDF] Les suites et les fonctions