[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Suites géométriques

Suites géométriques. CASIO. GRAPH 35+ ? Soit (un) la suite géométriques de premier terme u0 = 2 et de raison 12. a ) Calculer u8.



SUITES ET SÉRIES GÉOMÉTRIQUES

Suites géométriques. Définition : Une suite a ? a a



Suites géométriques

Suites géométriques. TI 82 Stats.fr ? Soit (un) la suite géométriques de premier terme u0 = 2 et de raison 12. a ) Calculer u8.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Première STMG - Suites géométriques

Suites géométriques. I) Définition et sont deux nombres entiers naturels. Soit une suite. On dit qu'elle est géométrique si partant du. TERME INITIAL.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Cours 5: Une introduction aux suites numériques

Suites arithmétiques. Suites géométriques. Cours 5: Une introduction aux suites numériques. Clément Rau. Laboratoire de Mathématiques de Toulouse.



Suites géométriques

Quelle sera sa valeur acquise à la fin du contrat ? 4. Niveau 1ère et Tale. Suites géométriques. Page 5 



Terminale ES - Suites géométriques

valeur de la voiture au bout de ? 1 années. Cette suite est géométrique : On passe d'un terme au suivant en multipliant toujours pas le même nombre (dans 

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u 0 = 5, u 1 = 10, u 2 = 20, u 3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La est donc définie par : .

Vidéo https://youtu.be/WTmdtbQpa0c

Définition : Une suite (u

n ) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : .quotesdbs_dbs46.pdfusesText_46
[PDF] Les suites géométriques (devoir maison)

[PDF] Les suites géométriques (trouver la raison)

[PDF] les suites géométriques ? rendre jeudi

[PDF] les suites géométriques ? rendre lundi

[PDF] Les Suites géométriques classe de terminale stl

[PDF] Les suites géométriques et arithmétiques

[PDF] Les suites help!!!!!!!

[PDF] Les suites homographiques de maths

[PDF] Les suites logiques

[PDF] Les suites logiques un autre DM

[PDF] les suites mathématiques

[PDF] les suites maths 1ere es

[PDF] les suites maths 1ere s

[PDF] les suites maths 1ere st2s

[PDF] Les suites nuémriques