[PDF] 7 Lois de probabilité dans le domaine de l'





Previous PDF Next PDF



Chapitre 1 : Taux dévolution I ] Rappels de lycée – pourcentages :

I.1. Pourcentage : Calculer t % d'une quantité A c'est faire : Page 6. III ] Approximation de taux d'évolution. Formules d'approximations au voisinage ...



POURCENTAGES

1 sur 4. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. POURCENTAGES. I. Evolution exprimée en pourcentage. 1) Calculer une évolution.



Calcul mental - Mathématiques du consommateur

315 + 200 + 70 + 6. 515 + 70 + 6. 585 + 6. 63 + 20 + 8. 83 + 8. 591. 1 Une durée de 45 minutes représente quel pourcentage d'une heure?



Appliquer un pourcentage

Pourcentages– Corrigés (par définition d'un pourcentage). ... 1 –. En multipliant une quantité par 090



CORRIGE - Séance de TD N°6 1 / 14

4) Calculer le pourcentage d'ionicité de cette liaison. Ï = 100 ? / e = 100 * 293 10-20 / 1



113 % du PIB +1

https://drees.solidarites-sante.gouv.fr/sites/default/files/2020-10/infographie-cns2020.pdf





TD n° 1 STATISTIQUE DESCRIPTIVE 7 13 8 10 9 12 10 8 9 10 6 14

Regrouper les données en 6 classes d'amplitude 2. Indiquer pour chaque classe : • Son effectif. • Sa fréquence exprimée en pourcentage.



7 Lois de probabilité

dans le domaine de l'administration ou de la comptabilité est de 1/6. Si on choisit au hasard 3 personnes quelle est la probabilité d'avoir au moins 2 



Protocole pour la validation dune méthode danalyse en chimie (DR

3 fév. 2021 1. PROGRAMME D'ACCRÉDITATION. DES LABORATOIRES D'ANALYSE. Sous-titre ... 6. 3. LIMITE SUPÉRIEURE DE QUANTIFICATION (LSQ) .



[PDF] POURCENTAGES - maths et tiques

1) Le prix HT (Hors Taxe) d'une caméra est de 436 € Sachant que la TVA (Taxe à valeur ajoutée) est de 196 du prix HT calculer le prix TTC



[PDF] POURCENTAGES - maths et tiques

I Evolution exprimée en pourcentage 1) Calculer une évolution Propriétés et définition : - Augmenter une valeur de t revient à la multiplier par 1+



[PDF] Résumé de cours et méthodes 1 Pourcentage dune grandeur

Multiplier une grandeur par un coefficient t revient à lui appliquer une variation en pourcentage de (t ?1)×100 Exemples : • Multiplier une grandeur par 115 



[PDF] 1 Cest quoi un pourcentage ?

9 avr 2021 · ? 1 C'est le pourcentage représentant le centième : 1 sur 100 2 sur 200 5 sur 500 69 sur 690 etc 



[PDF] COMMENT CALCULER UN POURCENTAGE ?

1 Une classe de 35 élèves comprend 20 filles le pourcentage de filles dans la classe est donc : p = 20 35 ×100 = 571 Exercice 1 1 (6 points)



[PDF] Fiche 1 : Pourcentage

Exemple : Un téléviseur de 700 € avec 6 de remise La remise est de : 700 x 6 = 700 x 6 = 42 € 100 Le prix du téléviseur sera :



[PDF] 5 - Chapitre 15 : Pourcentages

Exercice n°6 : 1 Lors d'une élection dans une commune où 480 votes ont été exprimés une candidate a obtenu 1125  



[PDF] Module 4 JICA

Module 4 : rapport et pourcentages Module 6 : proportionnalité directe et inversée • Rapports • Pourcentages • Proportionnalité directe



[PDF] Fiche dexercices n° 1 Rappels : 6ème : prendre un pourcentage d

Exercice 1A 1 28 correspond à 28 028 100 = 1) Traduire de même chacun des pourcentages suivants : 41 = 87 = 35 = 3 = 206  

  • Comment calculer 1 6 en pourcentage ?

    Multipliez 0.1? 0.1 6 ? par 100 pour convertir en pourcentage.
  • Comment mettre 6 en pourcentage ?

    Exprimer un nombre décimal en pourcentage

    1Multiplier le nombre décimal par 100.2Ajouter le symbole % à droite du résultat.
  • Comment calculer 1 5 en pourcentage ?

    Multipliez le nombre décimal par 100 pour le convertir en pourcentage. Autrement dit, déplacez la virgule de deux cases vers la droite. Le pourcentage signifie pour cent, donc le nombre décimal devient pour cent après avoir été multiplié par 100.
7 Lois de probabilité fi

7Lois de probabilité

Les lois de probabilité permettent de décrire les variables aléatoires sous la forme d"une "expérience type» puis d"analyser cette expérience en détail pour pouvoir déduire les principales caractéristiques de toutes les expériences aléatoires qui sont du même type. Letravailestfaituneseulefoismaisilsertàtouteslesexpériencessemblables. L"évaluation delaloideprobabilitéetdescaractéristiquesétanteffectuée, l"utilisateurn"aplusà"con-

struire" les probabilités mais simplement à identifier le modèle et à utiliser les résultats

connus sur le modèle. On s"intéressera ici à quelques lois qui sont très fréquentes dans

le domaine de la gestion.

Objectifs et compétences

L"étudiant sera en mesure de

•calculer des probabilités sur la loi binomiale •associer une expérience aléatoire à une loi binomiale •calculer des probabilités sur la loi de Poisson •associer une expérience aléatoire à une loi de Poisson •calculer des probabilités sur la loi exponentielle •associer une expérience aléatoire suit à loi exponentielle •calculer des probabilités sur la loi normale •utiliser les propriétés de la loi normale pour effectuer des calculs de probabilité

Loi binomiale

Considérons l"expérience qui consiste à répéternfois une expérience aléatoire de façon

indépendante telle que le résultat de chaque expérience est un succès ou un échec avec

une probabilité de succèsπ. On peut représenter cette expérience type par la figure

2 Chapter 7 Lois de probabilité

suivante : PosonsXla variable aléatoire qui donne le nombre total de succès sur lesntentatives. La variable aléatoireXsuit une loi Binomiale de paramètresnetπ, notéeBin(n,π).

Le support de cette variable aléatoire est

S

X={0,1,2,···n}

et la loi de probabilité est donnée par f(x) =?n x? x(1-π)n-xpourx= 0,1,2,...n où0< π <1et?n x? =n! x!(n-x)! Les principales caractéristiques numériques sont :

Moyenne :E(X) =nπ

Variance :V ar(X) =nπ(1-π)

Ecart type :?

nπ(1-π) Voici un graphique représentant quelques lois binomiales avec une même valeur den, (n= 20) et quelques valeurs deπ.

Lois binomiales

x fonction de probabilité

0 5 10 15 20

0.0 0.05 0.10 0.15 0.20 0.25

Pi=0.1

Pi=0.25

Pi=0.5

Pi=0.75

Loi binomiale 3

Remarque 7.1Le cas particulier de la loi binomiale avec paramètren= 1etπest à la base de plusieurs modélisation. Il est aussi connu comme étant la loi deBernoulliou expérience de Bernoulli. La notion de succès et d"échec dans le cadre d"une loi binomiale est purement arbitraire. Ainsi, le fait qu"une nouvelle entreprise ne passe pas le cap de la première année peut être qualifié de succès si on s"intéresse au nombre de fermetures tout comme le fait

qu"un employé ne soit pas présent au travail une certaine journée peut être un succès si

on veut étudier le taux d"absentéisme. Exemple 7.1?On sait que la probabilité qu"une personne choisie au hasard travaille dans le domaine de l"administration ou de la comptabilité est de 1/6. Si on choisit au hasard 3 personnes, quelle est la probabilité d"avoir au moins 2 personnes sur 3 qui travaillent dans l"administration ou la comptabilité ? Solution :PosonsXla v.a. qui donne le nombre de personnes sur 3 qui travaillent dans l"administration ou la comptabilité,X≂Bin(3,1/6). On cherchePr(X≥2) :

Pr(X≥2) =f(2) +f(3)

=?3 2?? 1 6? 2?5 6? 3-2 +?3 3?? 16? 3?5 6? 0 =572+1216= 7.4074×10 -2 = 0.0741 Exemple 7.2?Dans une entreprise les ressources humaines font passer une entrevue préliminaire aux candidats et on sait par expérience que seulement 50% passent au travers de ce premier tri. Quelle est la probabilité que sur 5 candidats, il y en ait 4 ou plus qui passent la première entrevue ? Solution :PosonsXla v.a. qui donne le nombre de candidats sur 5 qui passent la première entrevue,X≂Bin(5,1/2)et on cherchePr(X≥4):

Pr(X≥4) =f(4) +f(5)

=?5 4?? 1 2? 4?1 2? 1 +?5 5?? 12? 5 =316

4 Chapter 7 Lois de probabilité

Exemple 7.3Les données disponibles sur la survie des entreprises démontrent que les nouvelles entreprises du domaine des communications ont une probabilité de passer le cap des 2 ans de0.20. Si 10 entreprises se sont implantées, quelle est la probabilité d"avoir au moins 4 "survivantes» après 2 ans ? Solution :PosonsXla v.a. qui donne le nombre d"entreprises qui passent le cap des deux ans. C"est une v.a. de loiBin(10,0.2)et on cherchePr(X≥4). Or

Pr(X≥4) = 1-Pr(X <4) = 1-

3? x=0 fX(x) = 1- 3? x=0 ?10 x? (0.2) x(0.8)10-x = 1-.87913 =.12087 Exemple 7.4?Dans l"exemple précédant, si on sait qu"une entreprise en communi- cation qui passe le cap des 2 ans a une probabilité de2/3de devenir une grande entre- prise(plus de 50 employés), quelle est la probabilité d"obtenir 4 grandes entreprises en communication sur les 10 qui se sont implantées ? Solution:PosonsXlav.a. quidonnelenombred"entreprisessur10quisetransforment en une grande entreprise. C"est une v.a. de loiBin(10,π), oùπest la probabilité qu"une nouvelle entreprise en communication se transforme en une grande entreprise. Pour que la nouvelle entreprise devienne une grande entreprise, il faut qu"elle survive deux ans (disons l"événementA) et qu"elle se transforme en grande une entreprise (dis- ons l"événementB). Or

π= Pr(A∩B) = Pr(A)Pr(B|A)

2

1023=215puisque la probabilité de passer le cap des 2 ans est de 0.2 par le problème précédantet que la donnée du problème donnePr(B|A) = 2/3.

On a doncX≂Bin(10,

2

15)et on cherchePr(X≥4). Or

Pr(X≥4) = 1-Pr(X <4) = 1-

3? x=0 fX(x) = 1- 3? x=0 ?10 x?? 2 15? x?13 15? 10-x = 1-.96596 =.03404 Remarque 7.2Pour qu"une variable aléatoire suive une loi binomiale, il faut que le

nombre de répétitions de l"expérience soit fixé a priori. De plus, les expériences doivent

Loi binomiale 5

être indépendantes c"est-à-dire que le résultat d"une des expériences n"affecte en aucune

façon les autres. Considérons l"exemple d"une population de 120 entreprises d"un certain secteur et sup- posons que sur ce nombre il y en a 51 qui sont conformes à la norme ISO 9200. Une expérience aléatoire consiste à prendre 15 entreprises au hasard parmi les 120. On veut évaluer la probabilité qu"il y ait au moins 8 entreprises parmi les 15 qui sont conformes

à la norme ISO 9200. Même si on répète 15 fois l"expérience consistant à choisir une

entreprise, ce ne sont pas des expériences indépendantes : il n"y a que 120 entreprises et chaque fois qu"une entreprise est choisie à un tirage cela affecte la probabilité au tirage suivant. Exemple 7.5?Un transporteur aérien doit remplir un avion de 330 places. Il vend

340 billets en sachant qu"il y a une probabilité de 2.5% qu"un passager ne se présente

pas. Solution :PosonsXla v.a. qui donne le nombre de passagers qui se présenteront sur les 340 billets vendus. On aX≂Bin(340,0.975). Cela veut dire qu"en moyenne il y aura340?0.975 = 331.5passagers par vol. En moyenne il y aura 1.5 passagers qui n"auront pas de place. Comme passager on peut vouloir connaître la probabilité qu"il manque de place. Cela s"exprime parPr(X >330)et en utilisant la formule 1

Pr(X >330) =f(331) +f(332) +···+f(340)

=?340331? 0.975

331(0.025)340-331+···

= 0.65381 Exemple 7.6?Dans un programme universitaire il y a 30% des étudiants qui dé- passent le temps prévu pour terminer le programme et 10% qui terminent au moins une session avant la fin du temps prévu. On sait que 3% des étudiants qui dépassent le temps ont une cote générale "A", que 20% de ceux qui finissent exactement dans les temps ont cette cote et que ce taux devient 50% pour ceux qui finissent avant. Sur une cohorte de

15 étudiants dans le programme quelle est la probabilité qu"il y ait au moins 4 étudiants

avec la cote générale "A" ? Solution :Considérons la v.a.Xqui donne le nombre d"étudiants sur 15 qui auront la cote générale "A". C"est une v.a. qui admet une loi binomiale de paramètresn= 15et π:la probabilité qu"un étudiant au hasard obtienne cette cote. On cherchePr(X≥4). Pour utiliser la fonction de probabilité de la loi binomiale il faut déterminer la valeur du paramètreπ.

1Ce calcul peut se faire à la calculatrice mais il est plus simple et surtout plus rapide d"utiliser un logiciel

comme EXCEL.

6 Chapter 7 Lois de probabilité

Si on poseB

1:"un étudiant dépasse le temps prévu",B2:"un étudiant termine exacte-

ment dans les délais,B

3un étudiant dépasse le temps prévu etA:"obtient la cote A".

L"utilisation de la première règle de Bayes permet d"obtenirπ= 0.179. On a alors

Pr(X≥4) = 1-Pr(X <4)

= 1-(f(0) +f(1) +f(2) +f(3)) oùf(x) =? 15 x?0.179x(1-0.179)15-x.

L"application de la formule donne

f(0) = 15!

0!15!×0.1790×0.82115= 5.1898×10-2

f(1) =15!

1!14!×0.1791×0.82114= 0.16973

f(2) = 15!

2!13!×0.1792×0.82113= 0.25903

f(3) = 15!

3!12!×0.1793×0.82112= 0.24473

et ainsi la probabilité recherchée est

Pr(X≥4) = 0.27461

Loi de Poisson

La loi de Poisson ou modèle de Poisson permet la modélisation de l"observation d"un phénomènequiproduitdesévénementsàunrythmeconnu. Ons"intéresseàl"observation d"événements et on suppose

1. un seul événement arrive à la fois

2. le nombre d"événements se produisant ne dépend que du temps de l"observation

3. les événements sont indépendants

ConsidéronsXla v.a. qui donne le nombre d"événements observés dans une unité de temps. On a alors un phénomène de Poisson et la variable aléatoire qui donne le nombre

d"événements par unité de temps suit une loi de Poisson, notéeX≂P(λ), oùλest

le nombre moyen d"événements par unité de temps.

Loi de Poisson 7

Les valeurs possibles de la variable aléatoire sont S

X={0,1,2,...}

et la loi de probabilité est donnée par f

X(x) =e

-λλx x!pourx= 0,1,2,... oùeet la fonction exponentielle au point 1 :e?2,71828. Les principales caractéris- tiques numériques sont :

Moyenne :E(X) =λ

Variance :V ar(X) =λ

Ecart type :⎷

Voici la représentation graphique de la distribution de Poisson pour quelques valeurs de

Lois de Poisson

xquotesdbs_dbs28.pdfusesText_34
[PDF] 85 astuces pour microsoft excel

[PDF] astuce excel 2007 gratuitement

[PDF] tournesol clair de terre breton

[PDF] cours de versification

[PDF] ampleur de l'assortiment

[PDF] différence entre gamme et assortiment

[PDF] exercice assortiment

[PDF] cours sur l'assortiment

[PDF] l'assortiment du point de vente pdf

[PDF] structure de l'assortiment

[PDF] manuel de conjugaison français

[PDF] glasser besoins

[PDF] besoin physiologique définition

[PDF] concept de besoin en soins infirmiers

[PDF] les 8 besoins psychologiques