[PDF] Mathématiques MPSI Exemple 7.3 Soit x ?





Previous PDF Next PDF



mathématiques au cycle 4 - motivation engagement

https://maths.ac-creteil.fr/IMG/pdf/brochure_cyc60fb.pdf



cycle4_2016_v2_1_.pdf

24?/06?/2016 Chloé achète trois livres à 520 € et un CD à 19



1. Correction des exercices suivants du chapitre 15 sur les nombres

ex n°2 p.30 du sesamath Récapitulatif ( troisième colonne du tableau ) ... Exercices à effectuer avant le prochain cours de maths( le corrigé sera.



STCQE=UW^VY^: Comprendre le cerveau : naissance dune

part de cette première publication se retrouve dans le présent livre). Hideaki Koizumi troisième réunion du réseau du CERI sur l'apprentissage tout au ...



ALGÈBRE ET GÉOMÉTRIE

Mathématique et qui concernent plutôt la préparation à l'Agrégation



Pour lenseignant

une 3e ligne print("au revoir") indentée comme la 2e ligne ? non indentée ? À vous de jouer ! Exercices 56 à 63 p. 56. Exercices résolus. 53.



Mathématiques MPSI

Exemple 7.3 Soit x ? R. Linéariser sin3(x) cos2(x). sin3(x) cos2(x) = (eix ? e?ix. 2i. )3 (eix + e?ix. 2. )2. = ?(e3ix ? 3eix + 3e?ix ? e?3ix.



Untitled

Chloé achète trois livres à 520 € et un CD à 19



Sébastien Dumoulard Katia Hache Sébastien Hache Jean-Philippe

Association Sésamath pour les contenus issus des manuels Sésamath (Éditeur P = 1037272 ÷ 9



Lenseignement des mathématiques à lécole primaire

La place du calcul et des problèmes dans l'enseignement des mathématiques à l'école La troisième question est de même nature : l'élève doit mettre en.

Mathématiques MPSI

Pierron Théo

ENS Ker Lann

2

Table des matièresI Algèbre1

1 Ensembles3

1.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Opérations sur les parties d"un ensemble . . . . . . . . . . . . 4

1.3 Relations d"ordre . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Applications7

2.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Fonction et application . . . . . . . . . . . . . . . . . . 7

2.1.2 Restriction et prolongement d"applications . . . . . . .8

2.1.3 Composition d"applications . . . . . . . . . . . . . . . 8

2.1.4 Image directe et réciproque de parties par une application 9

2.2 Injections, surjections, bijections . . . . . . . . . . . . . . .. . 10

2.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Étude des bijections . . . . . . . . . . . . . . . . . . . 11

3 Le principe de récurrence13

3.1 Axiomes de Péano . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . 13

4 Ensembles finis17

4.1 Notion d"ensemble fini . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 Résultats essentiels sur les ensembles finis . . . . . . . 18

4.2 Analyse combinatoire . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Résultats généraux . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Combinaisons . . . . . . . . . . . . . . . . . . . . . . . 19

5 Arithmétique dansZ21

5.1 Structure additive deZ. . . . . . . . . . . . . . . . . . . . . . 21

5.2 PGCD et PPCM de deux entiers . . . . . . . . . . . . . . . . 22

i iiTABLE DES MATIÈRES

5.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.2 Entiers premiers entre eux . . . . . . . . . . . . . . . . 23

5.2.3 Algorithme d"Euclide . . . . . . . . . . . . . . . . . . . 25

5.3 Nombres premiers . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Le corps des réels29

6.1 Relation d"ordre surR. . . . . . . . . . . . . . . . . . . . . . 29

6.1.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.2 Bornes supérieure et inférieure d"une partie deR. . . 30

6.2 Théorème de la borne supérieure . . . . . . . . . . . . . . . . 31

6.2.1 Énoncé . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2.2 Partie entière d"un réel . . . . . . . . . . . . . . . . . . 32

6.2.3 Notion d"intervalle . . . . . . . . . . . . . . . . . . . . 33

6.3 Droite numérique achevée . . . . . . . . . . . . . . . . . . . . 34

7 Les complexes35

7.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Rappels sur les complexes . . . . . . . . . . . . . . . . . . . . 36

7.2.1 Opérations dansC. . . . . . . . . . . . . . . . . . . . 36

7.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.3 Module . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Forme trigonométrique d"un complexe . . . . . . . . . . . . . . 37

7.3.1 Écriture trigonométrique . . . . . . . . . . . . . . . . . 37

7.3.2 Calcul numérique d"un argument . . . . . . . . . . . . 38

7.4 Exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . 38

7.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.4.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.4.3 Étude de formes trigonométriques . . . . . . . . . . . . 40

7.5 Racinesn-ièmes d"un complexe . . . . . . . . . . . . . . . . . 41

7.5.1 Définition et expression . . . . . . . . . . . . . . . . . . 41

7.5.2 Extraction des racines carrées d"un complexe sous forme

algébrique . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5.3 Équation du second degré . . . . . . . . . . . . . . . . 43

8 Géométrie plane45

8.1 Repérage d"un point dans le plan . . . . . . . . . . . . . . . . 45

8.1.1 Repère cartésien . . . . . . . . . . . . . . . . . . . . . 45

8.1.2 Orientation du plan . . . . . . . . . . . . . . . . . . . . 47

8.1.3 Repérage polaire du plan . . . . . . . . . . . . . . . . . 47

8.2 Identification dePdansC. . . . . . . . . . . . . . . . . . . . 48

8.2.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . 48

TABLE DES MATIÈRESiii

8.2.2 Représentation analytique complexe d"applicationsde

PdansP. . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3 Outils géométriques . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3.1 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . 50

8.3.2 Produit mixte . . . . . . . . . . . . . . . . . . . . . . . 51

8.3.3 Un exercice corrigé . . . . . . . . . . . . . . . . . . . . 52

8.4 Étude des droites du plan . . . . . . . . . . . . . . . . . . . . 53

8.4.1 Description d"une droite dans un repère quelconque . .53

8.4.2 Étude quand le repère d"étude est orthonormé direct . 55

8.4.3 Distance d"un point à une droite . . . . . . . . . . . . . 57

8.4.4 Angles de droites . . . . . . . . . . . . . . . . . . . . . 58

8.5 Étude des cercles . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.5.1 Repérage cartésien d"un cercle . . . . . . . . . . . . . . 58

8.5.2 Autres paramétrages d"un cercle . . . . . . . . . . . . . 61

8.5.3 Intersection droite-cercle . . . . . . . . . . . . . . . . . 62

9 Coniques65

9.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.2 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.3 Hyperbole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.3.1 Paramétrages . . . . . . . . . . . . . . . . . . . . . . . 69

9.3.2 Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . 71

9.4 Parabole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10 Courbes du second degré75

10.1 Changements de repères . . . . . . . . . . . . . . . . . . . . . 75

10.1.1 Effet d"une translation . . . . . . . . . . . . . . . . . . 75

10.1.2 Effet d"une rotation . . . . . . . . . . . . . . . . . . . . 75

10.2 Étude deA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11 Géométrie dans l"espace usuel 79

11.1 Repérage dansE. . . . . . . . . . . . . . . . . . . . . . . . . 79

11.1.1 Repère cartésien . . . . . . . . . . . . . . . . . . . . . 79

11.1.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2 Outils géométriques . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2.1 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . 80

11.2.2 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . 81

11.2.3 Produit mixte . . . . . . . . . . . . . . . . . . . . . . . 82

11.3 Plans de l"espace . . . . . . . . . . . . . . . . . . . . . . . . . 83

11.3.1 Représentation dans un repère quelconque . . . . . . . 83

11.3.2 Dans un repère orthonormé . . . . . . . . . . . . . . . 84

ivTABLE DES MATIÈRES

11.4 Droites de l"espace . . . . . . . . . . . . . . . . . . . . . . . . 85

11.4.1 Dans un repère quelconque . . . . . . . . . . . . . . . . 85

11.4.2 Distance d"un point à une droite . . . . . . . . . . . . . 87

11.4.3 Perpendiculaire commune à deux droites . . . . . . . . 88

11.5 Étude des sphères . . . . . . . . . . . . . . . . . . . . . . . . . 89

12 Groupes, anneaux, corps93

12.1 Lois de composition . . . . . . . . . . . . . . . . . . . . . . . . 93

12.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . 93

12.1.2 Propriétés des lois de composition internes . . . . . . .93

12.1.3 Élements remarquables d"un ensemble . . . . . . . . . 94

12.1.4 Propriétés des lois associatives . . . . . . . . . . . . . . 95

12.1.5 Notations multiplicatives . . . . . . . . . . . . . . . . . 95

12.1.6 Notations additives . . . . . . . . . . . . . . . . . . . . 96

12.2 Groupes et morphismes de groupes . . . . . . . . . . . . . . . 96

12.3 Sous-groupes . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

12.4 Structure d"anneau et de corps . . . . . . . . . . . . . . . . . . 99

12.4.1 Définitions et exemples . . . . . . . . . . . . . . . . . . 99

12.4.2 Règles de calculs dans un anneau . . . . . . . . . . . . 100

13 Résolution de systèmes linéaires 103

13.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13.2 Pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . 104

13.2.1 Opération de Gauss . . . . . . . . . . . . . . . . . . . . 104

13.2.2 Quelques exemples . . . . . . . . . . . . . . . . . . . . 105

13.3 Compléments pour limiter les calculs . . . . . . . . . . . . . . 106

13.4 Compatibilité d"un système linéaire . . . . . . . . . . . . . . .107

14 Structure d"espace vectoriel 109

14.1 Présentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

14.2 Sous-espaces vectoriels . . . . . . . . . . . . . . . . . . . . . . 111

14.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 111

14.2.2 Stabilité de la notion de sous-espace vectoriel . . . .. 112

14.2.3 Somme de sous-espaces vectoriels . . . . . . . . . . . . 114

14.3 Applications linéaires . . . . . . . . . . . . . . . . . . . . . . . 116

14.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . 116

14.3.2 Image directe et réciproque de sous-espaces vectoriels . 118

14.3.3 Équations linéaires . . . . . . . . . . . . . . . . . . . . 118

14.3.4 Structure deL(E,E?) . . . . . . . . . . . . . . . . . . . 119

14.4 Liens entre applications linéaires et sommes directes. . . . . . 120

14.4.1 Construction d"une application linéaire . . . . . . . . .120

TABLE DES MATIÈRESv

14.4.2 Projecteurs d"un espace vectoriel . . . . . . . . . . . . 121

14.4.3 Symétries d"unK-espace vectoriel . . . . . . . . . . . . 123

15 Familles de vecteurs125

15.1 Décomposition d"un vecteur . . . . . . . . . . . . . . . . . . . 125

15.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . 125

15.1.2 Familles génératrices . . . . . . . . . . . . . . . . . . . 125

15.1.3 Familles libres . . . . . . . . . . . . . . . . . . . . . . . 126

15.2 Bases d"un espace vectoriel . . . . . . . . . . . . . . . . . . . . 128

15.2.1 Définition et exemples . . . . . . . . . . . . . . . . . . 128

15.2.2 Existence de base . . . . . . . . . . . . . . . . . . . . . 128

15.2.3 Notion de dimension . . . . . . . . . . . . . . . . . . . 129

15.2.4 Théorème fondamental . . . . . . . . . . . . . . . . . . 131

15.3 Étude pratique d"une famille de vecteurs . . . . . . . . . . . .132

15.4 Systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . . 134

16 Applications linéaires en dimension finie 137

16.1 Image d"une famille de vecteurs . . . . . . . . . . . . . . . . . 137

16.1.1 Deux propositions . . . . . . . . . . . . . . . . . . . . . 137

16.1.2 Image d"une base . . . . . . . . . . . . . . . . . . . . . 138

16.1.3 Théorème fondamental . . . . . . . . . . . . . . . . . . 139

16.2 Calcul de dimensions . . . . . . . . . . . . . . . . . . . . . . . 140

16.2.1 Résultats généraux et applications directes . . . . . .. 140

16.2.2 Étude des suites récurrentes linéaires . . . . . . . . . . 140

16.3 Rang d"une application linéaire . . . . . . . . . . . . . . . . . 142

16.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . 142

16.3.2 Théorème du rang . . . . . . . . . . . . . . . . . . . . 142

16.3.3 Équations d"hyperplans . . . . . . . . . . . . . . . . . . 143

16.4 Description analytique d"une application linéaire . .. . . . . . 144

16.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 144

16.4.2 Usage d"une représentation analytique . . . . . . . . . 145

16.4.3 Opérations sur les applications linéaires . . . . . . . .. 147

17 Sous-espaces vectoriels d"un espace vectoriel de dimension

finie151

17.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

17.1.1 Dimension d"un sous-espace vectoriel . . . . . . . . . . 151

17.1.2 Représentation d"un sous-espace vectoriel . . . . . . .. 152

17.2 Somme de sous-espaces vectoriels . . . . . . . . . . . . . . . . 152

17.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . 152

17.2.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 155

viTABLE DES MATIÈRES

18 Calcul matriciel157

18.1 Vocabulaire général . . . . . . . . . . . . . . . . . . . . . . . . 157

18.2 Opérations sur les matrices . . . . . . . . . . . . . . . . . . . . 158

18.2.1 Addition et produit par un scalaire . . . . . . . . . . . 158

18.2.2 Multiplication de deux matrices . . . . . . . . . . . . . 158

quotesdbs_dbs3.pdfusesText_6
[PDF] 54p235 A rendre lundi 21 septembre 2nde Mathématiques

[PDF] 55 compétences bac pro ga PDF Cours,Exercices ,Examens

[PDF] 58p 88 (livre hyperbole seconde , edition nathan ) DM 2nde Mathématiques

[PDF] 59 p 120 transmath édition 2008 3ème Mathématiques

[PDF] 5e Chimie Interpréter une experience 4ème Autre

[PDF] 5E Chimie: Interpréter une expérience 4ème Chimie

[PDF] 5e combat entre 2 chevaliers PDF Cours,Exercices ,Examens

[PDF] 5e déclinaison 4ème Latin

[PDF] 5e LE COMPTE EST BON 5ème Mathématiques

[PDF] 5ème devoir de français (CNED) , jai du mal ? répondre ? une question maider si possible 3ème Français

[PDF] 5eme expression ecrite cned francais devoir9 5ème Français

[PDF] 5éme HISTOIRE :regards sur l afrique 6ème Histoire

[PDF] 5éme pièce pour piano opus 23 (1923) Arnold Schoenberg 3ème Musique

[PDF] 5ème pièce pour piano opus 23, HISTOIRE DES ARTS 3ème Musique

[PDF] 5eme republique francaise PDF Cours,Exercices ,Examens