[PDF] Electrochim Electrochimie 7 ctrode reçoit des é





Previous PDF Next PDF



LA COORDINATION

Lorsque le disjoncteur aval B est un appareil limiteur le courant de court-circuit est limité en durée et en amplitude. Il y a alors sélectivité totale si le 



Protection contre les surcharges et les courts-circuits

le disjoncteur ne coupe que le circuit concerné pour assurer la protection commutation et l'intensité du courant ... d'une limitation de courant active.



Prescriptions des distributeurs délectricité (PDIE) CH

19 avr. 2016 Si l'on fait usage d'un coupe-circuit à fusibles on choisira le modèle 25 A/500 V plombable. Il faut tenir des conditions particulières du GRD.



CLACC Leman

9 févr. 2008 Dans le cas d'un lotissement clos ne permettant pas l'accès permanent aux coupe-circuits principaux et raccordés au réseau à basse tension de ...



guide des bonnes pratiques des clôtures électriques

Quand le circuit est ouvert la résistance est infinie car l'air est isolant. consomme une intensité de : ... aux coupe-gorges et aux.



VARIATEURS DE VITESSE POUR MOTEUR À AIMANTS

Limitation de l'intensité pour la conduite ainsi que le freinage par régénération. Le circuit de défaut de l'accélérateur coupe le variateur si le.



Manuel pratique de léclairage

Smel(?) = Limitation de la mélatonine avec les cellules ganglionnaires photosensibles L'intensité lumineuse décrit la quantité de lumière émise.



Untitled

délivrant une tension efficace de 230 V. Calcule l'intensité efficace du courant qui traverse son filament. ? Limitation de l'intensité : le coupe-circuit.



Electrochim Electrochimie

7 ctrode reçoit des électrons de anode lectrode fournit des électrons cathode. sité uniforme dans le circuit potentiel »



Enedis-NOI-RES_07E.pdf

1 déc. 2005 Le disjoncteur de branchement est un appareil à fonctions multiples qui assure : ? la protection contre les courts-circuits. ? la protection ...

Illustration de la couche de Nernst /

Cours de chimie de

llustration de la couche de Nernst / L"actualité chimique - janvier 2003

Cours de chimie de seconde année P

janvier 2003 seconde année PSI

) !30%#4 #).%4)15% $%3 2%!#4)/.3 %,%#42/#()-)15%3 ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

ΐȁ ,! 2%!#4)/. %,%#42/#()-)15% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

,! 6)4%33% $% ,! 2%!#4)/. %,%#42/#()-)15% %4 ,! 2%,!4)/. !6%# ,Ȍ).4%.3)4% )ȁ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Δ

!ȁ ,! 2%!#4)/. %45$)%% Δ "ȁ 2%,!4)/. %.42% ,! 6)4%33% 6 %4 ,Ȍ).4%.3)4% Ε #ȁ #/.6%.4)/. 0/52 ,Ȍ).4%.3)4% ) Ε

)) %45$% $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

ΐȁ -/.4!'% %80%2)-%.4!, ! Β %,%#42/$%3ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

"ȁ 3934%-% 2!0)$% ΐΐ #ȁ 3934%-% ,%.4 ΐΑ $ȁ ./4)/. $% 3524%.3)/. %,%#42/#()-)15% ΐΒ %ȁ #/-0/24%-%.4 $)&&%2%.4 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% ΐΖ &ȁ 0!,)%2 $% $)&&53)/. ΐΗ !ȁ !$$)4)6)4% $%3 ).4%.3)4%3 Αΐ "ȁ 02%6)3)/.3 $%3 2%!#4)/.3 ΑΑ

))) %45$% $% ,Ȍ%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

ΐȁ #/.$)4)/. $͒%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

15%,,%3 %30%#%3 3/.4 %,%#42/,93%%3 Ȉ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΗ

Situation du chapitre dans le programme :

Dans la première partie, nous étudions l"allure générale des courbes i-E en distinguant les systèmes dits rapides et les systèmes dits lents. Dans une seconde

partie, les résultats généraux énoncés lors de l"étude des courbes i-E seront appliqués à

l"électrolyse. n e-

ELECTRODE

transfert de charge

électrode

Ox adsorbé

Red adsorbé

Ox désorbé

Red désorbéOx solution

Red solution

REGION PROCHE DE LA

SURFACE DE L"ELECTRODESOLUTION

transfert de matière"double couche" solution

Ox solution

Red solution

SOLUTION

solution e- e- Ox Ox Red réduction

électrode

solution

3®¨³ Ȁ ¨ ώ ȃ ȁ&ȁ£

Ox Red oxydation

Réduction

ȁ&ȁ£xxxxȝ£³ ώ ȃ ȁ&ȁµ

Réduction

Ȁ ¨ ώ £1ȝ£³

Par convention :

Le courant est toujours compté

ELECTRODE ¾¾® SOLUTION

e-e- Ox Red oxydation i > 0 compté positivement dans le sens :

SOLUTION

Ox Red oxydation

Si l"électrode est siège d"une

OXYDATION :

l"électrode fonctionne en dire si elle est le siège d"une les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le sens solution ¾¾® l"intensité correspondant à transfert est positive

Ainsi pour une

oxydation à l"anode : ia > 0

Si l"électrode est siège d"une

REDUCTION :

l"électrode fonctionne en

à-dire si elle est le siège d"une

réduction, des électrons passent de l"électrode vers l"espèce en solution

Ox1 ; la charge dq traversant l"interface

Si l"électrode est siège d"une

l"électrode fonctionne en anode, c"est-à- dire si elle est le siège d"une oxydation, les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le

¾¾® électrode et

l"intensité correspondant à ce transfert est positive. oxydation à l"anode :

Si l"électrode est siège d"une

l"électrode fonctionne en cathode, c"est- dire si elle est le siège d"une , des électrons passent de l"espèce en solution ; la charge dq traversant l"interface e-e- Ox Red réduction Ox Red réduction i < 0 dans le sens électrode ¾¾® solution est négative et l"intensité correspondant à ce transfert est négative : i c < 0.

REM : i = - n.F.dx/dt = - n.F.[dx/dt)

Red - dx/dt)Ox] = - n.F.[vRed - vOx] = - n.F.vRed + n.F. vOx i = - n.F.vRed + n.F. vOx = ic + ia avec : ic = - n.F.vRed < 0 et ia = + n.F. vOx > 0 #/.34!43 Ȁ oxydation de Red réduction de Ox oxydation de Red réduction de Ox

0 ± £Î¥¨¨³¨®Ǿ "

Ox

RedRedOx

ia i / mA

Eéq

hhhhasurtension faible fort courant branche anodique branche cathodique

3¨¦¨¥¨¢ ³¨® Ȁ

E / V surtension faible fort courant branche anodique i / mA hhhh Red Red Ox branche cathodique iC

Eéq

hhhhca ia surtension fortefort courant OxRed branche anodique E / V fort courant d"oxydation fort courant de réduction hhhhchhhhaVa Vc

0®´± ´

$)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% hhhha branches cathodiquesbranche anodique

O2(g)H2O

H2(g)H+

HgFePt

pH = 0

E par rapport à l"ECS

Pt hhhhchhhhc iDc branche anodique i / mA

Eéq

Fe2+Fe3+

Fe2+Fe3+

branche cathodique iDa = kDFe2+.Fe2+ sol iDc = kDFe3+.Fe3+ sol ),,5342!4)/. Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche cathodique i / mA iDc Ag(s) branche anodique

Eéq

AgAg(s)

Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 Ag+ branche anodique Ag+ Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche anodique d"une espèce oxydable soluble ia,l branche cathdique d"une espèce réductrice soluble ic,l %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce branche anodique d"une espèce oxydable insoluble branche cathdique d"une espèce branche cathodique d"unequotesdbs_dbs47.pdfusesText_47
[PDF] Limite

[PDF] limite 0/infini

[PDF] limite calcul

[PDF] limite conventionnelle d'élasticité

[PDF] limite cosinus

[PDF] limite cosinus en l'infini

[PDF] limite d une fonction ? deux variables

[PDF] Limite d'intégrale à calculer

[PDF] limite d'une fonction

[PDF] limite d'une fonction composée

[PDF] limite d'une fonction en + l'infini et -l'infini

[PDF] Limite d'une fonction racine carré

[PDF] Limite d'une suite

[PDF] Limite d'une suite : Vraix-Faux Justifier

[PDF] Limite d'une suite définie par récurrence