[PDF] Limites et continuité f(x) tend vers 0





Previous PDF Next PDF



Limites et asymptotes

1- Limite infinie en l'infini. Lorsque f (x) peut être rendu supérieur à tout réel positif A pour x suffisamment grand on dit que f (x) tend vers +? 



Limites et continuité

f(x) tend vers 0 quand x tend vers 0. La convergence peut se caractériser en termes de suites. Théorème 1. Soit a un réel et f une fonction définie au voisinage 



Limites et asymptotes

Remarque : Une fonction n'a pas nécessairement de limite (finie ou infinie) lorsque x tend vers. +? : f définie sur R par f(x) = cos(x) n'a de limite ni en 



MATHS 110c cHAPITRE III : NOTIONS DE LIMITES Nous allons

E tudier la limite lorsque x tend vers l'infini



Intégrales convergentes

09?/05?/2012 intégrer tend vers l'infini aux bornes de l'intervalle. ... converge si la limite quand x tend vers +? de la primitive ? x.



Corrigé du TD no 9

donc cette quantité tend vers 0 quand x tend vers +?. On en déduit que : lim x?+? x cos(ex) x2 + 1. = 0. b) Comme sin x est borné x ? sin x tend vers 



Limites de fonctions

limite de somme produit



Recherche de la limite lorsque x tend vers 0 de la fonction f(x) =

rechercher cette dérivée on a utilisé la lim . Cette démonstration est donc difficilement acceptable. Page 3. Limite de sinx / x. 3.



LIMITES DE FONCTIONS

La distance MN tend vers 0 quand x tend vers - ? . La droite d'équation y = L est asymptote horizontale à la courbe. Cf en - ? .



Sur les théorèmes inverses des procédés sommation des séries

pour x appartenant à Tensemble & et tend vers la même limite quand x tend appartient à Pensemble & et qui tend vers x^ quand t tend vers -4- oo (2).

Université Joseph Fourier, Grenoble Maths en Ligne

Limites et continuité

Bernard Ycart

Vous avez déjà une compréhension intuitive de ce qu"est la limite d"une fonction. Ce chapitre n"en est pas moins le plus important de votre cours d"analyse. C"est l"occasion ou jamais de comprendre les epsilons! Votre travail devrait être facilité si vous avez déjà assimilé le chapitre sur les suites, mais ce n"est pas indispensable.

Table des matières

1 Cours 1

1.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Limites unilatérales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Convergence des fonctions monotones . . . . . . . . . . . . . . . . . . . 10

1.6 Comparaison de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Limites à connaître . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Continuité en un point . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 Continuité sur un intervalle . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Entraînement 22

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Compléments 42

3.1 Cauchy et les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Continuité uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Arguments de continuité . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Discontinuités des fonctions monotones . . . . . . . . . . . . . . . . . . 48

3.5 Pourquoi définir la continuité? . . . . . . . . . . . . . . . . . . . . . . . 49

8 novembre 2011

Maths en LigneLimites et continuitéUJF Grenoble1 Cours

1.1 Vocabulaire

UnefonctionfdeRdansRest définie par songraphe: c"est un sous-ensembleΓ deR×R, tel que pour toutx?R, au plus un réelyvérifie(x,y)?Γ. S"il existe, ce réelyest l"imagedexet est notéf(x). L"ensemble desxqui ont une image parf est ledomaine de définitiondef. Nous le noteronsDf. La notation standard est la suivante :f D f-→R x?-→f(x) SiAest un sous-ensemble deDf, l"imagedeA, notéef(A), est l"ensemble des images des éléments deA. f(A) ={f(x), x?A} SiBest un sous-ensemble deR, l"image réciproquedeB, notéef-1(B), est l"ensemble desantécédentsdes éléments deB. f -1(B) ={x? Df, f(x)?B} Attention à la notationf-1:f-1(B)est défini même sifn"est pas bijective. Par exemple, sifest l"application valeur absolue,x?→ |x|, f(]-2,1[) = [0,2[etf-1([1,2]) = [-2,-1]?[1,2] Définition 1.Soitfune fonction, de domaine de définitionDf, à valeurs dansR.

On dit quefest :

•constantesi?x,y? Df, f(x) =f(y) •croissantesi?x,y? Df,(x6y) =?(f(x)6f(y)) •décroissantesi?x,y? Df,(x6y) =?(f(x)>f(y)) •strictement croissantesi?x,y? Df,(x < y) =?(f(x)< f(y)) •strictement décroissantesi?x,y? Df,(x < y) =?(f(x)> f(y)) •monotonesi elle est croissante ou décroissante •majoréesif(Df)est majoré •minoréesif(Df)est minoré •bornéesif(Df)est borné Le plus souvent, ces définitions s"appliqueront à desrestrictionsdefà un intervalle

Iinclus dansDf.

f |I

I-→R

x?-→f(x) 1

Maths en LigneLimites et continuitéUJF GrenobleDéfinition 2.Soitfune fonction deRdansRetx? Df. SoitPune des propriétés

de la définition 1. On dit quefpossède la propriétéP •au voisinage dexs"il existe un intervalle ouvertIcontenantx, tel que la restric- tion defàIpossède la propriétéP. •au voisinage de+∞s"il existe un réelAtel que la restriction defà]A,+∞[ possède la propriétéP. •au voisinage de-∞s"il existe un réelAtel que la restriction defà]- ∞,A[ possède la propriétéP. Par exemple, la fonction valeur absoluex?→ |x|, est : •décroissante au voisinage de-∞ •décroissante au voisinage de-1 •croissante au voisinage de1 •croissante au voisinage de+∞ •bornée au voisinage de0 Les opérations sur les réels s"étendent aux fonctions de manière naturelle. •addition :f+g D f∩ Dg-→R x?-→(f+g)(x) =f(x) +g(x) •multiplication : fg D f∩ Dg-→R x?-→(fg)(x) =f(x)g(x) •multiplication par un réel : λf D f-→R x?-→(λf)(x) =λ(f(x)) •comparaison : f6g?? ?x? Df∩ Dg, f(x)6g(x) L"addition a les mêmes propriétés que celle des réels : l"ensemble des fonctions deR dansRmuni de l"addition est un groupe commutatif. Muni de l"addition et de la multiplication par un réel, c"est un espace vectoriel. Cependant, le produit de deux fonctions peut être nul sans que les deux fonctions le soient.

1.2 Convergence

Nous commençons par la convergence en un point, vers une limite finie. Afin d"éviter les cas pathologiques, nous supposerons toujours que les fonctions étudiées sont définies au voisinagedu point considéré (cf. définition 2). 2

Maths en LigneLimites et continuitéUJF GrenobleDéfinition 3.Soitaun réel etfune fonction définie au voisinage dea, sauf peut-être

ena, et à valeurs dansR. Soitlun réel. On dit queftend verslquandxtend vers a, ou quefa pour limitelenasi ?ε >0,?η >0,(0<|x-a|6η) =?(|f(x)-l|6ε)(1)

On notera :

lim x→af(x) =lou bienf(x)--→x→al . Tout intervalle centré enlcontient toutes les valeursf(x), pourxsuffisamment proche dea. Observez quefpeut très bien ne pas être définie ena, et admettre quand même une limite ena. Voici un premier exemple (figure 1). f R ?-→R x?-→f(x) =xsin(1/x)

Pour toutx?R?,-16sin(1/x)61. Donc si|x|6εetx?= 0, alors|xsin(1/x)|6ε:-0.30 -0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12 0.18 0.24 0.30

f(x) x f(x)=x sin(1/x)

Figure1 - Graphe de la fonctionx?→xsin(1/x).

f(x)tend vers0quandxtend vers0. La convergence peut se caractériser en termes de suites. Théorème 1.Soitaun réel etfune fonction définie au voisinage dea, sauf peut-être ena, et à valeurs dansR. Soitlun réel. La fonctionftend verslquandxtend vers a, si et seulement si, pour toute suite(xn), à valeurs dansDf\{a}et convergeant vers a, la suite(f(xn))converge versl. Démonstration: Montrons d"abord la condition nécessaire : siftend verslau sens de la définition 3, alors pour toute suite(xn)convergeant versa, la suite(f(xn))tend versl. 3

Maths en LigneLimites et continuitéUJF GrenobleSoitε >0, etηtel que si0<|x-a|6η, alors|f(x)-l|< ε. Soit(xn)une suite

deDf\{a}convergeant versa. Il existen0tel que pour toutn>n0,0<|xn-a|6η. Mais0<|xn-a|6ηentraîne|f(xn)-l|6ε, par hypothèse. Donc la suite(f(xn)) converge versl. Voici maintenant la condition suffisante, dont nous allons démontrer la contraposée : sifne tend pas versl, alors il existe une suite(xn)convergeant versatelle que la suite (f(xn))ne tend pas versl. Ecrivons donc quefne tend pas versl. ?ε >0,?η >0,?x? Df,(0<|x-a|6η)?(|f(x)-l|> ε)

Posonsη= 1/n:

?x? Df,(0<|x-a|61/n)?(|f(x)-l|> ε) Notonsxnun des réels dont l"existence est affirmée ci-dessus. La suite(xn)converge versacar|xn-a|<1/n, pourtant la suite(f(xn))ne tend pas versl, car|f(xn)-l|>ε. Voici deux conséquences faciles de la définition. Proposition 1.Soitfune fonction deRdansRetaun réel.

1. Sif(x)converge quandxtend versa, alors la limite est unique.

2. Sia? Dfet sif(x)converge versl?Rquandxtend versa, alorsfest bornée

au voisinage dea.

Démonstration:

1. Supposons quefvérifie la définition 3 pour deux réelsletl?distincts. Posons

ε=|l-l?|/3. Alors les intervalles[l-ε,l+ε]et[l?-ε,l?+ε]sont disjoints. Pour xsuffisamment proche dea, le réelf(x)devrait appartenir aux deux intervalles

à la fois : c"est impossible.

2. Fixonsε >0, etηtel quef(x)reste dans l"intervalle]l-ε,l+ε[pour tout

0<|x-a|6η. Alors :

?x?[a-η,a+η]∩ Df, f(x)6l+ε et ?x?[a-η,a+η]∩ Df, f(x)>l-ε Doncfest majorée et minorée au voisinage dea. 4 Maths en LigneLimites et continuitéUJF Grenoble1.3 Opérations sur les limites La notion de limite se combine avec les opérations sur les fonctions comme on

l"attend. Nous énoncerons les résultats dans le théorème 2. Ils peuvent se déduire des

résultats analogues sur les suites numériques, via le théorème 1. Nous conseillons au lecteur de le vérifier, puis de comparer cette approche avec les démonstrations directes qui suivent. Elles sont basées sur le lemme suivant. Lemme 1.Soitaun réel. Soientfetgdeux fonctions deRdansR, définies au voisinage dea, sauf peut-être ena. 1. Si lim x→af(x) = limx→ag(x) = 0 alors lim x→a(f+g)(x) = 0

2. Sifest bornée au voisinage deaet

lim x→ag(x) = 0, alors lim x→a(fg)(x) = 0

Démonstration:

1. Fixonsε >0. Soitη1tel que pour0<|x-a|6η1,|f(x)|6ε/2. De même, soitη2

tel que pour0<|x-a|6η2,|g(x)|< ε/2. Alors, pour0<|x-a|6min{η1,η2}, |(f+g)(x)|=|f(x) +g(x)|6|f(x)|+|g(x)|6ε2 +ε2 d"où le résultat.

2. Soitη1etMdeux réels tels que

?x?[a-η1,a+η1],|f(x)|6M . Fixonsε >0. Soitη2tel que pour0<|x-a|6η2,|g(x)|6ε/M. Alors, pour

0<|x-a|6min{η1,η2},

|(fg)(x)|=|f(x)||g(x)|6MεM d"où le résultat. Théorème 2.Soitaun réel. Soientfetgdeux fonctions deRdansR, définies sur un intervalle ouvert autour dea. 5 Maths en LigneLimites et continuitéUJF Grenoble1. Si lim x→af(x) =letlimx→ag(x) =l? alors lim x→a(f+g)(x) =l+l? 2. Si lim x→af(x) =letlimx→ag(x) =l? alors lim x→a(fg)(x) =ll? Démonstration: Pour nous ramener au lemme 1, observons d"abord quef(x)tend verslquandxtend versa, si et seulement sif(x)-ltend vers0.

1. Quandxtend versa,f(x)tend versletg(x)tend versl?, doncf(x)-letg(x)-l?

tendent vers0. Donc f(x)-l+g(x)-l?= (f+g)(x)-(l+l?) tend vers0d"après le point1.du lemme 1. D"où le résultat.

2. Nous voulons montrer quef(x)g(x)-ll?tend vers0. Ecrivons :

f(x)g(x)-ll?=f(x)(g(x)-l?) + (f(x)-l)l?. Il suffit de montrer séparément que les deux fonctionsf(g-l?)et(f-l)l?tendent vers0, d"après le premier point du lemme 1. Mais chacune de ces deux fonctions est le produit d"une fonction convergeant vers0par une fonction bornée au voi- sinage de0(fest bornée au voisinage de0car elle converge). D"où le résultat, par le point2.du lemme 1. Si une application est constante, sa limite en tout point est égale à cette constante. Comme cas particulier du théorème 2, sif(x)tend verslquandxtend versa, etλest un réel quelconque, alors la limite enadeλf(x)estλl. Le résultat attendu sur la composition des limites se vérifie, à un détail près. Théorème 3.Soientaetbdeux réels. Soitfetgdeux fonctions définies respective- ment au voisinage deaet au voisinage deb,gétant définie enb. On suppose : lim x→af(x) =betlimy→bg(y) =g(b). Alors lim x→ag◦f(x) =g(b). 6

Maths en LigneLimites et continuitéUJF GrenobleDémonstration: Soitεun réel strictement positif. Il existeη1>0tel que

|y-b|6η1=? |g(y)-g(b)|6ε

Il existeη2tel que

0<|x-a|6η2=? |f(x)-b|6η1

Donc :

0<|x-a|6η2=? |g(f(x))-g(b)|6ε

1.4 Limites unilatérales

Une fonctionfpeut converger vers une limite finie, comme nous l"avons vu précé- demment, ou bien+∞ou-∞. De plus les valeurs de la variable, qui approchaienta des deux côtés dans les définitions précédentes, peuvent ne l"approcher que d"un seul

côté : ce sont les notions de limite à gauche, et de limite à droite. On peut aussi cher-

cher une limite quandxtend vers+∞et-∞. Au total, ce ne sont pas moins de15 définitions différentes que nous devons donner. Vous reconnaîtrez dans ces définitions un principe général :f(x)tend versl(fini ou infini) quandxtend versa(fini ou infini), si pour tout voisinageVldel, il existe un voisinageVadeatel quef(Va\{a})?Vl. La

définition précise de la notion de voisinage relève de la topologie, et dépasse le cadre de

ce cours. Un voisinage de+∞sera compris comme un intervalle de la forme[A,+∞[. De même, un voisinage de-∞sera un intervalle de la forme]-∞,A]. Un " voisinage à gauche » d"un réelasera un intervalle du type[a-ε,a[, tandis qu"un " voisinage à droite » sera de la forme]a,a+ε]. Nous donnons les différentes définitions sous forme de tableaux. Plutôt que d"apprendre les 5 tableaux par coeur, il est conseillé d"en

comprendre le principe pour être capable de retrouver ces définitions en cas de besoin.Limites bilatérales

NotationDéfinitionExemple

lim x→af(x) =l?ε?η ,0<|x-a|6η=? |f(x)-l|6εlim x→0x= 0lim x→af(x) = +∞?A?η ,0<|x-a|6η=?f(x)>Alim x→01/|x|= +∞lim x→af(x) =-∞?A?η ,0<|x-a|6η=?f(x)6Alim x→0-1/|x|=-∞Limites à gauche

NotationDéfinitionExemple

lim x→a-f(x) =l?ε?η , a-η6x < a=? |f(x)-l|6εlim x→0-x/|x|=-1lim x→a-f(x) = +∞?A?η , a-η6x < a=?f(x)>Alim x→0--1/x= +∞lim x→a-f(x) =-∞?A?η , a-η6x < a=?f(x)6Alim x→0-1/x=-∞7 Maths en LigneLimites et continuitéUJF GrenobleLimites à droite

NotationDéfinitionExemple

lim x→a+f(x) =l?ε?η , a < x6a+η=? |f(x)-l|6εlim x→0+x/|x|= +1lim x→a+f(x) = +∞?A?η , a < x6a+η=?f(x)>Alim x→0+1/x= +∞lim x→a+f(x) =-∞?A?η , a < x6a+η=?f(x)6Alim

x→0+-1/x=-∞La limite bilatérale des sections précédentes peut se caractériser en termes de limites

à gauche et à droite.

Proposition 2.Soitfune fonction deRdansRetaun réel. La fonctionfadmetl pour limite ena, si et seulement si elle admetlpour limite à gauche et à droite ena. Démonstration: Nous le démontrons pour une limite finie. Ce qui suit est facile à

adapter à une limite infinie. La condition nécessaire est évidente au vu des définitions.

Pour la condition suffisante, supposons

lim x→a-f(x) = limx→a+f(x) =l

Fixonsε >0. Il existeη1etη2tels que

a-η16x < a=? |f(x)-l|6εeta < x6a+η2=? |f(x)-l|6ε

Prenonsη= min{η1,η2}, alors

0<|x-a|6η=? |f(x)-l|6ε .

Voici maintenant les définitions des limites en+∞et-∞.Limites en-∞NotationDéfinitionExemple

lim x→-∞f(x) =l?ε?B , x6B=? |f(x)-l|6εlim x→-∞1/x= 0lim x→-∞f(x) = +∞?A?B , x6B=?f(x)>Alim x→-∞-x= +∞lim x→-∞f(x) =-∞?A?B , x6B=?f(x)6Alim x→-∞x=-∞Limites en+∞NotationDéfinitionExemple lim x→+∞f(x) =l?ε?B , x>B=? |f(x)-l|6εlim x→+∞1/x= 0lim x→+∞f(x) = +∞?A?B , x>B=?f(x)>Alim x→+∞x= +∞lim x→+∞f(x) =-∞?A?B , x>B=?f(x)6Alim x→+∞-x=-∞8

Maths en LigneLimites et continuitéUJF GrenoblePour chacune de ces définitions, il existe une caractérisation en termes de suites, ana-

logue au théorème 1. Par exemple, la limite à gauche defenavaut-∞si et seulement si pour toute suite(xn)convergeant versaet telle que pour toutn,xn< a, la suite (f(xn))tend vers-∞. Nous laissons au lecteur le soin de démontrer, à titre d"exercice, chacune de ces caractérisations, sur le modèle du théorème 1.

En ce qui concerne les opérations, le théorème 2 s"étend aux limites à gauche, à droite,

en-∞et en+∞, sans aucune difficulté. Les seuls problèmes viennent des limites éven-

tuellement infinies. Dans le cas où les limites defetgpeuvent être infinies, différentes situations peuvent se produire pour la somme et le produit. Nous les résumons dans les tableaux 1 et 2. Dans ces deux tableaux,limdésigne indifféremment une limite bilatérale, à gauche, à droite, en-∞ou en+∞(du même type pourfetg). Les points d"interrogations sont des formes indéterminées : tous les cas sont possibles. Par exemple : •f(x) = 1/|x|,g(x) =-1/|x|:f+gtend vers0quandxtend vers0. •f(x) = 1/|x|,vn=-1/x2:f+gtend vers-∞quandxtend vers0. •f(x) = 1/|x|,g(x) = sin(1/x)-1/|x|:f+gn"a pas de limite en0.limf(x)\limg(x)l

?+∞ -∞ll+l?+∞ -∞+∞+∞+∞?-∞-∞?-∞Table1 - Limites possibles def+gen fonction des limites defetg.limf(x)\limg(x)l

?>0l?<0l= 0 +∞ -∞l >0ll ?ll?0 +∞ -∞l <0ll

?ll?0-∞+∞l= 00 0 0? ?+∞+∞ -∞?+∞ -∞-∞-∞+∞?-∞+∞Table2 - Limites possibles defgen fonction des limites defetg.

Mises à part les formes indéterminées, chacune des cases des tableaux 1 et 2 résume 5 théorèmes : un pour chacun des différents types de limites. Il est conseillé au lecteur de les démontrer, soit directement sur le modèle du théorème 2, soit en utilisant la caractérisation par les suites évoquée plus haut. 9 Maths en LigneLimites et continuitéUJF Grenoble1.5 Convergence des fonctions monotones Comme pour les suites, " la monotonie entraîne l"existence de limites ». Théorème 4.Soit]a,b[un intervalle ouvert, etfune fonction croissante sur]a,b[.quotesdbs_dbs47.pdfusesText_47
[PDF] limite racine carré en 0

[PDF] limite racine carré forme indéterminée

[PDF] limite sinus en l'infini

[PDF] limite somme suite géométrique

[PDF] limite suite

[PDF] limite suite définie par récurrence

[PDF] limite suite géométrique

[PDF] limite variation

[PDF] limite, fonction exponentielle et démonstration

[PDF] Limiter l'alcoolisme chez les jeunes

[PDF] Limiter l'atteinte à la biodiversité planétaire

[PDF] limiter le droits de greve

[PDF] Limiter les pertes d'énergie dans une habitation

[PDF] limiter nos libertés pour assurer notre sécurité?

[PDF] limites