[PDF] LIMITES DES FONCTIONS – Chapitre 2/2





Previous PDF Next PDF



LIMITES DES FONCTIONS LIMITES DES FONCTIONS

Calculer la limite de la fonction en +∞. Correction. On a : lim. →. 1. . = 0 



Limites de fonctions Limites de fonctions

Les théorèmes suivants sont très pratiques pour calculer une limite d'une fonction compliquée en la comparant à des fonctions plus simples dont on connaît la 



Les Développements Limités

cela d'après ce qui précède



Limites de fonctions

Ce qui exprime bien que la limite de f en +∞ est l. Correction de l'exercice 2 â–³. Généralement pour calculer des limites faisant intervenir des sommes de 



Chapitre 3 Dérivabilité des fonctions réelles

théorie notamment en utilisant la dérivée pour calculer une limite dans le cas de formes On voudrait `a présent calculer les dérivées des fonctions usuelles.



Limites – Corrections des Exercices

Déterminer les limites des fonctions suivantes aux valeurs demandées (en distinguant si besoin



Chapitre 2 - Limites et continuité pour une fonction de plusieurs Chapitre 2 - Limites et continuité pour une fonction de plusieurs

Limites et continuité pour une fonction de plusieurs variables. Puisque la L2 Parcours Spécial - S3 - Calcul différentiel et intégral. Exemple 2.21. On ...



Corrigé du TD no 9

petites de ε quand on manipule la définition de limite d'une fonction en un point. De plus on calcule que : f3(x) = 1. 1 − x. −. 2. 1 − x2. = 1 + x − 2.



ficall.pdf

Fonction continue par morceaux. 362. 72 123.06 Fonctions équivalentes ... Calculer les limites des suites (u2n)n et (u2n+1)n. Indication â–½. Correction ...



LIMITES DES FONCTIONS

On dit que la fonction admet pour limite L en +? si ( ) est aussi proche de L que l' Partie 4 : Calculs de limites par composition et comparaison.



Limites de fonctions

Les théorèmes suivants sont très pratiques pour calculer une limite d'une fonction compliquée en la comparant à des fonctions plus simples dont on connaît la 



Les Développements Limités

C'est clair il suffit de calculer la limite. Ce critère sert généralement à démontrer Calculons le DL de la fonction f(x) = cos x à l'ordre 3 au point ?.



Feuille dexercices 10 Développements limités-Calculs de limites

Etablir pour chacune des fonctions proposées ci-dessous un Calculer un développement limité de la fonction pour chacun des cas suivants :.



LIMITES DES FONCTIONS (Chapitre 2/2)

Calculer la limite de la fonction f en . On a : lim. ? E. 1. . = 0 donc lim.



Limites de fonctions

Ce qui exprime bien que la limite de f en +? est l. Correction de l'exercice 2 ?. Généralement pour calculer des limites faisant intervenir des sommes de 



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Montrer que ces fonctions sont de classe C1 sur R ou R2 et calculer leurs dérivées (partielles) en fonction des dérivées partielles de f. Exercice 17. On 



Corrigé du TD no 9

petites de ? quand on manipule la définition de limite d'une fonction en un point. Revenons à nos moutons : si l'on suppose que 1 ? ? > 0 alors.



Fiche technique sur les limites

Comparaison de la fonction logarithme avec la fonction puissance en +? et en 0. En + ? lim x?+? ln(x) x. = 



ficall.pdf

69 123.03 Limite de fonctions 82 125.04 Développements limités implicites ... Calculer les restes de la division euclidienne de 14

1

LIMITES DES FONCTIONS - Chapitre 2/2

Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM

Partie 1 : Limite d'une fonction composée

Méthode : Déterminer la limite d'une fonction composée

Vidéo https://youtu.be/DNU1M3Ii76k

Soit la fonction í µ définie sur !

;+∞! par : í µ 2- 1 Calculer la limite de la fonction í µ en +∞.

Correction

On a : lim

1 =0, donc lim 2- 1 =2 Donc, comme limite d'une fonction composée : lim 2- 1 2 En effet, si í µâ†’+∞, on a : í µ=2- 1 →2 et donc : lim 2.

Partie 2 : Limites et comparaisons

1) Théorèmes de comparaison

Théorèmes : Soit í µ et í µ deux fonctions définies sur un intervalle í µ= - Si pour tout í µ de í µ, on a : 9 lim alors lim =+∞ (Fig.1) - Si pour tout í µ de í µ, on a 9 lim alors lim =-∞ (Fig.2) Remarque : On obtient des théorèmes analogues en -∞.

Figure 1

Par abus de langage, on

pourrait dire que la fonction í µ pousse la fonction í µ vers +∞ pour des valeurs de í µ suffisamment grandes.

Figure 2

2

Démonstration dans le cas de la figure 1 :

lim =+∞ donc tout intervalle , í µ réel, contient toutes les valeurs de í µ(í µ) dès que í µ est suffisamment grand, soit : í µ Donc dès que í µ est suffisamment grand, on a : í µ

Et donc lim

2) Théorème d'encadrement

Théorème des gendarmes :

Soit í µ, í µ et â„Ž trois fonctions définies sur un intervalle í µ=

Si pour tout í µ de í µ, on a : >

lim lim alors lim Remarque : On obtient un théorème analogue en -∞.

Par abus de langage, on pourrait dire que les fonctions í µ et â„Ž (les gendarmes) se resserrent

autour de la fonction í µ pour des valeurs de í µ suffisamment grandes pour la faire tendre vers

la même limite. Ce théorème est également appelé le théorème du sandwich. Méthode : Utiliser les théorèmes de comparaison et d'encadrement

Vidéo https://youtu.be/OAtkpYMdu7Y

Vidéo https://youtu.be/Eo1jvPphja0

Calculer : 1) lim

í µ+siní µ 2) lim í µcosí µ 2 +1 3

Correction

1) • lim

siní µ n'existe pas. Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

•lim í µ-1=+∞ donc d'après le théorème de comparaison : lim í µ+siní µ=+∞

2) • lim

cosí µ n'existe pas. Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Et donc :

+1 í µcos(í µ) +1 +1 +1 F G 1 lim 1 =0 donc lim 1

Et donc : lim

1 1 =0, comme limite d'un quotient.

On a donc :lim

2 +1 =lim 2 +1 =0 D'après le théorème des gendarmes, on a : lim í µcos(í µ) 2 +1 =0.

Partie 3 : Cas de la fonction exponentielle

1) Limites aux bornes

Propriétés :

lim =+∞ et lim =0

Démonstration au programme :

Vidéo https://youtu.be/DDqgEz1Id2s

- La suite est une suite géométrique de raison í µ>1. 4

Donc, on a : lim

Si on prend un réel í µ quelconque (aussi grand que l'on veut), il existe un rang í µ

à partir

duquel tous les termes de la suite dépassent í µ, soit : í µ La fonction exponentielle étant strictement croissante, on a également, pour tout

Donc, pour tout í µ>í µ

, on a : í µ

Ainsi, tout intervalle

contient toutes les valeurs de í µ , dès que í µ est suffisamment grand.

Soit : lim

-lim =lim =lim , en posant í µ=-í µ

Or, lim

=+∞, donc : lim =0, comme limite d'un quotient.

Soit : lim

=0. Méthode : Déterminer la limite d'une fonction contenant des exponentiels

Vidéo https://youtu.be/f5i_u8XVMfc

Calculer les limites suivantes :

a) lim b) lim 1

Correction

a) lim -3í µ=-∞ • Donc, comme limite d'une fonction composée : lim =0 En effet, si í µâ†’+∞, on a : í µ=-3í µâ†’-∞ et donc : lim =0. • lim • Comme limite d'une somme : lim b) lim 1 =0, donc : lim 1- 1 =1 Donc, comme limite d'une fonction composée : lim

2) Croissance comparée des fonctions exponentielles et puissances

Exemple :

Observons la fonction exponentielle et la fonction puissance í µâŸ¼í µ dans différentes fenêtres graphiques. 5 Dans cette première fenêtre, la fonction puissance semble l'emporter devant la fonction exponentielle. Mais on constate que pour í µ suffisamment grand, la fonction exponentielle dépasse la fonction puissance í µâŸ¼í µ Remarque : Dans le cas de limites infinies, la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide.

Propriétés (croissances comparées) :

a) lim =+∞ et pour tout entier í µ, lim b) lim =0 et pour tout entier í µ, lim =0

Démonstration au programme du a :

Vidéo https://youtu.be/_re6fVWD4b0

- On pose í µ

On a : í µ

6 On calcule la dérivée de la dérivée í µ -1.

Et on note í µ

-1

Pour tout í µ strictement positif, í µ

-1>0.

On dresse alors le tableau de variations :

On en déduit que pour tout í µ strictement positif, í µ >0 et donc í µ

Soit encore :

Comme lim

2 =+∞, on en déduit par comparaison de limites que lim - Dans le cas général, on a :

Fí µ

G =N O =N 1 O

Or : lim

=+∞ car on a vu que lim

Donc : lim

=+∞, car í µ est positif.

Et donc lim

Q R =+∞, comme produit de í µ limites infinies.

Soit : lim

Méthode : Calculer une limite par croissance comparée

Vidéo https://youtu.be/GoLYLTZFaz0

Calculer la limite suivante : lim

2

Correction

Le dénominateur comprend une forme indéterminée de type "∞-∞".

Levons l'indétermination :

1+ 1- 1+ 1- 7 Par croissance comparée : lim =+∞ et de même : lim 2

Donc, comme inverse de limites : lim

=lim 2 =0, donc lim 1+ =lim 1- 2 =1. Donc, lim 1+ 1- 2 1 1 =1 et donc lim 2 =1.quotesdbs_dbs47.pdfusesText_47
[PDF] Limites de fonctions

[PDF] Limites de fonctions (Terminale)

[PDF] Limites de fonctions - Reconnaître des courbes (problème pour trouver l'extremum)

[PDF] Limites de fonctions - reconnaître des courbes - (problème pour trouver l'extremum)

[PDF] limites de fonctions cours

[PDF] limites de fonctions exercices corrigés

[PDF] limites de fonctions formes indeterminées

[PDF] limites de fonctions rationnelles exercices

[PDF] Limites de fonctions svp

[PDF] limites de fonctions terminale s

[PDF] limites de fonctions terminale s exercices

[PDF] Limites de l'organisme ? l'effort -VO2max

[PDF] limites de l'étude mémoire

[PDF] limites de l'onu

[PDF] limites de la croissance économique cours