[PDF] Chapitre 1 - Fonctions de plusieurs variables. Limites dans R





Previous PDF Next PDF



LIMITES DES FONCTIONS LIMITES DES FONCTIONS

Calculer la limite de la fonction en +∞. Correction. On a : lim. →. 1. . = 0 



Limites de fonctions Limites de fonctions

Les théorèmes suivants sont très pratiques pour calculer une limite d'une fonction compliquée en la comparant à des fonctions plus simples dont on connaît la 



Les Développements Limités

cela d'après ce qui précède



Limites de fonctions

Ce qui exprime bien que la limite de f en +∞ est l. Correction de l'exercice 2 △. Généralement pour calculer des limites faisant intervenir des sommes de 



Chapitre 3 Dérivabilité des fonctions réelles

théorie notamment en utilisant la dérivée pour calculer une limite dans le cas de formes On voudrait `a présent calculer les dérivées des fonctions usuelles.



Limites – Corrections des Exercices

Déterminer les limites des fonctions suivantes aux valeurs demandées (en distinguant si besoin



Chapitre 2 - Limites et continuité pour une fonction de plusieurs Chapitre 2 - Limites et continuité pour une fonction de plusieurs

Limites et continuité pour une fonction de plusieurs variables. Puisque la L2 Parcours Spécial - S3 - Calcul différentiel et intégral. Exemple 2.21. On ...



LIMITES DES FONCTIONS – Chapitre 2/2

Calculer la limite de la fonction en +∞. Correction. On a : lim. → E. 1. . = 0 Remarque : Dans le cas de limites infinies la fonction exponentielle ...



Corrigé du TD no 9

petites de ε quand on manipule la définition de limite d'une fonction en un point. De plus on calcule que : f3(x) = 1. 1 − x. −. 2. 1 − x2. = 1 + x − 2.



ficall.pdf

Fonction continue par morceaux. 362. 72 123.06 Fonctions équivalentes ... Calculer les limites des suites (u2n)n et (u2n+1)n. Indication ▽. Correction ...



LIMITES DES FONCTIONS

On dit que la fonction admet pour limite L en +? si ( ) est aussi proche de L que l' Partie 4 : Calculs de limites par composition et comparaison.



Limites de fonctions

Les théorèmes suivants sont très pratiques pour calculer une limite d'une fonction compliquée en la comparant à des fonctions plus simples dont on connaît la 



Les Développements Limités

C'est clair il suffit de calculer la limite. Ce critère sert généralement à démontrer Calculons le DL de la fonction f(x) = cos x à l'ordre 3 au point ?.



Feuille dexercices 10 Développements limités-Calculs de limites

Etablir pour chacune des fonctions proposées ci-dessous un Calculer un développement limité de la fonction pour chacun des cas suivants :.



LIMITES DES FONCTIONS (Chapitre 2/2)

Calculer la limite de la fonction f en . On a : lim. ? E. 1. . = 0 donc lim.



Limites de fonctions

Ce qui exprime bien que la limite de f en +? est l. Correction de l'exercice 2 ?. Généralement pour calculer des limites faisant intervenir des sommes de 



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Montrer que ces fonctions sont de classe C1 sur R ou R2 et calculer leurs dérivées (partielles) en fonction des dérivées partielles de f. Exercice 17. On 



Corrigé du TD no 9

petites de ? quand on manipule la définition de limite d'une fonction en un point. Revenons à nos moutons : si l'on suppose que 1 ? ? > 0 alors.



Fiche technique sur les limites

Comparaison de la fonction logarithme avec la fonction puissance en +? et en 0. En + ? lim x?+? ln(x) x. = 



ficall.pdf

69 123.03 Limite de fonctions 82 125.04 Développements limités implicites ... Calculer les restes de la division euclidienne de 14

Chapitre 1

Fonctions de plusieurs variables.

Limites dansRn.

Le but principal de ce cours est d"étudier les fonctions de plusieurs variables. En première

année vous avez vu les fonctions d"une seule variable, où un paramètre réel (qui physique-

ment peut représenter une température, une pression, une densité massique, volumique, etc.) dépend d"un autre paramètre, également réel (le temps, une abscisse, etc).

Ici on va donc s"intéresser à des fonctions de plusieurs paramètres réels. Par exemple on

peut vouloir étudier la température, la pression ou la densité volumique en fonction de la position dans l"espace (3 dimensions), de la position et de la vitesse (par exemple quelle est la densité de particules qui se trouve à cet endroit et qui va dans cette direction, ce qui fait 6 dimensions), on peut s"intéresser en plus à la dépendance par rapport au temps (une

dimension supplémentaire). La quantité étudiée peut dépendre de la position deNobjets,

auquel cas on doit travailler avec3Ndimensions. Bref, les exemples ne manquent pas... Notre exemple favori dans ce cours sera celui d"une altitude dépendant de deux para- mètres (latitude et longitude ou, de façon plus abstraite,xety). Il s"agit donc d"une fonction sur un domaine deR2et à valeurs dansR. L"intérêt est que le graphe de cette fonction correspond exactement à la montagne que l"on est en train d"escalader. Mathématiquement, on devra donc étudier des fonctions qui ne sont plus définies sur un intervalle (ou une partie quelconque) deR, mais sur un domaine deRnpour un certain n2N. L"espace d"arrivée pourra êtreRou bienRppour un certainp2N, si la quantité qui nous intéresse est elle-même multi-dimensionnelle. On verra que le fait d"avoir plusieurs

dimensions à l"arrivée n"est pas très génant, alors que le fait d"avoir plusieurs dimensions au

départ va poser un certain nombre de difficultés par rapport à ce que vous connaissez.

Les principales propriétés des fonctions de plusieurs variables auxquelles on va s"intéresser

sont les questions de régularité (continuité, dérivabilité, ...) et leurs conséquences (compor-

tement local d"une fonction, étude des extrema, ...), d"intégration, et enfin le lien entre les

deux.

1.1 Fonctions de plusieurs variables

On considère une partieDdeRn, ainsi qu"une fonctionfdeDdansRp. A tout point x= (x1;:::;xn)2 D 1 Fonctions de plusieurs variables. Limites dansRn.-20 -20 -20 -20 -15 -15 -15 -15 -10 -10 -10 -10 -10 -10 -10 -10 -5 -5 -5 -5 -5 -5 -5 -5 0 0 00 0 0 000 0 00 0 0 00 5 555
5 5 5 5 10 10 10 10 15 15 20 20 -5-4-3-2-1012345 -5 -4 -3 -2 -1 0 1 2 3 4 5 Figure1.2 - Lignes de niveau pour l"application(x;y)7!x2cos(y)et carte IGN avec lignes de niveau pour l"altitude.

1.2 Normes

Notre objectif est maintenant d"étudier la régularité des fonctions de plusieurs variables.

La notion de limite, sur laquelle reposent en particulier les notions de continuité et de dériva-

bilité, s"appuie elle-même sur la notion de proximité entre deux points. Pour une fonctionf deRdansR, on dit quef(x)tend versl2Rquandxtend versa2Rsif(x)est " proche » deldès lors quexest " assez proche » dea. Intuitivement, deux réelsxetysont proches si la valeur absolue (quantité positive)jxyjest petite, en un sens à préciser. Avant de parler de limite pour des fonctions définies surRn, il faut donc donner un sens précis à l"assertion "xest proche dey» lorsquexetysont des points deRn. En fait, on sait déjà mesurer la distance entre deux points deRn. Par exemple pour deux pointsx= (x1;x2)ety= (y1;y2)dansR2, la longueur du segment[x;y]est donnée par d(x;y) =p(x1y1)2+ (x2y2)2: Cette quantité sera appelée distance euclidienne entrexety. Mais ce n"est pas toujours la bonne façon de mesurer la distance entre deux points, comme le montrent les exemples suivants. Considérons un piéton dans une ville organisée par blocs (voir figure 1.3 ), chaque

bloc faisant 500m de côté. Il devra parcourirm pour aller du pointAau pointBetm pour aller du pointAau pointC, alors que les distances euclidiennes (à vol d"oi-

seau) entreAetBet entreAetCsont respectivement dem etm. Marseille Figure1.3 - Les villes américaines et les déplacements en normel1.

est plus proche de Paris que de Toulouse si on regarde le temps de parcours par le train,Année 2013-2014 3

L2 Parcours Spécial -Calcul différentiel et intégralalors que c"est quasiment deux fois plus loin en termes de kilomètres par la route. Ainsi il y

a différentes façons de mesurer la distance entre deux points, et il n"y en a pas de bonnes ou de mauvaises : chacune est plus ou moins bien adaptée à chaque contexte. Définition 1.3.SoitEunR-espace vectoriel. On appelle norme surEune application N:E!R+qui vérifie les propriétés suivantes : (i)8x2E; N(x) = 0()x= 0(séparation), (ii)8x2E;82R; N(x) =jjN(x)(homogénéité), (iii)8(x;y)2E2; N(x+y)6N(x) +N(y)(inégalité triangulaire). Étant donnée une normeNsurE, on appelle distance associée àNl"application d

N:E2!R+

(x;y)7!N(xy) On note que toutes les distances ne sont pas obtenues de cettes façons, mais on ne s"attardera pas sur ces questions dans ce cours (voir tout de même les exercices 14 et 15 , plus de détails seront donnés dans le cours d"approfondissements mathématiques). Exercice1.Montrer que la valeur absolue est une norme surR.

Proposition 1.4.Pourx= (x1;:::;xn)2Rnon note

kxk2=v uutn X j=1jxjj2:

Alors l"applicationx7! kxk2est une norme surRn.

Démonstration.Les propriétés de séparation et d"homogénéité sont faciles et laissées en exer-

cice. Pour montrer l"inégalité triangulaire, on considère deux pointsx= (x1;:::;xn)et y= (y1;:::;yn)deRn. Six+y= 0alors le résultat est clair. Sinon on a d"après l"inégalité de Cauchy-Schwarz kx+yk2 2=nX j=1(xj+yj)2=nX j=1x j(xj+yj) +nX j=1y j(xj+yj) 6 v uutn X j=1x 2jv uutn X j=1(xj+yj)2+v uutn X j=1y 2jv uutn X j=1(xj+yj)2

6(kxk2+kyk2)kx+yk2:

On obtient l"inégalité triangulaire en divisant parkx+yk26= 0.Exercice2.Pourx= (x1;:::;xn)2Rnon note

kxk1=nX j=1jxjjetkxk1= max16j6njxjj: Montrer que les applicationsx7! kxk1etx7! kxk1sont des normes surRn.

1.3 Limites

Maintenant qu"on a introduit les normes, qui jouent dansRnle rôle que joue la valeur absolue dansR, on peut définir la convergence d"une suite exactement de la même façon dans R

nque dansR, en remplaçant simplement la valeur absolue par une norme.4 J. Royer - Université Toulouse 3

Fonctions de plusieurs variables. Limites dansRn.Définition 1.5.SoientEunR-espace vectoriel muni d"une normekk. Soient(xm)m2Nune

suite d"éléments deEetl2E. On dit que la suite(xm)m2Ntend verslet on note x m!m!+1l si

8" >0;9N2N;8m>N;kxmlk6":

Autrement ditxmtend verslsi la quantité réellekxmlktend vers 0 au sens usuel. Sans surprise, on retrouve les même propriétés de base que pour la limite d"une suite réelle : Proposition 1.6.SoientEunR-espace vectoriel muni d"une normekk. (i)Unicité de la limite.Soient(xm)m2N2EN,l12Eetl22E. Sixm!l1etxm!l2 quandmtend vers+1, alorsl1=l2. (ii)Linéarité de la limite.Soient(xm)m2Net(ym)m2Ndeux suites d"éléments deE. Soient l

1;l22E,;2R. Si

x m!m!1l1etym!m!1l2; alors x m+ym!m!1l1+l2: Exercice3.Démontrer la proposition1.6 (la démonstration est la même que p ourles limites dansR). Définition 1.7.SoitEunR-espace vectoriel. SoientN1,N2deux normes surE. On dit que N

1etN2sont équivalentes s"il existe une constanteC>0telle que pour toutx2Eon a

quotesdbs_dbs47.pdfusesText_47
[PDF] Limites de fonctions

[PDF] Limites de fonctions (Terminale)

[PDF] Limites de fonctions - Reconnaître des courbes (problème pour trouver l'extremum)

[PDF] Limites de fonctions - reconnaître des courbes - (problème pour trouver l'extremum)

[PDF] limites de fonctions cours

[PDF] limites de fonctions exercices corrigés

[PDF] limites de fonctions formes indeterminées

[PDF] limites de fonctions rationnelles exercices

[PDF] Limites de fonctions svp

[PDF] limites de fonctions terminale s

[PDF] limites de fonctions terminale s exercices

[PDF] Limites de l'organisme ? l'effort -VO2max

[PDF] limites de l'étude mémoire

[PDF] limites de l'onu

[PDF] limites de la croissance économique cours