[PDF] [PDF] Annexe du chapitre 6: Fonctions trigonométriques





Previous PDF Next PDF



[PDF] IV) Étude de la fonction tangente - Normale Sup

La fonction tangente notée tan est la fonction définie pour tout x = la tangente se lit sur la droite Étude de la limite en



[PDF] Recherche de la limite lorsque x tend vers 0 de la fonction f(x) =

Limite de sinx / x dérivées dans le but de déterminer certaines limites de quotients tangente La longueur du segment de droite [AM] représente



[PDF] Les Développements Limités

dit que f admet un développement limité à l'ordre n en x0 en abrégé DLn(x0) s'il existe des Position de la courbe par rapport à une tangente



[PDF] Les fonctions sinus et cosinus - Lycée dAdultes

26 jui 2013 · 3 2 Application aux calculs de limites Théorème 7 : D'après les fonctions dérivées des fonctions sinus et cosinus on



[PDF] Devoir dentraˆ?nement sur les développements limités

Pour guider les calculs on rappelle le développement limité de tangente en 0 `a Exercice 2 : Développement limité de tan par la formule de Taylor



[PDF] Développements limités

Pour illustrer les différentes techniques nous proposons de calculer le développement de la fonction tangente d'ordre 5 par sept méthodes différentes Nous ne 



[PDF] Limites et dérivées - Prof Delbecque

5 1 Taux de variation instantané avec les limites Définition 5 1 Comme la pente de la tangente `a au graphe d'une fonction f est directement lié `a sa



[PDF] Annexe du chapitre 6: Fonctions trigonométriques

A 1 Limites de fonctions trigonométriques Théorème des deux gendarmes Exercice A6 16: a) Déterminer l'équation de la tangente à la courbe d'équation



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

la courbe représentative de la fonction f admet une tangente au point (x0 Dans ce cas l'existence de la limite équivaut `a l'égalité des limites `a

FONCTIONS TRIGONOMETRIQUES I

2M renf - JtJ 2019 Annexe du chapitre 6: Fonctions trigonométriques

A.1 Limites de fonctions trigonométriques

Théorème des deux gendarmes

Le théorème suivant implique 3 fonctions f, g et h dont l'une f est "prise en sandwich" entre les deux autres. Si g et h ont la même limite lorsque x tend vers a, alors f doit avoir cette même limite. Ainsi : • soit l'intervalle ]b ; c[ contenant a; • soit h(x) f (x) g(x) pour tout x ]b ; c[ \ {a}.

Si lim

xa g(x)=lim xa h(x)=L, alors lim xaf(x)=L

On acceptera ce théorème sans preuve

Exercice A6.1 :

Soit f une fonction telle que pour tout x on ait x 2 +x3 f(x)2x2

3x+1 .

a) Déterminer lim x2 f(x) b) Qu'en est-il si x 2 +x3f(x)2x2 3x+3 Remarque : Le théorème des deux gendarmes est un outil très souvent utilisé pour calculer des limites pour des fonctions trigonométriques. Observons ceci sur un exemple : Exemple : À l'aide du théorème des deux gendarmes, montrer que lim x0 xsin 1 x =0. xyy = f(x) y = g(x) y = h(x) a L

II ANNEXE CHAPITRE 6

2M renf - JtJ 2019

Exercice A6.2 :

Utiliser le théorème des deux gendarmes pour calculer lim x0 x 2 sin 1 x 2 Indications : -1 sin(angle) 1, puis constater que x 2 sin 1 x 2 est comprise entre deux paraboles.

Exercice A6.3 :

On considère le quart de cercle trigonométrique de centre O et de rayon 1. • En comparant les aires des triangles OIM et OIT avec celle du secteur circulaire OIM, montrer que : sin(x) x tan(x) si 0 < x < /2 • En déduire que : cos(x) sin(x) x 1 • Puis montrer que lim x0 sin(x) x • Comment adapter cette preuve pour le calcul de lim x0 sin(x) x

Exercice A6.3 bis :

Que devient le raisonnement précédent si l'angle x est en degré et alors que vaut lim x0° sin(x) x

Exercice A6.4 :

Sachant que lim

x0 sin(x) x =1, en déduire les limites suivantes : a) lim x0 sin(2x) x b) lim x0 sin(3x) sin(2x) c) lim x0 tan(x) x d) lim xa 2sin xa 2 xa

Exercice A6.5 :

Calculer, si elles existent, les limites suivantes : a) lim x0 cos(x) x b) lim x0 1cos 2 (x) xtan(x) c) lim x0

1cos(x)

sin(x) 2

Exercice A6.6 :

En amplifiant les fractions par 1 + cos(x), montrer que a) lim x0

1cos(x)

x=0 b) lim x0

1cos(x)

x 2 =1 2

Exercice A6.7 :

Utiliser le théorème des deux gendarmes pour calculer : a) lim x+ sin(x) x b) lim x+ e x sin(x) c) lim x+

2x+cos(x)

x+1

FONCTIONS TRIGONOMETRIQUES III

2M renf - JtJ 2019 A.2 Les preuves des règles de dérivation des fonctions trigonométriques Les règles de dérivation des fonctions trigo : 8

ème

règle : Si f(x)=sin(x) ....................... 9

ème

règle : Si f(x)=cos(x) ....................... 10

ème

règle : Si f(x)=tan(x) ....................... ou .......................

Exercice A6.8: Voici la preuve de la 8

ème

règle ci-dessus qu'il s'agit de compléter f (a)=lim xa f(x).......... ..................=lim xa Truc : on utilise la formule de soustraction d'angle (Formulaire page 31) f (a) = lim xa

2cos..........

sin.......... xa = lim xa cos..........

2sin..........

xa = lim xa cos.......... sin.......... = lim xa cos.......... lim xa sin.......... = cos2a 2

1=cos(a)

En changeant la variable de a en x, on obtient bien : f (x)=...............

Reprendre cette preuve en utilisant la définition équivalente de dérivée vue dans l'annexe du

chapitre 4: f(x)=lim x0 f(x+x)f(x) x Exercice A6.9: Démontrer les 2 dernières règles de dérivation.

IV ANNEXE CHAPITRE 6

2M renf - JtJ 2019 A.3 Les fonctions trigonométriques réciproques

Introduction

(à compléter) Nous avons vu dans le chapitre 1 que pour définir la fonction réciproque ...... d'une fonction f, il faut que celle-ci soit ..............., c'est-à-dire: • que si a b dans l'ensemble de ............ de f, alors f(a)......f(b). • tous les éléments de l'ensemble d'arrivée sont atteints.

On peut alors résumer ceci par :

y=f(x) x = .........

On a les propriétés suivantes :

(1) l'ensemble de définition de r f = ....................................... (2) l'ensemble image de r f = ....................................... (3) f r f(x) =...... pour tout x ...... (4) r ff(x)()=...... pour tout x ...... (5) les graphes de r f et f sont ............... l'un de l'autre par rapport à la droite d'équation ............ • La fonction arcsinus, notée arcsin (ou sin -1 ), est définie par : x arcsin(x)

De même, on peut définir :

• La fonction arccosinus, notée arccos (ou cos -1 ), est définie par : [ -1 ; 1 ] [...... : ......] x arccos(x)

FONCTIONS TRIGONOMETRIQUES V

2M renf - JtJ 2019

Introduction

(à compléter) • La fonction arctangente, notée arctan (ou tan -1 ), est définie par :

IR ]...... : ......[

x arctan(x)

Exemple : Déterminer :

sin sin 1 1 2 , cos 1 cos 5 4 et sin 1 sin 2 3 Exercice A6.10 : Déterminer sans calculatrice : a) cos cos 1 1quotesdbs_dbs47.pdfusesText_47
[PDF] Limites et théorème des gendarmes

[PDF] limites exercices

[PDF] limites fonctions trigonométriques exercices corrigés pdf

[PDF] limites forme indeterminée minimum

[PDF] limites formes indéterminées

[PDF] limites formes indéterminées exercices

[PDF] limites formules

[PDF] Limites Ln

[PDF] limites ln exercices corrigés

[PDF] limites polynome de degré 3

[PDF] limites suites terminale es

[PDF] limites synonyme

[PDF] limites tableau

[PDF] limites trigonométriques

[PDF] limites trigonométriques usuelles