[PDF] Cours de mathématiques - terminale S





Previous PDF Next PDF



MATH Tle D OK 2

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans est dite arithmétique s'il existe un réel tel que tout ??.



Cours de mathématiques - terminale S

COURS DE MATHÉMATIQUES. Terminale S. Valère BONNET (valere.bonnet@gmail.com). 29 mai 2011. Lycée PONTUS DE TYARD. 13 rue des Gaillardons.



Mathématiques Cours exercices et problèmes Terminale S

22 juin 2013 Ces étoiles sont simplement un indicateur de la difficulté globale d'un exercice : certaines questions peuvent être très simples! 1. Page 3 ...



ANNALES DE MATHEMATIQUES

ANNALES DE MATHEMATIQUES. TERMINALE S Annales du baccalauréat S 2000 ... Calculer l'espérance mathématique de en fonction de puis déterminer.



Acces PDF Livre Du Prof Maths Terminale S Bordas [PDF] - forum

il y a 3 jours If you ally need such a referred Livre Du Prof Maths Terminale S Bordas ebook that will meet the expense of you worth ...



Cours complet de mathématiques pures. T. 1 / par L.-B. Francoeur

Ceux-ci sont signalés par la mention Source gallica.BnF.fr / Bibliothèque municipale de (ou autre partenaire). L'utilisateur est invité à s'informer auprès ...



Exercices de mathématiques

Exercices de Mathématiques - Terminales S ES



Exercices de mathématiques pour la classe terminale - 2e partie

Ressources pour la classe terminale générale et technologique. Exercices de mathématiques. 2e partie. Classes terminales ES S



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

dans lesquels le formalisme mathématique s'applique et permet de résoudre des problèmes. Ce tome débute par l'étude des nombres réels puis des suites.



Corriges Hyperbole Terminale S Livre Du Professeur Spe2006PDF

Corriger du livre Déclic math terminale S : eBooks Livre Professeur Maths Terminale Complete PDF Library Examens Corrigés PDF Livre Maths Professeur ...

COURS DE MATHÉMATIQUES

Terminale S

Valère BONNET(

valere.bonnet@gmail.com)

29 mai 2011

Lycée PONTUS DETYARD

13 rue des Gaillardons

71100 CHALON SUR SAÔNE

Tél. : (33) 03 85 46 85 40

Fax : (33) 03 85 46 85 59

FRANCE

ii

LYCÉEPONTUS DETYARDTerminale VI

Table des matières

Tabledes matièresiii

I Vocabulairede la logique1

I.1 Qu"est-ce qu"une proposition?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.2 Négation d"une proposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.3 Le " et ». . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 1

I.4 Le " ou ». . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 2

I.5 Propositions et parties d"un ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I.6 Lois de MORGAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

I.7 Opérations sur les parties d"un ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.8 Implications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 5

I.8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.8.2 Réciproque d"une implication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I.8.3 Contraposée d"une implication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.8.4 Implication contraire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.9 Double implication ou équivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.10 Formules récapitulatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.11 Raisonnement par récurrence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II Révisions9

II.1 Identités remarquables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II.2 Éléments de symétries d"une courbe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II.2.1 Symétries dans IR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II.2.2 Axe de symétrie d"une courbe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II.2.3 Centre de symétrie d"une courbe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II.3 Trigonométrie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 12

II.3.1 Quelques valeurs remarquables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II.3.2 Quelques formules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II.3.3 Équations trigonométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

II.4 Géométrie du triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.4.1 Aire d"un triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.4.2 Théorème des sinus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.4.3 Théorème d"ALKASHI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.4.4 Théorème de la médiane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.5 Polynômes du second degré. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.5.1 Forme canonique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.5.2 Représentation graphique et sens de variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II.5.3 Factorisation et résolution d"équations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II.5.4 Signe d"un trinôme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II.5.5 Tableau récapitulatif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.5.6 Compléments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.5.7 Travaux dirigés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.5.8 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26

II.6 Exercices résolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26

iii ivTable des matières

III Suites numériques31

III.1 Vocabulaire de l"ordre dans IR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III.1.1 Majorants, minorants .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III.1.2 Théorème de la borne supérieure (complément). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III.2 Définitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 32

III.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III.2.2 Composée d"une suite par une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III.2.3 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32

III.3 Représentation graphique d"une suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III.3.1 Représentation graphique d"une suite définie explicitement. . . . . . . . . . . . . . . . . . . . . . 32

III.3.2 Représentation graphique d"une suite définie par récurrence. . . . . . . . . . . . . . . . . . . . . 33

III.3.3 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33

III.4 Suites bornées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 34

III.4.1 Généralités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

III.4.2 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34

III.5 Suites monotones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

III.5.1 Définitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

III.5.2 Méthodes d"étude du sens de variation d"une suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III.5.3 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37

III.6 Suites arithmétiques - suites géométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III.6.1 Suites arithmétiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III.6.2 Suites géométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

III.6.3 Exercices résolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III.7 Limites de suites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42

III.7.1 Limite finie, limite infinie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.7.2 Théorèmes de comparaisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III.7.3 Calcul algébrique de limites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

III.7.4 Limites de suites géométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

III.7.5 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48

III.8 Suites monotones bornées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III.8.1 Théorème de convergence d"une suite monotone. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III.8.2 Suites adjacentes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III.8.3 Exercices résolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III.8.4 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51

III.9 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 51

IV Limites de fonctions, continuité53

IV.1 Limite finie (ou réelle). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.1.1 Limite d"une fonction en. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.1.2 Limite d"une fonction en un réela. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.2 Notion de continuité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.3 Utilisation de la continuité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.3.1 Continuité et bijection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V Exponentielleset équationsdifférentielles57

V.1 La fonction exponentielle de base e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

V.1.1 Propriété fondamentale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

V.1.2 Sens de variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V.1.3 Autres propriétés algébriques de l"exponentielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V.1.4 Quelques limites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V.2 La fonction logarithme népérien. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

V.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

V.2.2 Dérivabilité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

V.2.3 Dérivée de lnu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

V.2.4 Logarithme népérien et calcul intégral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V.3 Des exponentielles et des logarithmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V.3.1 Notationab, poura,bréels eta0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V.3.2 Fonctions exponentielles de basea(aveca0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V.3.3 Fonctions logarithmes de basea(aveca0 eta?1). . . . . . . . . . . . . . . . . . . . . . . . . . 63

V.4 Équations différentielles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

V.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

LYCÉEPONTUS DETYARDTerminale VI

Table des matièresv

V.4.2 Équations du typeyay0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

V.4.3 Équations du typeyayb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

V.4.4 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68

VI Dérivabilité69

VI.1 Fonctions dérivables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

VI.1.1 Nombre dérivé, fonction dérivée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

VI.1.2 Dérivabilité des fonctions usuelles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI.1.3 Principaux résultats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI.2 Dérivation d"une fonction composée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI.2.1 Théorème de dérivation d"une fonction composée. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI.2.2 Dérivée de la fonctionu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

VI.2.3 Dérivée de la fonctionun(n?). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

VI.3 Dérivation et études de fonctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

VI.3.1 Sens de variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

VI.3.2 Extremum local. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

VI.4 Dérivées successives d"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

VI.5 Exercices résolus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73

VII Nombres complexes77

VII.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77

VII.1.1 Des équations et des ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

VII.1.2 Activités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 77

VII.1.3 Définitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

VII.1.4 Calcul dans?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

VII.2 Interprétations géométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

VII.2.1 Affixe, point image, vecteur image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

VII.2.2uu,ku,MM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

VII.2.3 Écriture complexe de certaines symétries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

VII.2.4 Coordonnées polaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

VII.2.5 Module et arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VII.3 Propriétés algébriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VII.3.1 Propriétés du conjugué. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VII.3.2 Propriétés du module et des arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

VII.3.3 Formule de MOIVRE(complément). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

VII.4 Notation exponentielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VII.4.1 Une équation différentielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VII.4.2 Définitions et propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VII.4.3 Forme exponentielle et symétries usuelles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII.4.4 Formules d"EULER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII.4.5 Racines carrées d"un nombre complexe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII.5 Nombres complexes et polynômes (compléments). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII.5.1 Théorème fondamental de l"algèbre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

VII.5.2 Résolution des équations du second degré. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

VII.6 Utilisation des nombres complexes (compléments). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

VII.6.1 Racinesn-ièmes de l"unité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

VII.6.2 Racinesn-ièmes d"un nombre complexe non nul. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

VII.6.3 Polynômes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

VII.6.4 Forme algébrique des racines carrées d"un nombre complexe. . . . . . . . . . . . . . . . . . . . . 92

VII.6.5 Trigonométrie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

VII.7 Géométrie et nombres complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

VII.7.1 Propriétés générales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VII.7.2 Écriture complexe de quelques transformations usuelles. . . . . . . . . . . . . . . . . . . . . . . . 95

VII.7.3 Affixe du barycentre d"un système de points pondérés. . . . . . . . . . . . . . . . . . . . . . . . . . 96

????-????série S viTable des matières

VIII Intégration97

VIII.1Primitives d"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VIII.1.1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VIII.1.2Détermination pratique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

VIII.1.3Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99

VIII.2Premiers calculs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99

VIII.2.1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VIII.2.2Intégrale d"une fonction constante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VIII.2.3Intégrale d"une fonction en escalier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VIII.2.4Activité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 102

VIII.2.5Propriétés des intégrales de fonctions en escalier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VIII.3Intégrale de Riemann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VIII.3.1Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103

VIII.3.2Sommes de Riemann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VIII.3.3Exemple d"intégrale d"une fonction usuelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

VIII.4Théorème fondamental de l"analyse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VIII.4.1Problème ouvert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VIII.4.2Théorème fondamental de l"analyse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VIII.4.3Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 110

VIII.5Proptiétés algébriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VIII.5.1Relation de Chasles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VIII.5.2Linéarité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 111

VIII.5.3Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 112

VIII.6Propriétés de comparaison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

VIII.6.1Signe de l"intégrale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

VIII.6.2Inégalité de la moyenne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

VIII.6.3Valeur moyenne d"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VIII.6.4Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 116

VIII.7Autres techniques de calcul. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

VIII.7.1Intégration par parties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

VIII.7.2Intégration et invariance géométrique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

VIII.7.3Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 120

IX Dénombrement121

IX.1 Notions Préliminaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

IX.1.1 Rappels et compléments sur les ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

IX.1.2 Produit cartésien d"ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

IX.2 Factorielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 123

IX.3 Tirage depéléments dans un ensemble ànéléments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

IX.3.1 Tirages successifs avec remise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

IX.3.2 Tirages successifs sans remise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

IX.3.3 Combinaisons - Tirages simultanés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

IX.3.4 Tableau récapitulatif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

X Calculdes probabilités131

X.1 Calculs de probabilités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

X.1.1 Vocabulaire des événements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

X.1.2 Probabilité d"un événement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

X.1.3 Probabilités conditionnelles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

X.2 Variable aléatoire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 138

X.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

X.2.2 Fonction de répartition d"une variable aléatoire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

X.2.3 Caractéristiques d"une variable aléatoire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

X.2.4 Variables aléatoires indépendantes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

X.3 Lois de probabilités discrètes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

X.3.1 Loi binomiale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

X.3.2 Loi de Poisson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

X.4 Lois de probabilités continues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

X.4.1 Intégrales généralisées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

X.4.2 Généralités sur lois de probabilités continues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

X.4.3 Loi uniforme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

LYCÉEPONTUS DETYARDTerminale VI

Table des matièresvii

X.4.4 Loi exponentielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

X.5 Adéquation à la loi équirépartie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

XI Barycentre153

XI.1 Barycentre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 153

XI.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

XI.1.2 Activités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 153

XI.1.3 Définition et propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

XI.1.4 Propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 156

XI.1.5 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 158

Index159

????-????série S viiiTable des matières

LYCÉEPONTUS DETYARDTerminale VI

Chapitre IVocabulaire de la logiqueI.1 Qu"est-ce qu"une proposition?

DÉFINITIONI.1.1PROPOSITION

Unepropositionest un énoncé qui est soit vrai soit faux. ExempleConsidérons un quadrilatère ABCD, dans le plan. On peut envisager les propositions, P : " ABCD est un carré »;

Q : " ABCD est un parallélogramme ».

Suivant la nature du quadrilatère ABCD la proposition P, comme la proposition Q, est soit vraie, soit fausse.

I.2 Négationd"une proposition

DÉFINITIONI.2.1

La négation d"une proposition P est la proposition, notée " non P » ou "P » ou encore "P », qui est fausse lorsque P

est vraie et vraie lorsque P est fausse.

Exemples

1.Reprenons les propositions de l"exemple précédent.

On a, P : " ABCD n"est pas un carré »;Q : " ABCD n"est pas un parallélogramme ».

2.Soit

nun nombre entier.

La négation de T : "

quotesdbs_dbs47.pdfusesText_47
[PDF] livre mathématiques financières pdf

[PDF] livre maths 1ere s hachette correction

[PDF] livre maths 1ere sti2d hachette pdf

[PDF] livre maths 1ere stmg nathan corrigé

[PDF] livre maths 3eme phare pdf

[PDF] livre maths mpsi

[PDF] livre maths terminale s hachette pdf

[PDF] livre mercatique terminale stmg hachette corrigé

[PDF] livre merise pdf

[PDF] livre momo petit prince des bleuets

[PDF] livre monnaie

[PDF] LIVRE NO PASARAN, LE JEU

[PDF] livre noir du communisme pdf

[PDF] livre ou film

[PDF] Livre papa longues jambes urgent questions poser