[PDF] Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat





Previous PDF Next PDF



Mathématiques 1re année MPSI Tout en un

TOUT LE PROGRAMME EN UN SEUL VOLUME ! MATHS. MPSI les exercices de chaque chapitre sont accompagnés à la fin du livre d'indications et réponses qui ...



roger.mansuy@gmail.com

20 nov. 2021 Le livre est désormais épuisé et j'ai récupéré mes droits sur cet ... Maths. MPSI. Roger Mansuy est professeur en classe préparatoire ...



Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat

23 mars 2011 Sup MPSI PCSI PTSI TSI ... formé de treize livres est une compilation du savoir mathématique de son époque. Il resta une.



Électromagnétisme MPSI

C'est à partir de la loi de Coulomb qui décrit l'interaction entre deux charges électriques ponctuelles



Cours de Mathématiques - Sup MPSI PCSI PTSI TSI En partenariat

23 mars 2011 Sup MPSI PCSI PTSI TSI ... formé de treize livres est une compilation du savoir mathématique de son époque. Il resta une.



EXERCICES PROBLEMES PHYSIQUE MPSI PCSI PTSI

Hachette Livre H-Prépa Exercices et problèmes



Petite bibliographie

À part pour les livres d'exercices j'indique un niveau pour chaque livre



Petit traité du travail en prépas à lintention des élèves de

23 juil. 2020 Les livres que je citerai sont ceux adaptées au cursus MPSI-MP(*) ... Le livre maths de Jean Franchini contient des exercices souvent plus ...



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

fonction et c'est pourquoi vous trouverez dans ce livre de nombreux dessins pour vous aider à permet d'écrire des maths dans un courriel ou un texto.



QCM Maths MPSI PTSI PCSI

Professeur en classes préparatoires. Maths. Première année. M P S I. P C S I. P T S I HACHETTE LIVRE 2010 43 quai de Grenelle 75905 Paris Cedex 15.

Cours de Mathématiques

Sup MPSI PCSI PTSI TSI

En partenariat avec l'association Sésamath http://www.sesamath.net et le site http://www.les-mathematiques.net

Document en cours de relecture

Alain Soyeur - François Capaces - Emmanuel Vieillard-Baron

23 mars 2011

Table des matières1 Nombres complexes19

1.1 Le corpsCdes nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

1.1.1 Un peu de vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 20

1.1.2 Construction deC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Propriétés des opérations surC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Parties réelle, imaginaire, Conjugaison . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Partie réelle, partie imaginaire d'un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 22

1.3 Représentation géométrique des complexes . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Représentation d'Argand . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 23

1.3.2 Interprétation géométrique de quelques opérations .. . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Module d'un nombre complexe, inégalités triangulaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 GroupeUdes nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.2 Exponentielle imaginaire . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 26

1.6 Argument, fonction exponentielle complexe . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6.1 Argument d'un nombre complexe . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 31

1.6.2 Fonction exponentielle complexe . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 32

1.7 Racinesn-ièmes de l'unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 33

1.8 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 35

1.8.1 Racines carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 35

1.8.2 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 36

1.9 Nombres complexes et géométrie plane . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 37

1.9.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 37

1.9.2 Barycentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 37

1.9.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 38

1.10 Transformations remarquables du plan . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10.1 Translations, homothéties . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 38

1.10.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 38

1.10.3 Similitudes directes . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 39

1.11 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 42

1.11.1 Forme algébrique - Forme trigonométrique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 42

1.11.2 Polynômes, équations, racines de l'unité . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 43

1.11.3 Application à la trigonométrie . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 49

1.11.4 Application des nombres complexes à la géométrie . . .. . . . . . . . . . . . . . . . . . . . . . . . 53

1.11.5 Transformations du plan complexe . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 60

2 Géométrie élémentaire du plan62

2.1 Quelques notations et rappels . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 62

2.1.1 Addition vectorielle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 63

2.1.2 Produit d'un vecteur et d'un réel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 63

2.1.3 Vecteurs colinéaires, unitaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 64

2.1.4 Droites du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 64

2.2 Modes de repérage dans le plan . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 64

2.2.1 Repères Cartésiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 64

2.2.2 Changement de repère . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 67

2

Équation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 68

2.2.3 Repères polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 69

Équation polaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 70

2.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 70

2.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 70

2.3.2 Interprétation en terme de projection . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 70

2.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 71

2.3.4 Interprétation en termes de nombres complexes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 72

2.4 Déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 72

2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 72

2.4.2 Interprétation en terme d'aire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 73

2.4.3 Propriétés du déterminant . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 73

2.4.4 Interprétation en terme de nombres complexes . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 74

2.4.5 Applicationdudéterminant: résolutiond'unsystèmelinéairede Cramer dedeuxéquationsà deux

inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 74

2.5 Droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 75

2.5.1 Préambule : Lignes de niveau . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 75

2.5.2 Lignes de niveau deMu.AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.3 Lignes de niveau deMdet

u,AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5.4 Représentation paramétrique d'une droite . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 76

2.5.5 Équation cartésienne d'une droite . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 77

2.5.6 Droite définie par deux points distincts . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 78

2.5.7 Droite définie par un point et un vecteur normal . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 78

2.5.8 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 78

2.5.9 Équation normale d'une droite . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 79

2.5.10 Équation polaire d'une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 80

2.5.11 Intersection de deux droites, droites parallèles . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6 Cercles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 81

2.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 81

2.6.2 Équation cartésienne d'un cercle . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 81

2.6.3 Représentation paramétrique d'un cercle . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 82

2.6.4 Équation polaire d'un cercle passant par l'origine d'un repère . . . . . . . . . . . . . . . . . . . . . 83

2.6.5 Caractérisation d'un cercle par l'équationMA.MB0. . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6.6 Intersection d'un cercle et d'une droite . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 84

2.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 87

2.7.1 Produit scalaire et déterminant . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 87

2.7.2 Coordonnées cartésiennes dans le plan . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 88

2.7.3 Géométrie du triangle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 95

2.7.4 Cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 99

2.7.5 Coordonnées polaires . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 109

2.7.6 Lignes de niveaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 111

3 Géométrie élémentaire de l'espace113

3.1 Préambule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 113

3.1.1 Combinaisons linéaires de vecteurs, droites et plansdans l'espace . . . . . . . . . . . . . . . . . . 113

3.1.2 Vecteurs coplanaires, bases . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 114

3.1.3 Orientation de l'espace, base orthonormale directe .. . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2 Mode de repérage dans l'espace . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 116

3.2.1 Coordonnées cartésiennes . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 116

Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 116

Calcul algébrique avec les coordonnées . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 116

Norme d'un vecteur, distance entre deux points dans un repère orthonormé . . . . . . . . . . . . . 117

3.2.2 Coordonnées cylindriques et sphériques . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 118

3.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 119

3.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 119

3.3.2 Expression dans une base orthonormale . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.4 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 121

3.4.1 Définition du produit vectoriel . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 121

3.4.2 Interprétation géométrique du produit vectoriel . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 122

3

3.4.3 Propriétés du produit vectoriel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 122

Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 122

Quelques exemples d'applications linéaires fort utiles pour ce qui vient... . . . . . . . . . . . . . . 123

3.4.4 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Déterminant ou produit mixte . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 124

3.5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 124

3.5.2 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 124

3.5.3 Propriétés du produit mixte . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 125

3.5.4 Interprétation géométrique . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 126

3.6 Plans dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 127

3.6.1 Représentation paramétrique des plans . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 127

3.6.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 127

Interprétation géométrique de l'équation normale . . . . . . .. . . . . . . . . . . . . . . . . . . . . 128

Position relative de deux plans . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 129

3.6.3 Distance d'un point à un plan . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 129

Deux méthodes de calcul de la distance d'un point à un plan . . .. . . . . . . . . . . . . . . . . . 130

3.7 Droites dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.1 Représentation paramétrique . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131

3.7.3 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 132

3.7.4 Perpendiculaire commune à deux droites . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 132

3.8 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.2 Sphères et plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 135

3.8.3 Sphères et droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 135

3.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 136

3.9.1 Produits scalaire, vectoriel et mixte . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 136

3.9.2 Coordonnées cartésiennes dans l'espace . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 138

3.9.3 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 147

4 Fonctions usuelles151

4.1 Fonctions logarithmes, exponentielles et puissances .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.1.1 Logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 152

4.1.2 Exponentielle népérienne . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 154

4.1.3 Logarithme de base quelconque . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 156

4.1.4 Exponentielle de basea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1.5 Fonctions puissances . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 158

4.1.6 Comparaison des fonctions logarithmes, puissances et exponentielles . . . . . . . . . . . . . . . . 159

4.2 Fonctions circulaires réciproques . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.1 Rappels succincts sur les fonctions trigonométriques . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.2 Fonction Arcsinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 162

4.2.3 Fonction Arccosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 163

4.2.4 Fonction Arctangente . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 165

4.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 166

4.3.1 Définitions et premières propriétés . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 166

Sinus et Cosinus hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 166

Tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 168

4.3.2 Formulaire de trigonométrie hyperbolique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 169

4.3.3 Fonctions hyperboliquesinverses . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 169

Fonction argument sinus hyperboliqueargsh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Fonction Argument cosinus hyperboliqueargch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Fonction Argument tangente hyperboliqueargth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4 Deux exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 173

4.5 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 176

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 178

4.6.1 Fonctions exponentielles, logarithmes et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.6.2 Fonctions circulaires . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 184

4.6.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 193

4

5 Equations différentielles linéaires198

5.1 Quelques rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 198

5.2 Deux caractérisations de la fonction exponentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.1 Caractérisation par une équation différentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.2 Caractérisation par une équation fonctionnelle . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3 Équation différentielle linéaire du premier ordre . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 199

5.3.2 Résolution de l'équation différentielle homogène normalisée . . . . . . . . . . . . . . . . . . . . . 200

5.3.3 Résolution de l'équation différentielle normaliséeavec second membre . . . . . . . . . . . . . . . 202

5.3.4 Détermination de solutions particulières . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 203

Superposition des solutions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 203

Trois cas particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 203

Méthode de variation de la constante . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 205

5.3.5 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 206

5.3.6 Méthode d'Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 209

5.4 Équations différentielles linéaires du second ordre . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.4.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 209

5.4.2 Résolution de l'équation différentielle homogène dusecond ordre dansC. . . . . . . . . . . . . . 210

5.4.3 Résolution de l'équation différentielle homogène dusecond ordre dansR. . . . . . . . . . . . . . 212

5.4.4 Équation différentielle du second ordre avec second membre . . . . . . . . . . . . . . . . . . . . . 213

5.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 217

5.5.1 Équations différentielles linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.5.2 Équations différentielles linéaires du second ordreà coefficients constants . . . . . . . . . . . . . . 221

5.5.3 Résolution par changement de fonction inconnue . . . . .. . . . . . . . . . . . . . . . . . . . . . . 222

5.5.4 Résolution d'équations différentielles par changement de variable . . . . . . . . . . . . . . . . . . 224

5.5.5 Application aux équations différentielles linéaires du premier ordre avec problèmes de raccord

des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 225

5.5.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 227

6 Étude des courbes planes230

6.1 Fonctions à valeurs dansR2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 230

6.1.2 Dérivation du produit scalaire et du déterminant . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 232

6.2 Arcs paramétrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 233

6.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 233

6.2.2 Étude locale d'un arc paramétrée . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 233

Étude d'un point stationnaire avec des outils de terminale,première période . . . . . . . . . . . . 234

Étude d'un point stationnaire avec les développements limités, seconde période . . . . . . . . . . 234

Branches infinies des courbes paramétrées . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 237

6.2.3 Étude complète et tracé d'une courbe paramétrée . . . . .. . . . . . . . . . . . . . . . . . . . . . . 240

6.3 Etude d'une courbe polairef(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 244

6.3.2 Etude d'une courbef(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.3.3 La cardioïde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 246

6.3.4 La strophoïde droite . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 247

6.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 248

6.4.1 Fonctions vectorielles . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 248

6.4.2 Courbes en coordonnées cartésiennes . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 248

6.4.3 Courbes polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 263

7 Coniques271

7.1 Définitions et premières propriétés . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 272

7.1.1 Définition monofocale . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 272

7.1.2 Équation cartésienne d'une conique . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 272

7.1.3 Équation polaire d'une conique . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 273

7.2 Étude de la parabole :e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.3 Étude de l'ellipse :0e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

7.4 Étude de l'hyperbole :1e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

7.5 Définition bifocale de l'ellipse et de l'hyperbole . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.6 Courbes algébriques dans le plan . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 282

7.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 286

5

7.7.1 En général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 286

7.7.2 Paraboles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 286

7.7.3 Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 288

7.7.4 Hyperboles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 291

7.7.5 Coniques et coordonnées polaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 294

7.7.6 Courbes du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 295

8 Nombres entiers naturels, ensembles finis, dénombrements304

8.1 Ensemble des entiers naturels - Récurrence . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 304

8.1.1 Ensemble des entiers naturels . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 304

8.1.2 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 305

8.1.3 Suite définie par récurrence . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 306

8.1.4 Notationset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8.1.5 Suites arithmétiques et géométriques . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 307

8.2 Ensembles finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 308

8.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 308

8.2.2 Propriétés des cardinaux . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 308

8.2.3 Applications entre ensembles finis . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 310

8.3 Opérations sur les ensembles finis . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 310

8.4 Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 312

8.4.1 Nombre dep-listes d'un ensemble fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 312

8.4.2 Nombre d'applications d'un ensemble fini dans un ensemble fini . . . . . . . . . . . . . . . . . . . 312

8.4.3 Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 313

8.4.4 Combinaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 313

8.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 318

8.5.1 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 318

8.5.2 Sommes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 323

8.5.3 Produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 325

8.5.4 Factorielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 326

8.5.5 Coefficients binomiaux, calculs de somme . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 326

8.5.6 Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 332

9 CorpsRdes nombres réels339

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 339

9.2 Le corps des réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 340

9.3 Valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 341

9.4 Majorant, minorant, borne supérieure . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 342

9.5 Droite numérique achevée

R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

9.6 Intervalles deR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 344

9.7 Propriété d'Archimède . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 344

9.8 Partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 345

9.9 Densité deQdansR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

9.10 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 347

9.10.1 Inégalités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 347

9.10.2 Borne supérieure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 348

9.10.3 Rationnels, irrationnels, densité . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 350

9.10.4 Partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 353

10 Suites de nombres réels354

10.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 354

10.1.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 354

10.1.2 Opérations sur les suites . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 354

10.2 Convergence d'une suite . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 356

10.2.1 Suites convergentes, divergentes . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 356

10.3 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 358

10.3.1 Opérations algébriques sur les limites . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 358

10.3.2 Limites et relations d'ordre . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 360

10.3.3 Limites infinies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 361

10.4 Suite extraite d'une suite . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 362

10.5 Suites monotones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 363

10.5.1 Théorème de la limite monotone . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 363

6

10.5.2 Suites adjacentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 364

10.5.3 Approximation décimale des réels . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 365

10.5.4 Segments emboités et théorème de Bolzano-Weierstrass . . . . . . . . . . . . . . . . . . . . . . . . 366

10.6 Suites géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 367

10.7 Relations de comparaison . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 368

10.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 368

10.7.2 Suite dominée par une autre . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 368

10.7.3 Suite négligeable devant une autre . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 369

10.7.4 Suites équivalentes . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 370

10.8 Comparaison des suites de référence . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 371

10.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 374

10.9.1 Avec les définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 374

10.9.2 Convergence,divergence de suites . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 376

10.9.3 Relations de comparaison . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 380

10.9.4 Suites monotones et bornées . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 384

10.9.5 Sommes géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 389

10.9.6 Suites adjacentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 390

10.9.7 Suites extraites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 394

10.9.8 Suites équivalentes . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 395

10.9.9 Étude de suites données par une relation de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . 407

10.9.10Étude de suites définies implicitement . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 410

11 Fonctions d'une variable réelle à valeurs réelles414

11.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 414

11.1.1 L'ensembleF(I,R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

11.1.2 Fonctions bornées . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 415

11.1.3 Monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 416

11.1.4 Parité périodicité . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 416

11.1.5 Fonctions Lipschitziennes . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 417

11.2 Limite et continuité en un point . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 418

11.2.1 Voisinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 418

11.2.2 Notion de limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 418

11.2.3 Opérations algébriques sur les limites . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 421

11.2.4 Continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 423

11.2.5 Limite à gauche, à droite, continuité à gauche, à droite . . . . . . . . . . . . . . . . . . . . . . . . . 423

11.2.6 Limites et relation d'ordre . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 424

11.2.7 Théorème de composition des limites . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 425

11.2.8 Image d'une suite par une fonction . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 426

11.2.9 Théorème de la limite monotone . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 427

11.3 Étude locale d'une fonction . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 429

11.3.1 Domination, prépondérance . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 429

Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 429

Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 429

Opérations sur les relations de comparaison . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 430

Exemples fondamentaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 430

11.3.2 Fonctions équivalentes . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 430

Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 430

Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 431

11.4 Propriétés globales des fonctions continues . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

11.4.1 Définitions et propriétés de base . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 433

Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 433

Opérations sur les fonctions continues . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 434

11.4.2 Les théorèmes fondamentaux . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 434

Le théorème des valeurs intermédiaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 434

Fonction continue sur un segment . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 436

Fonctions uniformément continues . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 438

Théorème de la bijection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 438

11.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 440

11.5.1 Avec les définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 440

11.5.2 Limites d'une fonction à valeurs réelles . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 440

11.5.3 Comparaison des fonctions numériques . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 446

7

11.5.4 Continuité des fonctions numériques . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 453

11.5.5 Théorème des valeurs intermédiaires . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 457

11.5.6 Continuité sur un segment . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 461

11.5.7 Fonctions Lipschitziennes . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 462

11.5.8 Continuité uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 464

11.5.9 Equations fonctionnelles . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 465

11.5.10Bijection continue . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 467

12 Dérivation des fonctions à valeurs réelles469

12.1 Dérivée en un point, fonction dérivée . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 469

12.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 469

12.1.2 Interprétations de la dérivée . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 470

Interprétation géométrique . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 470

Interprétation cinématique . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 471

Interprétation analytique . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 471

12.1.3 Dérivabilité et continuité . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 471

12.1.4 Fonction dérivée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 472

12.2 Opérations sur les dérivées . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 472

12.3 Étude globale des fonctions dérivables . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 475

12.3.1 Extremum d'une fonction dérivable . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 475

12.3.2 Théorème de Rolle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 475

Interprétation graphique . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 476

Interprétation cinématique . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 476

12.3.3 Égalité des accroissements finis . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 476

12.3.4 Inégalité des accroissements finis . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 477

12.3.5 Application : Variations d'une fonction . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 478

12.3.6 Condition suffisante de dérivabilité en un point . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 478

12.4 Dérivées successives . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 479

12.4.1 Dérivée seconde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 479

12.4.2 Dérivée d'ordren. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

12.4.3 Fonctions de classeCn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

12.5 Fonctions convexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 481

12.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 486

12.6.1 Dérivabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 486

12.6.2 Dérivées d'ordren, formule de Leibniz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .494

12.6.3 Applications de la dérivation . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 498

12.6.4 Recherche d'extrémums . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 501

12.6.5 Théorème de Rolle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 501

12.6.6 Théorème des accroissements finis . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 506

12.6.7 Application aux équations différentielles linéaires du premier ordre avec problèmes de raccord

des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 508

12.6.8 Études de suites réelles . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 509

12.6.9 Convexité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 512

12.6.10Équations fonctionnelles . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 515

13 Intégration sur un segment des fonctions à valeurs réelles517

13.1 Fonctions en escaliers . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 518

13.1.1 Subdivision d'un segment . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 518

13.1.2 Fonctions en escaliers . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 518

13.1.3 Intégrale d'une fonction en escaliers . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 519

13.1.4 Propriétés de l'intégrale d'une fonction en escaliers . . . . . . . . . . . . . . . . . . . . . . . . . . 520

13.2 Fonctions continues par morceaux . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 521

13.2.1 Définition et propriétés . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 521

13.2.2 Approximation des fonctions continues par morceauxpar les fonctions en escalier . . . . . . . . . 522

13.2.3 Intégrale d'une fonction continue par morceaux . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 523

13.2.4 Propriétés de l'intégrale . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 524

13.2.5 Fonctions continues par morceaux sur un intervalle .. . . . . . . . . . . . . . . . . . . . . . . . . . 526

13.2.6 Nullité de l'intégrale d'une fonction continue . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 526

13.2.7 Majorations fondamentales . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 527

13.2.8 Valeur moyenne d'une fonction . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 529

13.2.9 Invariance de l'intégrale par translation . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 529

8

13.3 Primitive et intégrale d'une fonction continue . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

13.4 Calcul de primitives et d'intégrales . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 533

13.4.1 Intégration par parties . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 533

13.4.2 Changement de variables . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 533

13.4.3 Changement de variable affine . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 534

13.4.4 Étude d'une fonction définie par une intégrale . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 535

13.5 Formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 537

13.5.1 Formule de Taylor avec reste intégral . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 537

13.5.2 Inégalité de Taylor-Lagrange. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 538

13.5.3 Formule de Taylor-Young . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 539

13.5.4 Utilisation des trois formules de Taylor . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 540

13.6 Méthode des rectangles, Sommes de Riemann . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 542

13.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 546

13.7.1 Calcul de primitives . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 546

13.7.2 Calcul d'intégrales . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 547

13.7.3 Linéarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 547

13.7.4 Intégration par parties . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 548

13.7.5 Fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 551

13.7.6 Changement de variable . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 554

13.7.7 Calcul de primitives et d'intégrales - Techniques mélangées . . . . . . . . . . . . . . . . . . . . . . 557

13.7.8 Propriétés de l'intégrale . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 564

13.7.9 Majorations d'intégrales . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 566

13.7.10Limite de fonctions définies par une intégrale . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 569

13.7.11Théorème fondamental, étude de fonctions définies par une intégrale . . . . . . . . . . . . . . . . . 572

13.7.12Suites dont le terme général est défini par une intégrale . . . . . . . . . . . . . . . . . . . . . . . . 580

13.7.13Algèbre linéaire et intégration . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 589

13.7.14Formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 590

13.7.15Sommes de Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 592

14 Développements limités596

14.1 Développements limités . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 596

14.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 596

14.1.2 DL fondamental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 596

14.1.3 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 597

14.1.4 DL et régularité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 598

14.2 Développement limité des fonctions usuelles . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 599

14.2.1 Utilisation de la formule de Taylor-Young . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 599

14.3 Opérations sur les développements limités . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 600

14.3.1 Combinaison linéaire et produit . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 600

14.3.2 Composée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 600

14.3.3 Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 601

14.3.4 Développement limité d'une primitive . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 601

14.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 605

14.4.1 Calcul de développements limités . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 605

14.4.2 Limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 615

14.4.3 Applications à l'étude de fonctions . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 622

14.4.4 Branches infinies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 627

14.4.5 Développements asymptotiques . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 629

14.4.6 Applications à l'étude de suites . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 631

14.4.7 Applications à l'étude locale des courbes paramétrées . . . . . . . . . . . . . . . . . . . . . . . . . 634

14.4.8 Application aux équations différentielles linéaires du premier ordre avec problèmes de raccord

des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 637

15 Propriétés métriques des arcs639

15.0.9 Difféomorphismes. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 639

15.0.10Arcs paramétrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 640

15.1 Propriétés métriques des courbes planes . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 640

15.1.1 Longueur, abscisse curviligne d'un arc paramétré . .. . . . . . . . . . . . . . . . . . . . . . . . . . 640

15.1.2 Courbure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 642

15.1.3 Calcul pratique de la courbure . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 644

15.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 650

9

15.2.1 Calcul de longueur . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 650

15.2.2 Calcul de courbure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 650

15.2.3 Développée, développante . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 652

15.2.4 Exercices divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 653

16 Suites et fonctions à valeurs complexes655

16.1 Suites complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 655

16.2 Continuité des fonctions à valeurs complexes . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 657

16.3 Dérivabilité des fonctions à valeurs complexes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

16.4 Intégration des fonctions à valeurs complexes . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

16.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 661

16.5.1 Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 661

16.5.2 Dérivées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 661

16.5.3 Intégrales et primitives . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 662

17 Notions sur les fonctions de deux variables réelles664

17.1 Continuité des fonctions à deux variables . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 664

17.2 Dérivées partielles, fonctionsC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

17.3 Différentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 672

17.4 Extremum d'une fonction à deux variables . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 673

17.5 Dérivées partielles d'ordre2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676

17.6 Exemples d'équations aux dérivées partielles . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

17.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 683

17.7.1 Limite et continuité . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 683

17.7.2 Dérivées partielles . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 685

17.7.3 Fonctions de classeC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

17.7.4 Dérivées de fonctions composées . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 690

quotesdbs_dbs47.pdfusesText_47
[PDF] livre maths terminale s hachette pdf

[PDF] livre mercatique terminale stmg hachette corrigé

[PDF] livre merise pdf

[PDF] livre momo petit prince des bleuets

[PDF] livre monnaie

[PDF] LIVRE NO PASARAN, LE JEU

[PDF] livre noir du communisme pdf

[PDF] livre ou film

[PDF] Livre papa longues jambes urgent questions poser

[PDF] livre papier vs livre numérique

[PDF] livre parascolaire pour 7eme annee de base

[PDF] livre phare 4eme en ligne gratuit

[PDF] livre phare 4° 28 p 144

[PDF] livre physique chimie seconde hachette 2010

[PDF] livre physique chimie seconde hachette 2014