[PDF] Probabilités et variables aléatoires





Previous PDF Next PDF



LOI BINOMIALE

Propriété : On considère une expérience aléatoire à deux issues A et B avec les probabilités P(A) et P(B). Si on répète l'expérience deux fois de suite :.



Exercices de probabilités avec éléments de correction Memento

Exercice 1. Lois binomiale et géométrique. Soit X1X2



Chapitre 10. Problèmes de convergence et approximations en

4. 2.2 Convergence en loi d'une suite de variables hypergéométriques vers une variable binomiale . . . 5. 2.3 Convergence en loi d'une suite de variables 



7 Lois de probabilité

calculer des probabilités sur la loi binomiale 7 Lois de probabilité. Exemple 7.22 ??(Suite)Supposons que le chercheur tire au hasard 10 personnes de.



Probabilités et statistiques Travaux pratiques avec Matlab

Dans la pratique on met en œuvre des algorithmes rapides de génération de suites pseudo-aléatoires. Matlab permet de simuler une loi uniforme (resp. normale) 



LOI BINOMIALE

On répète l'expérience deux fois de suite. 1) Représenter l'ensemble des issues de ces expériences dans un arbre. 2) Déterminer les probabilités suivantes : a) 



Probabilités et variables aléatoires

est une suite croissante de nombres réels positifs ti où ti désigne l' On dit qu'une v.a.r. X à valeurs dans {0 1



LOI BINOMIALE

Une expérience consiste à tirer au hasard 4 fois de suite une boule et de la remettre. 1) Déterminer la loi binomiale. 2) Calculer la probabilité d'obtenir 3 



Cours de probabilités et statistiques

2.3 Schéma de Bernoulli et loi binomiale . Exemple 6 (suite) : quelle est la probabilité pour que la seconde boule tirée soit rouge ?



PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

pourront nous permettre par la suite d'analyser les fluctuations de On dit que la variable aléatoire X suit une loi binomiale de paramètres n et p .

Probabilités et variables aléatoires

Probabilités et variables aléatoires

Résumé

Ce chapitre introduit les concepts essentielles des modèles proba- bilistes afin d"aborder l"inférence statistique : définition d"un évé- nement aléatoire, des probabilités discrètes ou continues, des pro- babilités conditionnelles et de la notion d"indépendance en proba- bilités. Après avoir défini la notion de variable aléatoire, celles de lois les plus utilisées sont décrites : discrètes de Bernoulli; bino- miales, géométrique, de Poisson; continues uniforme, exponentielle, Gamma, normale, du chi-deux, de Student et de Fisher. Espérance et variance d"une variable aléatoires sont définies, avant de signaler les deux théorèmes importants : loi des grands nombre et théorème de central limite.

Retour au

plan du cour s

1 Introduction

Dans des domaines très différents comme les domaines scientifique, socio- logique ou médical, on s"intéresse à de nombreux phénomènes dans lesquels apparaît l"effet du hasard. Ces phénomènes sont caractérisés par le fait que les résultats des observations varient d"une expérience à l"autre. Une expérience est appelée "aléatoire" s"il est impossible de prévoir à l"avance son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats différents : succession d"appels à un standard téléphonique non surchar gé; observ ationde la durée de vie d"un indi viduanon ymedans une po pula- tion; observ ationde la durée de fonctionnement sans panne d"appareil ; jeu de pile ou f ace.

Voici d"autres exemples de domaines d"applications des probabilités.FiabilitéOn considère un système formé par plusieurs composants. On s"in-

téresse à la fiabilité du système : on va chercher à calculer la probabilité que le système fonctionne encore à un instant donné. Il faut pour cela connaître la probabilité que chacun des composants fonctionne à cet instant et tenir compte du fait que les composants ne fonctionnent peut-être pas indépendamment les uns des autres. Fatigue des matériauxLes données de fatigue des matériaux sont très dis- persées. On fait alors appel à des modélisations probabilistes et à des méthodes statistiques afin, par exemple, de construire des intervalles de confiance pour le nombre moyen de cycles jusqu"à la rupture. TélécommunicationsEn télécommunications, on doit souvent tenir compte du "bruit" dans les systèmes. Par exemple, supposons qu"un système émet soit un0, soit un1, et qu"il y a un risquepque le chiffre émis soit mal reçu. Il est alors intéressant de calculer la probabilité qu"un0ait été émis, sachant qu"un

0 a été reçu, ou encore la probabilité qu"il y ait une erreur de transmission.

2 Notion de probabilité

2.1 événement

DÉFINITION1. - On appelle univers associé à une expérience aléatoire l"en- semble de tous les résultats possibles de cette expérience.

Le choix de l"ensemble

comporte une part d"arbitraire. Il dépend de l"idée que l"on a, a priori, sur les résultats de l"expérience aléatoire. Donnons quelques exemples : 1.

On lance une pièce de monnaie. Pour l"ensemble

, on peut choisir soit =fpile, faceg, soit =fpile, face, trancheg: 2. On s"intéresse à l"état de fonctionnement d"un système. Dans ce cas f0;1gavec la convention0si le système est en panne et1s"il fonctionne. 3. Le résultat de l"e xpériencealéatoire est le nombre de tirages nécessaires dans un jeu de pile ou face jusqu"à l"obtention du premier "pile". Dans ce cas, =f1;2;3;g=N:1

Probabilités et variables aléatoires

4. On considère la succession des appels à un standard téléphonique non surchargé et l"on étudie la répartition des instants où le standard reçoit un appel, à partir d"un instant choisi comme origine (on admet que deux appels ne peuvent se produire rigoureusement au même instant et que le phénomène est limité dans le temps). Une réalisation de cet événement est une suite croissante de nombres réels positifstioùtidésigne l"instant d"enregistrement du i-ème appel : =f0< t1< t2<< tn< t n+1Nous constatons que peut être fini (exemples 1 et 2), dénombrable (exemples

3 et 5) ou non dénombrable (exemples 4 et 5). Lorsque

est fini ou dénom- brable, on parle d"univers discret. Sinon on parle d"univers continu. DÉFINITION2. - Etant donnée une expérience aléatoire, un événement aléa- toire est une partie de l"ensemble des résultats possibles de l"expérience, c"est donc un sous-ensembleAde l"univers . On dit que l"événementAest réalisé si le résultat!de l"expérience appartient àA. On sait que l"événementAest réalisé seulement une fois l"expérience aléatoire réalisée.

Exemples :

Si l"on s"intéresse à l"événement sui vant: "on a obtenu un chif frepair lors d"un lancer d"un dé à 6 faces", on introduitA=f2;4;6g, qui est un sous-ensemble de =f1;2;3;4;5;6g. Si l"on s"intéresse à l"événement sui vant: "la durée de vie du composant est supérieure ou égale à 1000 heures",A= [1000;+1[est un sous- ensemble de =R+. L"ensemble;est appelé l"événement impossible et est appelé l"événement certain.

2.2 Opérations sur les événements

Les événements aléatoires étant des ensembles, introduisons les opérations

ensemblistes classiques de la théorie des ensembles.DÉFINITION3. - On appelle événement contraire deA, notéAC, le complé-

mentaire deAdans A C=f!2 :! =2Ag: L"événement contraireACest réalisé si et seulement siAn"est pas réalisé. Exemple :SiAest l"événement "la durée de vie du composant est supérieure ou égale à 1000 heures" :A= [1000;+1[, l"événement contraire est l"événe- ment "la durée de vie du composant est strictement inférieure à 1000 heures" : A

C= [0;1000[.

DÉFINITION4. - SoientAetBdeux événements d"un univers L "événement" AetB" est celui qui est réalisé siAetBsont réalisés.

C"est l"intersection

A\B=f!2

:!2Aet!2Bg: L "événement" AouB" est celui qui est réalisé si l"un des deux est réalisé ou si les deux sont réalisés. C"est l"union

A[B=f!2

:!2Aou!2Bg: L "inclusionABsignifie que l"événementAne peut être réalisé sans queBle soit. DÉFINITION5. - Deux événementsAetBsont dits incompatibles si la réa- lisation de l"un implique la non-réalisation de l"autre.

Dans l"espace

, deux événements incompatibles sont représentés par deux parties disjointes. SiA\B=;, alorsAetBsont incompatibles. Il est clair, par exemple queAetACsont incompatibles.

2.3 Probabilité

Définition

DÉFINITION6. - Soit

un univers associé à une expérience aléatoire et soit

Al"ensemble des parties de

. Une probabilitéPsur l"espace( ;A)est une application deAdans[0;1]telle que2

Probabilités et variables aléatoires

1.P( ) = 1: 2. Si (An)n1est une famille d"événements deA2 à 2 incompatibles, P +1[n=1An =1X n=1P(An):

Le triplet(

;A;P)est appelé espace de probabilité. On peut déduire de la définition précédente un certain nombre de propriétés. PROPOSITION7. - SoientAetBdeux événements aléatoires.

1.P(;) = 0.

2.P

N[n=1An

NP n=1P(An): 3.

Si A1;:::;ANsont deux-à-deux incompatibles,

P

N[n=1An

=NX n=1P(An):

4.P(AC) = 1P(A).

5.

Si AB,P(A)P(B).

6.P(A[B) =P(A) +P(B)P(A\B):

7. Si est fini ou dénombrable, alors pour tout événementA,

P(A) =X

!2AP(f!g):

Exemple : Probabilité uniforme

Soit un ensemble fini : =f!1;:::;!Ng. Pour touti2 f1;2;:::;Ng, on poseP(f!ig) =1N :Alors, pour toute partieAde , on a

P(A) =X

!2AP(f!g) =Card(A)N =Card(A)Card( ):Dans le cas du lancer de dé à 6 faces, pour tout!2 f1;2;:::;6g,P(f!g) = 1=6. Si on note l"événement "on a obtenu un chiffre pair" parA=f2;4;6g, alors

P(A) = 3=6 = 1=2:

Remarques :Pour un problème donné, il y a souvent plusieurs modélisations possibles, c"est-à-dire que le choix de l"espace de probabilité n"est pas unique. Remarque :Choisir un élément au hasard signifie que les divers choix pos- sibles sont équiprobables, donc que l"ensemble est muni de la probabilité uniforme. Dans ce cas, tous les calculs sont simples et se ramènent souvent à des calculs d"analyse combinatoire.

2.4 Probabilités conditionnelles

Dans le chapitre précédent, on a parlé de la probabilité d"un événement sans tenir compte de la réalisation d"autres événements. En pratique, on peut considérer plusieurs événements, certains pouvant avoir une influence sur la réalisation d"autres événements. Exemple :On lance deux dés. Soient les événementsA=fla somme est

11getB=fle lancer du 1er dé donne6g. Il est clair que la réalisation deB

influe sur la réalisation deA. Supposons que l"on s"intéresse à la réalisation d"un événementA, tout en sachant qu"un événementBest réalisé. SiAetBsont incompatibles, alors la question est réglée :Ane se réalise pas. Mais siA\B6=;, il est possible queAse réalise. Cependant, l"espace des événements possibles n"est plus tout entier, mais il est restreint àB. En fait, seule nous intéresse la réalisation deAà l"intérieur deB, c"est-à-direA\Bpar rapport àB. Ceci justifie la définition suivante.

DÉFINITION8. - Soit(

;A;P)un espace de probabilité. SoientAetBdeux événements aléatoires tels queP(B)6= 0. On appelle probabilité condition- nelle deAsachantBla quantité

P(AjB) =P(A\B)P(B):3

Probabilités et variables aléatoires

Remarque :On a les égalités suivantes :

SiP(B)>0;P(A\B) =P(AjB)P(B):

SiP(A)>0;P(A\B) =P(BjA)P(A):

PROPOSITION9. -(formule des probabilités totales)Soit(Ai)i2Iune fa- mille d"événements aléatoires formant une partition de , c"est-à-dire tels que : -[i2IAi= -Ai\Aj=;pour touti6=j. On suppose de plus queP(Ai)6= 0pour touti2I. Alors

P(A) =X

i2IP(AjAi)P(Ai): PROPOSITION10. -(formule de Bayes)Sous les mêmes hypothèses que la proposition précédente, on a :

P(AijA) =P(AjAi)P(Ai)P

i2IP(AjAi)P(Ai): La formule de Bayes (publiée après sa mort en 1763) présente un grand intérêt car elle permet de modifier notre connaissance des probabilités en fonction d"informations nouvelles. Cette formule joue donc un rôle très important dans la statistique bayésienne.

2.5 Indépendance

DÉFINITION11. - Soit(

;A;P)un espace de probabilité, et soientAetB deux événements aléatoires. On dit queAetBsont indépendants si

P(A\B) =P(A)P(B):

Remarque :AetBsont indépendants si et seulement siP(AjB) =P(A): pas modifiée par une information concernant la réalisation de l"événementB.

PROPOSITION12. - SiAetBsont deux événements indépendants alors :-ACetBsont également indépendants;

-AetBCsont également indépendants; -ACetBCsont également indépendants. Nous allons maintenant définir l"indépendance de plus de 2 événements aléa- toires.

DÉFINITION13. - Soit(

;A;P)un espace de probabilité. Pourn2, soientA1;A2;:::An, des événements aléatoires. Ces événement ssont deux à deux indépendants si pour tout couple (i;j) aveci6=jon a

P(Ai\Aj) =P(Ai)P(Aj):

Ces événements s ontindépendants (dans leur ensemble) si pour tout k2 f2;3;:::;nget tout choix d"indices distinctsi1;:::;ik, on a

P(Ai1\Ai2\:::\Aik) =P(Ai1)P(Ai2):::P(Aik):

3 Notion de variable aléatoire

3.1 Introduction

Dans de nombreuses expériences aléatoires, on n"est pas intéressé direc- tement par le résultat de l"expérience, mais par une certaine fonction de ce résultat. Considérons par exemple l"expérience qui consiste à observer, pour chacune desnpièces produites par une machine, si la pièce est défectueuse ou non. Nous attribuerons la valeur1à une pièce défectueuse et la valeur0à une pièce en bon état. L"univers associé à cette expérience est =f0;1gn: Ce qui intéresse le fabricant est la proportion de pièces défectueuses pro- duites par la machine. Introduisons donc une fonction de dansRqui à tout != (!1;!2;:::;!n)de associe le nombre

X(!) =nX

i=1! in qui correspond à la proportion de pièces défectueuses associée à l"observation de!. Une telle fonctionXdéfinie sur et à valeurs dansRs"appelle une variable aléatoire réelle. 4

Probabilités et variables aléatoires

3.2 Définitions

Variable aléatoire réelle

DÉFINITION14. - Etant donné un univers

, une variable aléatoire réelle (v.a.r.) est une application de dansR: X:!2

7!X(!)2R:

Loi de probabilité

DÉFINITION15. - Soit

un univers muni d"une probabilitéP, et soitXune v.a.r. On appelle loi de probabilité deX, notéePX, l"application qui à toute partieAdeRassocie P

X(A) =P(f!2

:X(!)2Ag): Remarque :Dans la suite du cours, on utilisera la notation abrégée : P(f!2 :X(!)2Ag) =P(X2A). De même, on noteraP(X=x) la probabilitéP(f!2 :X(!) =xg). PROPOSITION16. - L"applicationPXdéfinit une probabilité surR.

Fonction de répartition

DÉFINITION17. - La fonction de répartition de la v.a.r.Xest définie par F

X(x) =P(Xx); x2R:

Propriétés de la fonction de répartition :

1.0FX1.

2.FXtend vers0en1et vers1en+1.

3.FXest croissante.

4.FXest continue à droite.

PROPOSITION18. - On a l"identité

P(a < Xb) =FX(b)FX(a);8a < b:Remarque :On montre facilement queFXest continue si et seulement siquotesdbs_dbs47.pdfusesText_47
[PDF] loi bioéthique 2016

[PDF] loi d inertie définition

[PDF] loi d ohm contrôle

[PDF] loi d ohm et caractéristique d une résistance

[PDF] Loi d'Ohm

[PDF] Loi dohm

[PDF] Loi d'Ohm !

[PDF] loi d'ohm et le proportinnalité

[PDF] loi d'ohm trace le graphique de U en fonction de I par rapport ? un tableau

[PDF] loi d'additivité des intensités

[PDF] loi d'additivité des intensités dans un circuit en dérivation

[PDF] loi d'additivité des tensions

[PDF] loi d'additivité des tensions dans un circuit en dérivation

[PDF] loi d'additivité des tensions exercices

[PDF] loi dohm 3eme