[PDF] PHQ114: Mecanique I 30 mai 2018 aux particules





Previous PDF Next PDF



PHYSIQUE-CHIMIE La sonde spatiale Rosetta

16 déc. 2015 Lorsqu'une sonde passe à proximité d'une planète quels sont les effets constatés sur sa vitesse ? 3. Quelle est la cause



Episode 1 : Lancement de la sonde Rosetta Comment atteindre la

1. Lorsqu'une sonde passe à proximité d'une planète quels sont les effets constatés sur sa trajectoire ? La sonde qui se déplace dans l'espace selon une 



Retour dusage Physique Chimie

3 août 2014 1-Lorsqu'une sonde passe à proximité d'une planète quels sont les ... d'une planète



Le Vol de la Fusée Stabilité et Trajectographie

aligné le mieux possible avec la direction de sa vitesse. Autrement dit : Une fusée est Mais quels sont les effets de cette position ? Que se passe-t-il ...



ASTRO-PHYSIQUE : LA FRONDE GRAVITATIONNELLE

4 avr. 2019 les orbites des différentes planètes sont circulaires ... résumé



PHQ114: Mecanique I

30 mai 2018 aux particules une accélération constante a = aex lorsqu'elles ne sont pas dans les cavités. À l'intérieur de la ie cavité la vitesse vi ...



Activité 2 Lassistance gravitationnelle correction Comprendre

Si la sonde passe trop près de l'astre elle risque de s'écraser dessus. Raisonner. 3) Quel phénomène est responsable de la modification du mouvement d'une 



5G3 – Mécanique

Toutes les choses sont placées dans le temps comme un ordre de succession et dans l'espace Le mouvement est uniforme si sa vitesse est constante.



Fiches pédagogiques daide à lenseignement pratique du risque

On remarque immédiatement la différence entre les formes des ondes: l'onde P est surdimensionnée alors que les ondes de surface sont trop petites par rapport à 



Problèmes de physique de concours corrigés – 1ère année de

sortie des diaphragmes (D1) et (D2)) sa vitesse dans le laboratoire est notée La distance a à laquelle la particule ? passe au plus près du noyau.

MÉCANIQUE I

PHQ114

par

David SÉNÉCHAL

Ph.D., Professeur Titulaire

UNIVERSITÉ DESHERBROOKE

Faculté des sciences

Département de physique

30 mai 2018

2

Table des matières

1 Introduction historique7

2 Mouvement d"un point9

A Mouvement en une dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

B Mouvement en trois dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

2.B.1 Vecteurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.B.2 Dérivées d"un vecteur : vitesse et accélération. . . . . . . . . . . . . . . . . . . . . . . .14

C Rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

D Référentiels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

2.D.1 Changement d"origine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

2.D.2 Changement de référentiel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

2.D.3 Transformation de la vitesse et de l"accélération. . . . . . . . . . . . . . . . . . . . . . .22

3 Les lois du mouvement29

A Les lois du mouvement de Newton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3.A.1 LesPrincipiade Newton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3.A.2 Première loi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

3.A.3 Deuxième loi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

3.A.4 Troisième loi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

B Systèmes de particules et centre de masse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

C Gravitation universelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

3.C.1 Loi de la gravitation universelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

3.C.2 Champ gravitationnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

3.C.3 Forces fondamentales et forces macroscopiques. . . . . . . . . . . . . . . . . . . . . . .37

4 Applications élémentaires des lois du mouvement43

A Déterminisme classique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

4.A.1 Équations du mouvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

4.A.2 Solution numérique des équations du mouvement. . . . . . . . . . . . . . . . . . . . .44

B Forces élastiques ou de cohésion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

4.B.1 Loi de Hooke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

4.B.2 Force de contrainte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

4.B.3 Force d"étirement ou tension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

4.B.4 Pendule simple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

C Pression et principe d"Archimède. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

4.C.1 Variation de la pression en fonction de la hauteur. . . . . . . . . . . . . . . . . . . . .51

4.C.2 Principe d"Archimède. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

D Frottement et viscosité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

4.D.1 Coefficients de friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

4.D.2 Force de viscosité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

E Mouvement dans un champ magnétique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

5 Énergie et Travail69

A Conservation de l"énergie en une dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

B Conservation de l"énergie en trois dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

5.B.1 Forces conservatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

5.B.2 Forces centrales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

C Potentiel gravitationnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

5.C.1 Potentiel gravitationnel d"un objet sphérique. . . . . . . . . . . . . . . . . . . . . . . . .74

5.C.2 Force exercée sur un objet sphérique. . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

3

4TABLE DES MATIÈRES

5.C.3 Potentiel gravitationnel à la surface de la Terre. . . . . . . . . . . . . . . . . . . . . . .76

5.C.4 Énergie potentielle gravitationnelle et centre de masse. . . . . . . . . . . . . . . . . .76

D Énergie potentielle et stabilité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

E Travail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.E.1 Théorème travail-énergie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.E.2 Travail et forces non conservatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

5.E.3 Travail et chemin parcouru. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

5.E.4 Principe de Bernoulli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

F Énergie de plusieurs objets en interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

5.F.1 Théorème travail-énergie dans le cas d"un système de particules. . . . . . . . . . . . .84

G Conservation de l"énergie et formes d"énergie. . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

6 Conservation de la quantité de mouvement95

A Collisions élastiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

6.A.1 Collision en une dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

6.A.2 Collision en deux dimensions : angle de diffusion. . . . . . . . . . . . . . . . . . . . . .97

6.A.3 Cas de masses égales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

6.B.2 Variation de l"énergie interne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

C Objets à masse variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

D Invariance par translation et conservation de la quantité de mouvement. . . . . . . . . . . .106

7 Mouvement dans un champ de force central113

A Moment cinétique et loi des aires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

7.A.1 Moment d"un vecteur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

7.A.2 Conservation du moment cinétique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

7.A.3 Loi des aires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

B Potentiel central et orbites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

C Problème de Kepler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

7.C.1 Propriétés des coniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

7.C.2 Correspondance avec les coordonnées cartésiennes. . . . . . . . . . . . . . . . . . . . .124

D Orbites elliptiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

7.D.1 Troisième loi de Kepler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

7.D.2 Énergie, moment cinétique et vitesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

7.D.3 Équation de Kepler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

7.D.4 Éléments d"une orbite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

E Le problème à deux corps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

8 Moment cinétique et rotation des corps137

A Moment cinétique et centre de masse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

8.A.1 Absence de couple interne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

8.A.3 Couple dans un champ gravitationnel uniforme. . . . . . . . . . . . . . . . . . . . . . .140

8.A.4 Conservation du moment cinétique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

B Invariance par rotation et conservation du moment cinétique. . . . . . . . . . . . . . . . . .141

C Équilibre statique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

D Vitesse angulaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

E Rotation autour d"un axe fixe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

8.E.1 Théorème de Huygens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

F Énergie cinétique de rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

8.F.1 Relation entre couple et énergie potentielle. . . . . . . . . . . . . . . . . . . . . . . . .149

G Mouvement de précession. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

8.G.1 Précession des équinoxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

8.G.2 Précession des spins nucléaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

8.G.3 Résonance magnétique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

H Mouvement libre d"un objet rigide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

TABLE DES MATIÈRES5

8.H.1 Matrice d"inertie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

8.H.2 Axes fixes à l"objet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

8.H.3 Énergie de rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

9 Référentiels accélérés167

A Forces d"inertie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

9.A.1 Principe d"équivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

B Référentiel tournant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

9.B.1 Force centrifuge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

9.B.2 Force de Coriolis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

9.B.3 Force de Coriolis et systèmes climatiques. . . . . . . . . . . . . . . . . . . . . . . . . . .172

9.B.4 Marées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174

9.B.5 Pendule de Foucault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

C Mouvement libre d"un rigide : équations d"Euler. . . . . . . . . . . . . . . . . . . . . . . . . .177

D La toupie symétrique : angles d"Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

9.D.1 Angles d"Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

9.D.2 Précession uniforme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

9.D.3 Nutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

9.D.4 Toupie dormante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

9.D.5 Diagramme énergétique et potentiel effectif. . . . . . . . . . . . . . . . . . . . . . . . .182

10 Relativité restreinte189

A Principe de relativité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

10.A.1 Transformation de Galilée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

B Invariance de la vitesse de la lumière. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

10.B.1 Mesures de la vitesse de la lumière. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

10.B.2 Expérience de Michelson et Morley. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

C Transformation de Lorentz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

10.C.1 Espace-temps et intervalle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

10.C.2 Intervalle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

10.C.3 Contraction des longueurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198

10.C.4 Dilatation du temps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198

10.C.5 Transformation des vitesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200

D Effet Doppler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

10.D.1 Effet Doppler non relativiste : source en mouvement. . . . . . . . . . . . . . . . . . . .202

10.D.2 Effet Doppler non relativiste : observateur en mouvement. . . . . . . . . . . . . . . .202

10.D.3 Effet Doppler relativiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203

10.D.4 Effet Doppler gravitationnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203

E Quadrivecteurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

10.E.1 Invariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

10.E.2 Temps propre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

10.E.3 Quadri vitesse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

F Quantité de mouvement et énergie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

10.F.1 Quadrivecteur impulsion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

10.F.2 Travail et énergie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209

10.F.3 Force et accélération. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210

10.F.4 Particules de masse nulle et effet Doppler. . . . . . . . . . . . . . . . . . . . . . . . . .210

10.F.5 Collisions relativistes et équivalence masse-énergie. . . . . . . . . . . . . . . . . . . . .211

G Problèmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214

11 Annexes219

12 Produit vectoriel et produit triple221

A Produit vectoriel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

B Produit triple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222

13 Coordonnées curvilignes et repères locaux227

A Coordonnées cylindriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

Table des matières

13.A.1 Vitesse et accélération en coordonnées cylindriques. . . . . . . . . . . . . . . . . . . .228

B Coordonnées sphériques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230

14 Notion de gradient233

15 Constantes physiques et astronomiques235

16 L"alphabet grec237

6

CHAPITRE1

Introduction historique

La mécanique est la science du mouvement et de ses causes. Elle est considérée à juste titre comme la base

de l"apprentissage de la physique. Déjà chez les Grecs de l"antiquité des philosophes avaient formulé des

théories sur le mouvement. La pensée de la fin de l"Antiquité et du Moyen âge était dominée par l"oeuvre

d"Aristote(384=322), qui couvre tous les domaines d"étude de la nature, de la logique à la zoologie.

Une part importante de l"oeuvre d"Aristote porte sur le mouvement. Mais Aristote traite du mouvement

comme il traite de la zoologie : par une observation soignée des phénomènes, avec un certain sens de la

classification et, surtout, de manière essentiellementqualitative. Il distingue trois types de mouvement :

le mouvementnaturel, le mouvementviolentet le mouvementvolontaire.

Les anciens distinguaient généralement quatre éléments : laterre, l"eau, l"airet lefeu. À chaque élément

on associait une sphère et les sphères des quatre éléments étaient imbriquées les unes dans les autres

dans l"ordre ci-haut, la terre étant la plus intérieure. Au-delà de la sphère du feu s"étendaient les sphères

célestes, associées aux différents astres. Ainsi, l"explication qu"Aristote donne à la chute d"une pierre est

que celle-ci tend naturellement à rejoindre la sphère de l"élémentterre. La même explication vaut pour

l"élévation dans les airs d"une flamme et l"écoulement de l"eau. D"autre part, Aristote affirme qu"une pierre

B, deux fois plus lourde qu"une autre pierre A, met deux fois moins de temps que A à tomber si on les

relâche simultanément d"une certaine hauteur.

Par contre, le mouvement violent est essentiellement artificiel et temporaire. Une charrette qu"on tire subit

un mouvement violent. L"état naturel des objets terrestres étant le repos, une force est nécessaire pour

qu"un objet puisse se déplacer, même à vitesse constante. On a réalisé assez tôt que ce type d"argument

explique assez mal le mouvement d"une flèche qu"un archer décoche : quelle est donc la force qui fait

avancer la flèche dans son vol, alors qu"elle a perdu contact avec la corde de l"arc? Les aristotéliciens

soutiennent que l"air fendu par la flèche effectue un retour par derrière et pousse constamment la flèche

vers l"avant, jusqu"à ce qu"elle s"arrête et tombe par mouvement naturel. Certains penseurs médiévaux

ont fortement critiqué cette explication, en ajoutant que la flèche recevait une certaine qualité appelée

impetus(élan, en français) lors de son lancement et qu"elle épuisait progressivement cetimpetus. La notion

d"impetusest proche de notre notion de quantité de mouvement, mais il lui manque une définition précise,

quantitative.

Quant au mouvement volontaire, il est le fruit de la volonté des êtres animés : un animal qui se déplace,

essentiellement. On voit à quel point la classification aristotélicienne du mouvement est superficielle et

peu féconde en explications véritables.

Enfin, soulignons que les anciens, suivant Aristote, traçaient une démarcation claire entre la physique

quotesdbs_dbs47.pdfusesText_47
[PDF] lorsqu'une sonde passe a proximité d'une planète quels sont les effets constatés sur sa trajectoire

[PDF] Los amantes de Teruel

[PDF] los amantes de teruel resumen

[PDF] Los Angeles : une ville multiethnique et inégalitaire

[PDF] los angeles dans la mondialisation

[PDF] Los Angeles: une ville multiethnique et inégalitaire

[PDF] Los angels le centre ville

[PDF] los del real y los del barça

[PDF] los hongos

[PDF] los miserables victor hugo pdf

[PDF] los nuevos eldorados

[PDF] Los Rojos : el 18 de julio de 1936

[PDF] Los Rojos : el 18 julio de 1936 Aider moi s'il vous plait

[PDF] los topicos hispanicos

[PDF] los topicos sobre espana