[PDF] Second degré : Résumé de cours et méthodes 1 Définitions : 2





Previous PDF Next PDF



SECOND DEGRE (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRE (Partie 2). I. Résolution d'une équation du second degré.



SECOND DEGRÉ (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRÉ (Partie 1). I. Fonction polynôme de degré 2. 1) Définition.



SECOND DEGRÉ (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRÉ (Partie 1). I. Fonction polynôme de degré 2. Définition : On appelle fonction 



Second degré : Résumé de cours et méthodes 1 Définitions : 2

Résolution dans R de l'équation x2 +2x?3 = 0 : (Par rapport aux formules on a ici : a = 1



SECOND DEGRÉ (Partie 1)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRÉ (Partie 1). I. Fonction polynôme de degré 2. Définition : On appelle fonction 



SECONDE -------- DEVELOPPEMENT ET FACTORISATION

Savoir factoriser une somme algébrique. • Peut-être l'expression est-elle déjà factorisée. Si oui vérifiez que chaque parenthèse est elle-même factorisée.



2nd Grade Mathematics Unpacked Contents For the new Standard

Model with mathematics. Mathematically proficient students in Second Grade model real-life mathematical situations with a number sentence or an equation and.



Arizona Mathematics Standards Second Grade

Arizona Mathematics Standards 2nd Grade. Updated 5-2-2018 2. Second Grade: Overview. More learning time should be devoted to working with whole numbers and 



SECOND DEGRÉ (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRÉ (Partie 2). I. Lecture graphique du signe d'une fonction. 1) Tableau de signes.



SECOND DEGRE (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. SECOND DEGRE (Partie 2). I. Résolution d'une équation du second degré.

Second degré : Résumé de cours et méthodes

1Définitions :

DÉFINITIONOn appelle trinôme du second degré toute fonctionfdéfinie surRparf(x) =ax2+bx+c(a,betcréels aveca6=0).Remarque :Par abus de langage, l"expressionax2+bx+cest aussi appelée trinôme du second degré.

DÉFINITIONOn appelle racine du trinômef, tout réel qui annulef.Exemple :1 est une racine du trinôme 2x2+3x5, car 2(1)2+3(1)5=0.

Remarque :Chercher les racines du trinômeax2+bx+c, revient à résoudre dansRl"équationax2+bx+c=0.

2Factorisation, racines et signe du trinôme :

DÉFINITIONOn appelle discriminant du trinômeax2+bx+c(a6=0), le réelD=b24ac.2-1SiD<0:

Racines :Pas de racines réelles.

Factorisation :Pas de factorisation dansR.

Signe :ax2+bx+cest toujours du signe dea.?

O?ı??a >0

a <01 reSérie Générale - Second degréc

P.Brachet -www .xm1math.net1

2-2SiD=0:

Racines :Une racine réelle dite "double" :x1=b2a.

Factorisation :Pour toutx,ax2+bx+c=a(xx1)2.

Signe :ax2+bx+cest toujours du signe deaet s"annule pourx=x1.?

O?ı??a >0

a <0x

12-3SiD>0:

Racines :Deux racines réelles :x1=bpD

2aetx2=b+pD

2aFactorisation :Pour toutx,ax2+bx+c=a(xx1)(xx2).

Signe :ax2+bx+cest du signe deaà l"extérieur des racines. (on suppose quex1O?ı??a >0 a <0x 1x2x 1x22 c P.Brachet -www .xm1math.net1reSérie Générale - Second degré

3Exemples de résolution d"équations et d"inéquations du second degré

3-1Equations du second degré

Résolution dansRde l"équationx2+2x3=0 :

(Par rapport aux formules, on a ici :a=1,b=2 etc=3 ).

Calcul du discriminant :D=b24ac= (2)24(1)(3) =16.

Le discriminant est strictement positif, donc le trinôme admet deux racines réelles qui sont en fait les solutions de l"équa-

tion :

Calcul des solutions :

x 1=bpD

2a=2p16

21=242

=3x2=b+pD

2a=2+p16

21=2+42

=1. L"ensemble solution est doncS=f3;1g.

Résolution dansRde l"équation 2x22p2x+1=0 :

(Par rapport aux formules, on a ici :a=2,b=2p2 etc=1 ). Calcul du discriminant :D=b24ac= (2p2)24(2)(1) =428=0.

Le discriminant est nul, donc le trinôme admet une seule racine réelle qui est en fait la solution de l"équation :

Calcul de la solution :

x

1=b2a=(2p2)22=p2

2 . L"ensemble solution est doncS=( p2 2

Résolution dansRde l"équation 3x2+4x+5=0 :

(Par rapport aux formules, on a ici :a=3,b=4 etc=5 ). Calcul du discriminant :D=b24ac=424(3)(5) =1660=44.

Le discriminant est strictement négatif, donc le trinôme n"admet aucune racine réelle. L"ensemble solution est doncS=/0

Résolution dansRde l"équationx2+4x=0 :

(Par rapport aux formules, on a ici :a=1,b=4 etc=0 ).

Comme à chaque fois queb=0 ouc=0, il est inutile d"utiliser le discriminant et les formules associées. Les méthodes

traditionnelles vues en Seconde sont plus simples et plus rapides. Ici, il suffit de factoriser parx:

x

2+4x=0,x(x+4) =0,x=0 oux+4=0,x=0 oux=4. L"ensemble solution est doncS=f4;0g

Résolution dansRde l"équation 4x21=0 :

(Par rapport aux formules, on a ici :a=4,b=0 etc=1 ). Icib=0, il est donc inutile d"utiliser le discriminant et les formules associées.

4x21=0,4x2=1,x2=14

,x=12 oux=12 . L"ensemble solution est doncS=12 ;12

3-2Inéquations du second degréMéthode générale :on calcule la valeur du discriminant du trinôme associé à l"inéquation. On en déduit le signe du trinôme sur

R. On détermine alors l"ensemble solutionS, en cherchant les valeurs dexvérifiant l"inéquation.(Pour les bornes, on applique les

règles habituelles : les bornes sont toujours ouvertes aux infinis et pour les "doubles-barres", les autres bornes sont ouvertes si

l"inéquation est de la forme<0 ou>0 et sont fermées si l"inéquation est de la forme60 ou>0 .)

Remarque :Sib=0 ouc=0, il est inutile d"utiliser le discriminant et les formules associées. Les méthodes vues en Seconde

sont plus simples et plus rapides : il suffit en général de factoriser et de faire un tableau de signes.Exemples nécessitant le calcul du discriminant :

Résolution dansRde l"inéquationx2+4x560 :

(Par rapport aux formules, on a ici :a=1,b=4 etc=5 ).

Calcul du discriminant :D=b24ac= (4)24(1)(5) =36.

Le discriminant est strictement positif, la règle est donc "signe deaà l"extérieur des racines". Il faut donc commencer par

calculer les deux racines : x 1=bpD

2a=4p36

21=462

=5x2=b+pD

2a=4+p36

21=4+62

=1

Signe du trinôme surR: (icia=1 est positif, donc le trinôme est positif à l"extérieur des racines et négatif à l"intérieur)1

reSérie Générale - Second degréc

P.Brachet -www .xm1math.net3

x-∞ -51+∞x

2+ 4x-5+0-0+Ensemble solution :les solutions de l"inéquation sont lesxpour lesquelsx2+4x-5 est inférieur ou égal à 0. Cela

revient à déterminer lesxpour lesquels on a le signe-dans le tableau de signe. D"où,S= [-5;1]. Ce qui peut se vérifier

graphiquement :y x 1 -5ORésolution dansRde l"inéquation2x25x+3<0 : (Par rapport aux formules, on a ici :a=2,b=5 etc=3 ).

Calcul du discriminant :D=b24ac= (5)24(2)(3) =49.

Le discriminant est strictement positif, la règle est donc "signe deaà l"extérieur des racines". Il faut donc commencer par

calculer les deux racines : x 1=bpD

2a=(5)p49

2(2)=574=12

x

2=b+pD

2a=(5)+p49

2(2)=5+74=3

Signe du trinôme surR: (icia=2 est négatif, donc le trinôme est négatif à l"extérieur des racines et positif à l"intérieur)x-∞

-312

+∞-2x2-5x+ 3-0+0-Ensemble solution :les solutions de l"inéquation sont lesxpour lesquels-2x2-5x+3 est strictement inférieur à 0. Cela

revient à déterminer lesxpour lesquels on a le signe-dans le tableau de signe. D"où,S=]-¥;-3[[]12

;+¥[. Ce qui peut se vérifier graphiquement :y x

1/2-3+

-ORésolution dansRde l"inéquation2x2+5x4>0 : (Par rapport aux formules, on a ici :a=2,b=5 etc=4 ).

Calcul du discriminant :D=b24ac=524(2)(4) =7.

Le discriminant est strictement négatif, la règle est donc "toujours du signe dea" , c"est à dire toujours négatif cara=2.

Signe du trinôme surR:4

c P.Brachet -www .xm1math.net1reSérie Générale - Second degré

x-∞+∞-2x2+ 5x-4-Ensemble solution :les solutions de l"inéquation sont lesxpour lesquels-2x2+5x-4 est supérieur ou égal à 0, ce qui

est impossible vu le tableau de signe. D"où,S=/0.

Résolution dansRde l"inéquationx2+p2x+1>0 :

(Par rapport aux formules, on a ici :a=1,b=p2 etc=1 ). Calcul du discriminant :D=b2-4ac= (p2)2-4(1)(1) =-2.

Le discriminant est strictement négatif, la règle est donc "toujours du signe dea", c"est à dire toujours positif cara=1.

Signe du trinôme surR:x-∞+∞x

2+⎷2x+ 1+Ensemble solution :les solutions de l"inéquation sont lesxpour lesquelsx2+⎷2x+1 est strictement supérieur à 0, ce

qui est toujours le cas vu le tableau de signe. D"où,S=R. Résolution dansRde l"inéquation 4x2-4⎷3x+3>0 : (Par rapport aux formules, on a ici :a=4,b=-4⎷3 etc=3 ). Calcul du discriminant :D=b2-4ac= (-4⎷3)2-4(4)(3) =0.

Le discriminant est nul, la règle est donc "toujours du signe dea(c"est à dire toujours positif cara=4) et s"annule pour

la racine doublex1=-b2a=-(-4⎷3)24=⎷3 2

Signe du trinôme surR:x-∞

⎷3 2

+∞4x2-4⎷3x+ 3+0+Ensemble solution :les solutions de l"inéquation sont lesxpour lesquels 4x2-4⎷3x+3 est strictement supérieur à 0, ce

qui est toujours le cas vu le tableau de signesaufpour⎷3 2 . D"où,S=R-( ⎷3 2

4Relations entre les coefficients et les racines d"un trinôme

PROPRIÉTÉSoit un trinômeax2+bx+c(a6=0) dont le discriminantDest strictement positif. Les deux racinesx1etx2sont telles que :

x

1+x2=-ba

etx1x2=ca

Application :Cela permet de déterminer rapidement une racine connaissant l"autre, en particulier lorsque le trinôme admet une

racine "évidente". Remarque : le fait de trouver une racine implique forcément que le discriminant est supérieur ou égal à 0. Il est

donc inutile de le calculer! Exemple :x1=1 est une racine "évidente" du trinôme 2x2-5x+3. On doit donc avoir :

1x2=ca

=32 . D"où la deuxième racinex2est forcément égale à32

Une conséquence de ces relations entre les coefficients et les racines d"un trinôme est la propriété suivante :1

reSérie Générale - Second degréc

P.Brachet -www .xm1math.net5

PROPRIÉTÉ

Dire que deux nombres réels ont pour sommeSet pour produitPéquivaut à dire qu"ils sont solutions dansRde l"équation du

second degré :x2Sx+P=0 .Exemple :Pour déterminer (s"ils existent) deux réels dont la sommeSest égale à 6 et dont le produitPest égal à 1, on résoud

dansRl"équationx2Sx+P=0,x26x+1=0. On aD= (6)24(1)(1) =32. Il ya donc deux solutions réelles : x

1=6p32

2 =64p2 2 =32p2 etx2=6+p32 2 =6+4p2 2 =3+2p2. Les deux réels cherchés sont donc 32p2 et

3+2p2.

5Equations bicarrées :ax4+bx2+c=0Méthode générale :Pour résoudre ce genre d"équations, on utilise un changement d"inconnue :

En posantX=x2, l"équationax4+bx2+c=0 est équivalente au système(X=x2 aX

2+bX+c=0Exemple :Résolution dansRde l"équationx47x2+12=0

On poseX=x2, l"équation est équivalente au système(X=x2 X

27X+12=0

On résoud l"équation du second degréX27X+12=0 :

D= (7)24(1)(12) =4948=1 ,X1=(7)p1

21=62
=3 ,X2=(7)+p1 21=82
=4 On a doncX=3 ouX=4, ce qui équivaut àx2=3 oux2=4.

D"où,x=p3 oux=p3 oux=2 oux=2.

Ainsi, l"ensemble solution estS=p3;p3;2;2.

6Equations irrationnelles avec des racines carréesMéthode générale :On isole la racine carrée et on utilise le fait quesiA=BalorsA2=B2. On obtient une deuxiéme équation du

de l"équation initiale. (En effet, on ne procéde pas par équivalence mais par implication. La vérification est donc indispensable.)Exemple :Résolution dansRde l"équationp4x19=x4.p4x19=x4)4x19= (x4)2)4x19=x28x+16)0=x28x+164x+19)x212x+35=0

Résolution de l"équation du second degré obtenue :

D= (12)24(1)(35) =4 ,x1=(12)p4

21=102

=5 ,x2=(12)+p4

21=142

=7 .

Vérification :

p4519=p1=1 existe et est bien égal à 54p4719=p9=3 existe et est bien égal à 74.

L"ensemble solution est :S=f5;7g.6

c P.Brachet -www .xm1math.net1reSérie Générale - Second degréquotesdbs_dbs8.pdfusesText_14
[PDF] math 3 eme

[PDF] math 3 eme besoin d aide svp

[PDF] math 3000 sec 1 answers

[PDF] math 3000 sec 2 corrigé pdf

[PDF] math 3000 sec 3 pdf

[PDF] Math 3ème

[PDF] Math 3eme pour demain merci d'avance

[PDF] Math 4 ème

[PDF] Math 4 ème 1 exo

[PDF] Math 4ème

[PDF] Math 4eme !

[PDF] MATH 4EME : Cosinus d'un angle aigu et un autre exercice de ce genre ! AIDEZ MOI SVP

[PDF] Math 4eme : écriture scientifique

[PDF] math 4eme :peser des particules

[PDF] math 4eme addition nombre relatif